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I. Introduction 

Whether the interest is in discovering the neural basis of behavior or in reverse 
engineering the nervous system to wea l  its secrets of computation and control, 

' 1 ,  

modeling and simulation play a central role in the process of discovery. Many inter- 
esting behaviors are subserved by large, nonlinear, and highly interconnected ieural 
networks that are too complicated to grasp intuitively. Modeling of cqmifex net- 
works could be used to gain.insight into their biological counterparts. However, such 
models typically contain many free parameters that cannot be set by the available 
physiological or anatomical data. One approach to these diGulties is to choose val- 
ues for these parameters using an optimization algorithq constrained by biological 
data. This chapter illustrates several different applications of one such algorithm 
called backpropagation (Rumelhart et al., 1986), a widely used gradient descent 
technique, to the well-defined neural circuit of the local bending reflex of the leech. 
After introductory remarks on optimization in network modeling, we review our use 
of optimized network models to demonstrate the plausibility of distributed process- 
ing in the local reflex. We next show how varying the assumptions of the modelkd 
to unexpected local bending networks involving dedicated rather than distributed 
processing mechanisms. A final section demonsbate~,the use of optimization to 
study how the memory for nonassociative conditioning can be stored in distributed 
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FIGURE 2. Network model of the local bending reflex of the leech. (A) Behavior: dorsal, 
ventral, and lateral stimuli produce local U-shaped bends. (B) Simplified neural circuit: the 
main input to the reflex is provided by the dorsal and ventral P cells (PD and PV). Control 



Chapter XI Voyages through Weight Space 255 

fit to the biological data is obtained. More efficient random search strategies include 
simulated annealing (Kirkpatrick el al.. 1983) and genetic algorithms (Goldberg. 
1989; Beer and Chiel. Chapter XII, this volume). In gradient descent methods, the 
effect of each parameter on the l i t  of the model to the data is determined and para- 
meters are changed in the direction that improves the fit, i t . ,  reduces the error of the 
model. In numerical differentiation. a simple gradient descent method, parameters 
in the model are increased one at a time by a small fraction. If this reduces the error, 
the change is retained; if not. the opposite change is made. As in random methods. 
this procedure is repeated until a satisfactory fit is obtained. Backpropagation is a 
more efficient procedure for computing the derivatives in which the changes 
required for all the parameters are calculated simultaneously. Once the derivatives 
have been calculated, they can be used to update the parameters as in numerical dif- 
ferentiation. Many variations of gradient descent are available, such as conjugate 
gradient (Battiti. 1992) and methods using second derivatives (Parker. 1987). 

111. The Local Bending Reflex 

We use backpropagation as means of searching the parameter space associated 
with a model of the local bending reflex in the leech. In response to a moderate 
mechanical stimulus, the leech withdraws from the site of contact (Fig. 2A). This 
is accomplished by contracting longitudinal muscles beneath the stimulus and 
relaxing longitudinal muscles on the opposite side of the body, resulting in a local 
U-shaped bend (Kristan, 1982). Major input to the local bending reflex is provided 
by dorsal or ventral pressure-sensitive mechanoreceptors or P cells (Fig. 2B, PD 
and PV; Nicholls and Baylor, 1968). Contraction and relaxation of longitudinal 
muscles are controlled by a total of eight types of motor neurons, an excitatory 

FIGURE 2. (cont.) of local bending movements is largely proGided by motor neurons whose 
projective field is restricted to one quadrant (left or right, dorsal or ventral) of the body. 
Dorsal and ventral quadrants are innervated by both excitatory (DE and VE) and inhibitory 
JDI and VI) motor neurons. Inhibitors inhibit excitors of the same body quadrant, and dor- 
sal inhibitors inhibit contralateral ventral inhibitors (filled terminals). (C) Physiological 
input-output function: intracellular recordings from the four motor neurons in response to 
stimulation of one or two P cells (filled circles). The motor neurons shown have projective 
fields ipsilateral to the stimulated P cell(s). Similar recordings were obtained with other pat- 
terns of P cell stimulation and from contralateral motor neurons (not shown). (D) 
Hypothetical local bending interneurons dedicated to the detection of dorsal, ventral. and 
left (L) and right (R) lateral stimulus locations. Each interneuron has effects on motor out- 
put that ire consistent with withdrawal from the stimulated site. White boxes represent exci- 
tatory connections; black boxes represent inhibitory connections. The presynaptic or 
postsynaptic neuron for each connection is given in the key. 
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(DE or VE) and inhibitory (Dl or VI) type for the dorsal and ventral quadrants on 

the left and right side of each body segment (Fig. 2B; Stuart, 1970; Ort el a/., 

1974). The task of the interneurons in the local bending reflex is to compute a 
behavioral input-output function: the mapping relation between patterns of P cell 

activation and patterns of motor neuron excitation and inhibition sufficient for the 

animal to withdraw from the stimulus. The input-output function has been studied 

experimentally by making intracellular recordings from each of the eight types of 

motor neuron in response to P cells stimulated singly or in dorsal, ventral. or lat- 

eral pairs (Fig. 2C) (Lockery and Kristan. 1990a). 

