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Abstract 

Probability theory represents and manipulates uncertainties, but cannot 
tell us how to behave. For that we need utility theory which assigns val- 
ues to the usefulness of different states, and decision theory which con- 
cerns optimal rational decisions. There are many methods for probability 
modeling, but few for learning utility and decision models. We use re- 
inforcement learning to find the optimal sequence of questions in a diag- 
nosis situation while maintaining a high accuracy. Automated diagnosis 
on a heart-disease domain is used to demonstrate that temporal-difference 
learning can improve diagnosis. On the Cleveland heart-disease database 
our results are better than those reported from all previous methods. 

INTRODUCTION 

Probability theory represents and manipulates uncertainties in a principled way, but it can 
not tell us how to behave. To be able to do that we need utility theory, which values the use- 
fulness of different states so that they can be compared. Together these two form decision 
theory which deals with how to make rational decisions under uncertainty. The most im- 
portant idea in decision theory is the principle of maximum expected utility [von Neuman & 
Morgenstern, 19471. It is a general principle for rational behavior, and we will in the long 
run benefit the most if we make our choices following this principle with some utility func- 
tion. By studying people's preferences for different kinds of lotteries it has been found that 



our behavior is indeed guided by this (see [Russell & Norvig, 19951 for a general discus- 
sion). Even "irrational" behavior can in fact be seen as rational-it is the utilities that are 
wrong. 

There have been a lot of work on how to learn probability models, but not much on how to 
learn utility models. We will in  this paper show that it can be done through reinforcement 
learning. A complete automated system can be built where the probability model is found 
from a database of cases, while the utility model is elicited by observing how the system 
behaves. This is demonstrated with a system for automated medical or machine diagnosis. 

Diagnosis is a sequential decision process that starts from little initial information. More in- 
formation is then requested in order to improve the result, and this is repeated in an iterative 
fashion. Many automated diagnosis systems have been designed, but most of them have to 
be specified manually, e.g., Expert Systems or Bayesian Networks1. Due to the complexity 
of the domains we are interested in, it is hard or impossible to do this specification in an 
accurate and consistent way. 

In [Stensmo & Sejnowski, 19951 a diagnosis system that learns from a database of cases 
was presented. This system builds a joint probability density model of the data which is 
then used for statistical inference to estimate the values of currently unknown variables. It is 
important to use joint probability density modeling in this application since there are always 
many unknown input variables. They can be found from the joint density in a principled 
way. Decision theory was used to find the most informative question to ask to get more 
information. Utilities determine how bad a misclassification is, and the goal is to maximize 
the expected utility. In previous work these utilities had to be manually specified and we 
used an approximation. The same approximation has been reported to work well in other 
work [Ledley &Lusted, 1959; Heckerman et al., 19921, but we found that the results on our 
database were not optimal. This made us look for a way to learn the utilities. 

Utilities cannot be found directly, but after each diagnosis we can get a "grade" on the se- 
quence of questions which can be used to elicit them. Reinforcement learning is designed 
for this situation, and several learning methods have been developed. One of them is the 
method of Temporal-Differences [Sutton, 19881. Systems that learn by observing their own 
behavior have been successful in earlier work, starting with a system that learned to play 
checkers [Samuel, 19591. Tesauro's TD-Gammon system [Tesauro, 1992; Tesauro, 19931 
learned master level backgammon by playing itself. 

This paper demonstrates that utilities can be improved through reinforcement learning. This 
also means that utility values can be elicited from an expert that gives feedback on the qual- 
ity of the diagnosis the system just performed. The expert therefore does not have to know 
what the utility values are. The only requirement is that he is consistent in the kind of feed- 
back that he gives. We believe that our method could be used to find utility models for other 
decision theoretic systems. 

Results on a database of heart-disease cases are presented. 
- 

'Certain kinds of networks can be learned from data [Russell & Norvig, 19951. 



2 THEMODEL 

2.1 PROBABILITY DENSITY MODEL 

The joint probability density of the data was modeled by a finite linear mixture model 
[McLachlan & Basford, 19881, 

There are M mixture components each denoted by wj. For each component there are two 
parameters, the a priori probability, or mixing proportion, p(wj), and Bj. 