In a simple model of the local bending reflex, dorsal, ventral, and lateral bends 

are produced by types of interneurons specific for each form of the response (Fig. 
2D). To determine how the interneurons in the reflex computed the local bending 

input-output function, a subpopulation of local bending interneurons contributing 

to dorsal local bending was identified using physiological and morphological cri- 

teria. Nine types of dorsal bending interneuron, which have excitatory connections 

to DE and receive excitatory connections from PD (Lockery and Kristan. 1990b). 

were found. Interestingly, several aspects of the other connections made by this 

subpopulation (Fig. 3A) are inconsistent with a committment to only dorsal local 

bending and thus with the simple model (Fig. 2D). First, all but one type of dorsal 

FIGURE 3. (opposite) (A) Average connection strengths of identified local bending 
interneurons (Lockery and Kristan, 1990b). Intemeurons are numbered according to their 
location on the standard map of the leech midbody ganglion (Muller et al., 1981). The left 
(L) member of each left-right pair of interneurons is shown, except for cell 218. which is 
unpaired. Symbols as in Fig. 2D, except that box area is proportional to synaptic strength 
determined from pairwise intracellular recordings. White plus signs indicate excitatory con- 
nections of unknown strength determined from extracellular recordings of DE. Blank 
spaces indicate connections that have not been determined because the presynaptic neuron 
lies on the ventral surface of the ganglion while the postsynaptic neuron lies on the dorsal 
surface. The connections are not consistent: with the dedicated interneuron model (Fig. 2D). 
(B) Connection strengths of interneurons 1L to 9L in a 40-interneuron model after opti- 
mization. Like all other interneurons in the model, these are excited by ventral as well as 
dorsal stimuli and have connections to most motor neurons. Thus the connections of model 
interneurons are qualitatively similar to the connections of identified local bending 
interneurons. (C) The 36-interneuron model. Interneurons 1L-9L (dorsal bending interneu- 
rons) were constrained to receive four excitatory P cell inputs and have outputs to excitatory 
motor neurons consistent with dorsal bending. Interneurons 10L-18L (unconstrained 
interneurons) were constrained only to receive 4 excitatory P cell inputs; no constraints 
were placed on the sign or amplitude of their output connections. After optimization to the 
local bending data set, most of the unconstrained interneurons had developed connections to 
the excitatory motor neurons that were consistent with ventral bending. (D) The 4- 
interneuron model. Both members of each left-right pair are shown. Networks with fewer 
interneurons could not be optimized to produce local bending motor output. 
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bending interneuron receive substantial excitatory input from PV, indicating that 
these neurons are also active in ventral and lateral local bends. Second, the con- 
nections from an interneuron to the inhibitory motor neurons are not always oppo- 
site in  sign to its outputs to the excitatory motor neurons controlling the same body 
quadrant (Fig. 3A. interneuron 125, arrows). Thus, the connections of the subpop- 
ulation of local bending interneurons suggest a distributed processing strategy in 
which each interneuron is active in some or all forms of local bending; motor neu- 
ron excitation and inhibition would thus result from balanced combinations of 
appropriate and inappropriate inputs from many interneurons acting in concert. 

IV. The Distributed Model of Local Bending 

Modeling the reflex was prompted by the need to demonstrate that the distributed pro- 
cessing hypothesis is consistent with the responses of the interneurons and with the 
physiological details of the input-output function of the reflex. The possibility 
remained that another type of interneuron, as yet undiscovered, is required to produce 
accurately the known set of local bending input-output relations. The model has 4 sen- 
sory neurons, 8 motor neurons, and 40 interneurons and thus 480 connections, repre- 
senting the actual local bending circuit (Fig. 2B) (Lockery and Sejnowski, 1992). This 
is referred to as the 40-interneuron model. The number of interneurons was based on 
an estimate of the number of local bending interneurons that remain to be identified in 
the biological network. Each neuron in the model is represented as a single electrical 
compartment (Segev et al., 1989) with a physiologically determined input resistance 
and a time constant. The membrane potential is updated as a function of time and 
depends only on the synaptic current injected by chemical and electrical synapses. 

The large number of connections in the model entails a parameter space too 
large to search by hand. Therefore, the backpropagation algorithm was used to ' 

adjust the connections. To make the model more realistic, backpropagation was 
forced to operate within additional physiological constraints. First, only excitatory 
connections were allowed from sensory neurons to intemeurons in the model, 
because only excitatory connections have so far been found between sensory neu- 
rons and interneurons in the biological network (Lockery and Kristan, 1990b). 
Second, the sigmoidal function for interneurons and motor neurons was shifted so 
that the output of a unit that receives no net input is zero, as in leech neurons 
(Granzow et al., 1985). Third, each interneuron on the left was paired with one on 
the right to maintain homologous input and output connections, in accordance 
with the overall bilateral symmetry of connections in the leech nervous system. 
Fourth, no connections between intemeurons were allowed. Fifth, the model 
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included all the chemical and electrical connections between the motor neurons. 
Synaptic weights from sensory neurons to interneurons and from intemeurons to 
motor neurons were adjusted by the algorithm until the amplitudes and time 
courses of synaptic potentials recorded in the model motor neurons i n  response to 
each pattern of sensory input matched the smoothed and scaled replicas of the 
physiological synaptic potentials (Fig. 2C). 

After training, the input and output connections of hidden units (Fig. 3B) in the 
model network qualitatively resemble the connections of identified local bending 
interneurons (Fig. 3A). In particular, interneurons receive inputs from ventral as 
well as dorsal input units, most have connections to all motor neurons, and the 
connections to the inhibitory motor neurons are not always opposite in sign to 
those onto the excitatory motor neurons controlling the same body quadrant (Fig. 
3B, interneuron 4L, arrows). The similarity between model hidden units and 
interneurons in the biological network shows that the local bending input-output 
function can be achieved with interneurons similar to those identified physiologi- 
cally. Additional interneurons with receptive and projective fields (output targets) 
that differ radically from the subpopulation of identified intemeurons are not 
required. In hundreds of optimization runs from different initial positions in 
weight space, a different final point in weight space was reached each time. Thus, 
there are many different points in weight space that produce a physiologically 
accurate local bending input-output function utilizing a distributed processing 
strategy for computing the input-output relations. 

V. Distributed Models of Local Bending with Functionally Specific 
Interneuronal Subpopulations 

The correspondence between the identified interneurons and the interneurons in the 
40-interneuron network establishes the possibility of using a distributed processing 
model to account for the input-output function of the reflex. However, several 
aspects of the output connections of the identified interneurons suggest that the 
actual network may use a strategy intermediate between the fully distributed solu- 
tion of the 40-interneuron network and the dedicated interneuron solution of Fig. 
2D. Consistent with the dedicated solution, all nine types of interneuron excite the 
DE motor neurons, and interneurons 1 !5 and 125 also inhibit the VE motor neurons, 
effects that quite possibly are shared by the identified interneurons whose output 
connections have not yet been measured. On the other hand, both the inputs and the 
outputs to the inhibitory interneurons are consistent with a distributed solution, as 
noted above. Thus the identified interneurons are likely to constitute a subpopula- 
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tion that operates in a partly dedicated and partly distributed fashion. This suggests 
a new version of the model having two subpopulations of interneurons. The first. 
like the identified interneurons. is partially dedicated to dorsal bending. The second 
subpopulation might be partially dedicated to ventral or lateral bending. 

To determine whether such a model can account for the input-output function 
of the reflex, a population of 36 model interneurons was divided into two separate 
subpopulations of 18 intemeurons (Lockery and Sejnowski, 1992). We used 18 

interneurons in this subpopulation to reflect the fact that nine types of interneurons 
have been identified that are partly dedicated to dorsal bending and that all but one 
of these comprises a pair of bilaterally symmetrical interneurons. During opti- 
mization, interneurons in the first subpopulation, referred to as dorsal bending 
interneurons, were constrained to excite DE and inhibit VE. Interneurons in the 
second subpopulation had no such constraints and were referred to as uncon- 
strained interneurons. In both subpopulations, the constraints on the input connec- 
tions and symmetry were the same as in the 40-interneuron model. After 
optimization, the performance of the 36-interneuron network was identical to that 
of the 40-interneuron model. Inspection of the connections of the subpopulation of 
model dorsal bending interneurons showed that they were like the identified dorsal 
bending interneurons, in accordance with the additional constraints placed on this 
subpopulation (Fig. 3C). Inspection of the unconstrained interneurons showed that 
most (61%) had output connections to DE and VE that were consistent with ventral 
bending and had mixed effects on the inhibitory motor neurons. The other major 
type of interneuron either excited or inhibited all four excitatory motor neurons. 
These results show that the local bending input-output function can be computed 
by networks with a separate subpopulation that corresponds closely to the identi- 
fied interneurons. The unconstrained interneurons complement the effects of the 
dorsal bending interneurons and suggest possible connectivities of as-yet- 
unidentified interneurons in the biological network. In repeating this simulation 
many times, none of the networks contained interneurons with outputs consistent 
with lateral bending. Thus, this type of interneuron is not necessary for computing 
the input-output function. 

VI. Minimal Local Bending Networks 

To determine whether 36 interneurons are required for local bending or whether a 

.. smaller number would suffice, we used optimization to seek solutions having 
fewer interneurons (Lockery and Sejnowski, 1992). To in. cease the likelihood that 
a solution would be found, the requirement that each interneuron have an input 
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from all four sensory neurons was removed. The symmetry constraint was 
retained, but no constraints were placed on the output connections. Networks with 

fewer than four interneurons could not be optimized to produce recognizable local 
bending motor output patrerns. Therefore, the minimum number of interneurons 
appeared to be four (Fig. 3D). However. we cannot rigorously exclude the possi- 

bility that in the networks with fewer than four interneurons the optimization pro- 
cedure became trapped in a local ninimum. That the local bending Input-output 

function can be produced by as few as four interneurons indicates a high degree of 
redundancy may be present in the biological network. 

The four-interneuron networks require two pairs of interneurons to accommo- 

date three basic types of local bending: dorsal, ventral, and lateral. Enforcing 
this requirement led to hitherto unexpected mechanisms for computing the input 

-output function. While some of the four-interneuron networks used variations 

of the distributed processing network, some of the networks had interneurons 

that were specific for particular patterns of sensory input and motor output. The 
interneurons in the network shown in Fig. 4 were specific for dorsal or ventral 

inputs. Surprisingly, the same interneurons had exactly the motor outputs 

expected of lateral bending interneurons. Thus, the local bending input-output 
function can be produced by a novel solution involving dedicated interneurons in 

which there is a dissociation between the sensory and motor specificities of the 

two types of interneurons. 

VII. Possible Engrams in Nonassociative Conditioning of the Local 
Bending Reflex 

At the level of individual reflexes, learning can,& defined as a change produced by 

experience in the input-output function of the underlying neural network. 

Learning in many systems is thought to be the result of changes in synaptic 
strength. Thus, when a reflex is conditioned, the network is moved to a point in 

weight space associated with a new input-output function. A major objective in 
the cellular analysis of learning and memory is to identify the sites of synaptic 

plasticity underlying the change in input-output function, a task that has been 

referred to as a search for the engram (Squire, 1987). Ideally, from an experimental 

point of view, the new point in weight space will be far from the original point so 

that the engram will comprise many large, hence easily detectable, changes. . 

However, one might imagine that the same change in input-output function could 

be achieved by moving a much shorter distance in weight space. If so, then learn- 
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FIGURE 4. Scatter plots of the changes in synaptic strength produced by reoptimization 
In each panel. the strength of a connection before reoptimization is plotted on the 
abscissa. The ordinate gives the change in that connection (before reoptimizat~on - after 
reoptimization). Thus, connections whose strength increased fall in the upper right and 
lower left quadrants, while connections whose strength decreased fall in the lower right 
and upper left. Input connections were constrained to be positive in the model, hence 
there are no points on the left in the two upper panels. These plots show that habituation 
and sensitization were produced by the combined effect of increases and decreases in 
synaptic strength. 

ing would be the result of some number of small changes in synaptic strength and 
the engram could thus be difficult to detect. 

The local bending reflex exhibits several forms of nonassociative learning, 
including sensitization, wann-up, and habituation (Lockery and Kristan, 1991, and 
unpublished results). Little is known about the engrams for nonassociative learning 
in distributed processing systems. We therefore sought to examine the characteris- 
tics of engrams produced by using backpropagation to reoptimize the connections 
in a normal local bending network to produce habituated or sensitized local bending 
responses. Because backpropagation makes small changes in weights at each itera- 
tion, this approach was expected to yield solutions in which the final differences in 
synaptic strengths were small, if such solutions exist for the local bendingaetwork. 
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Backpropagation was thus used as a means of searching weight space for habituated 
or sensitized networks that were close to the original network, not as a model for the 
underlying mechanisms of synaptic plasticity whereby the learning is induced or 
retained. This approach could provide a worst-case scenario: if learning is distrib- 
uted as widely as possible among the interneurons, how small are the changes in 
synaptic strength likely to be? 

In these simulations we assumed that habituation entails a 50% reduction in the 
peak amplitude of the motor neuron synaptic potentials in each output pattern in 
the training set and that sensitization entails a 50% increase. Starting with the 40- 
interneuron network optimized for normal local bending, we reoptimized this net- 
work to the habituated or sensitized state. The change in synaptic strength at each 
synapse was determined by measuring the difference in the the peak of the simu- 
lated synaptic potential in response to a standard stimulus in the presynaptic neu- 
ron before and after reoptimization. 

In reoptimizing six different 40-interneuron networks for habituation, the 
average change in synaptic strength (absolute value) was 0.22 mV; for sensiti- 
zation it was 0.20 mV. The changes in synaptic strength were visualized in scat- 
ter plots where the change in synaptic strength was plotted against the strength 
of the connection before reoptimization (Fig. 4). In such a plot, the connections 
that increased in strength fall into the upper right and lower left quadrants, 
those that decreased in strength fall into the upper left and lower right, and 
unchanged connections lie along the abscissa. The scatter plots show that the 
engram produced by backpropagation was widely distributed, since almost 
every input and output connection in the network changed. A simple model of 
nonassociative learning predicts that habituation is due to decreases in synaptic 
strength and sensitization to increases in synaptic strength. For habituation, the 
scatter plots revealed that while most of the changes were consistent with the 
simple model, many increases in synaptic strength also occurred, in both the 
input and output connections of the interneurons. A similar effect was noted in 
sensitization, where many decreases in synaptic strength occurred. Taken 

, together, these results show that, for each normal local bending network model, 
there exist nearby positions in weight space associated with habituated or sensi- 
tized motor output. Moreover, the nearby solutions involve a mixture of 
increases and decreases in synaptic strength, regardless of whether motor out- 
put increases or decreases in the learning. 

The existence of habituated and sensitized networks involving many small 
.changes raises the question of whether such changes would be detectable in prac- 
tical physiological experiments. This was addressed by asking how much of the 
change in motor output could be accounted for by all the changes that were larger 
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than a given sensitivity threshold. In a quanta1 analysis of a central synapse in the 

leech, Nicholls and Wallace (1978) were able to resolve differences in synaptic 

potentials as small as 0.25 mV. At this level of resolution, approximately 40% of 
the learning encoded by the distributed engrams produce by backpropagation 
would be detectable. This sets an approximate lower bound on the detectability of 

nonassociative learning in the local bending reflex. 

VIII. Conclusion 

We have used backpropagation as an optimizat~on algorithm to explore the we~ght 
space associated with a model of the distributed processing of sensory mformat~on 

in the local bending reflex of the leech. In optmizing the 40-interneuron model we 
found, as in other networks. that there are many different polnts In weight space 

that produce a physiologically accurate input-output function. In restricting the 

algorithm to smaller regions of weight space by limiting the value of interneuron 
output weights to observed ranges, as in the 36-interneuron networks, we found 
that qualitatively different networks with populations of dorsal ventral bending 

interneurons are also possible. A further restriction to the st111 smaller region of 
weight space defined by a network with only four interneurons showed that this 

was the minimum number of interneurons necessary and revealed unexpected 

types of dedicated interneurons. Finally, in reoptimizing networks to produce 
habituated or sensitized local bending responses, we found that the memory for 

nonassociative learning in distributed processing networks can involve many small 
changes at almost every weight in the network, a situation that could be hard to 

uncover in practical physiological experiments. 
Whether the local bending reflex operates as any of these models suggests will 

require identification of the as-yet-undiscovkred local bending interneurons and 
measurement of their input and output connections strengths. Whether memory is 

encoded as reoptimization suggests will require identifying the sites of synaptic 
plasticity underlying nonassociative learning in the reflex. Whatever the results, 
these prior explorations of the local bending weight space provide a framework in 

which to place the actual biological solutions and thus deepen our understanding 
of the solutions nature has chosen. Far from being limited to well-defined inverte- 

brate networks, this approach is a general one that can be applied to any neural sys- 
tem for which h e  input-output function is known or can reasonably be assumed. 

It should therefore be useful in a great variety of modeling studies (Zipser and 
Andersen, 1988; Lehky and Sejnowski, 1988; Anastasio and Robinson, 1990; Fetz 
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er a/., 1990; Servan-Schreiber er d.. 1990; Tsung el a/., 1990; Zipser, 1991; 

Krauzlis and Lisberger. 1991: Pouget cr l . .  1997). 
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