We have in this paper used binomial mixture components. Other components, e.g., multino- 
mial or Gaussian could have been used [Stensmo & Sejnowski, 19941. Each data point xi 
out of a set of size N is a D-dimensional binary vector. There is a parameter vector p,, also 
of length D, for each mixture component. Binomial mixture components have the form 

The Expectation-Maximization (EM) algorithm [Dempster et al., 1977; Ghahramani & Jor- 
dan, 19941 was used to find the maximum likelihood estimates of the parameters. The al- 
gorithm consists of two steps that are repeated: An Expectation (E) step that estimates the 
probability that mixture component wj generated the data point, 

and a Maximization (M) step that updates the parameters 

Regression was used to find the expected values of the unknown variables. It is the condi- 
tional expectations of the missing variables given the observed ones. In the binomial case 
this means that pj  (x) is only evaluated at the observed dimensions, and that corresponding 
pj values are used where there are missing dimensions for x in (1) [Ghahramani &Jordan, 
19941. - 

See [Stensmo & Sejnowski, 1994; Stensmo & Sejnowski, 19951 for a longer discussion on 
mixture models, the EM-algorithm and diagnosis. 

2.2 DECISION MODEL 

In the diagnosis application we are concerned with misclassifications, and this is reflected by 
the utility model. A linear utility model was used as is customary in decision theory. There 
is a utility matrix U, where entry Uij is the utility of having misclassified outcome i for j. 



It does not have to be symmetric. In a linear model. the expected utilities of the different 
outcomes are Up, where the predicted probabilities for the different outcomes are in p. 

The marimum-e~pected-utility (MEU) principle [von Neuman & Morgenstern, 19471 from 
decision theory was used. The selection of the most informative question to ask was done 
according to the value of information criteria. First, the maximum expected utility value is 
noted before any additional observations. Then each possible new answer to the unknown 
variables are imagined to be tested. For each of them the probabilities of the outcomes and 
their expected utilities are calculated. The gain in utility is the maximum expected utility 
minus the new utility of the best outcome without the new observation. This is calculated for 
each new variable and is weighed by the predicted probability of occurrence of each answer. 
This is the value of information if we observe the variable. The cost of the hypothetical 
observation is then subtracted resulting in the net value of information. There are established 
procedures to convert costs (in e.g. dollars) to units of probability (of e.g. losing your life 
as the result of a treatment) [Howard, 1980; Heckerman et al., 19921. 

If any of the variables now has a positive net value of information, the one with the highest 
value is requested. Should this not be the case, nothing more can be gained and we are 
finished with our diagnosis. If several possible questions have the same value, one is picked 
randomly. This is perfectly fine since they have the same "values" to the user. 

It should be noted that this scheme does not take into account different sequences of ques- 
tions. The number of possible sequences grows exponentially. A common approximation 
is therefore to look ahead only one-step (often called myopic for this reason). It has been 
reported to work well in many instances [Gony & Barnett, 1967; Heckerman et al., 19921. 

The main drawback with this theory is that we have to get the utility values from somewhere. 
They have to be assessed by an expert on the domain, which can require a considerable 
effort. Approximations are therefore often used here too, for example, [Heckerman et al., 
19921 used utility values 1 for the misdiagnosis between either two malign or two benign 
diseases, and the value 0 otherwise. However, our experiments have shown that this is not 
optimal as will be seen in Section 3. 

2.3 REINFORCEMENT LEARNING 

The Temporal Difference (TD(X)) algorithm [Sutton, 19881 was used for the reinforce- 
ment learning of the utility values. Input data are sequences of values for each time 
step X I ,  . . . , x,. For each time step t a prediction Pt of the final reinforcement z is esti- 
mated. The actual reinforcement z is defined to be data point Pm+l. Pt is a function of 
inputs x and weights w, in the linear case just Pt = wx, which corresponds to the expected 
utilities Up. 

TD(X) updates the weights by 

where a is the learning rate, and X is how past experience is weighed in. [Sutton, 19881 
derives and explains this and proves convergence for X = 0. [Dayan, 19921 proves conver- 
gence for general A. 

In an on-line intra-sequence version of the algorithm [Sutton, 19881, the sum in (2) is per- 
formed separately in a variable e. The following update equations were used, with U = wt, 



Table 1 : The Cleveland heart-disease database. 

Observation 

age 
sex 
CP 
trestbps 
chol 
fbs 
restecg 
thalach 
exang 
oldpeak 

slope 

ca 
thal 
Disorder 
num 

Description 
Age in years 
Sex of subject 
Chest pain 
Resting blood pressure 
Serum cholesterol 
Fasting blood sugar 
Resting electrocardiogr. 
Max heart-rate achieved 
Exercise induced angina 
ST depr. induced by 
exercise relative to rest 
Slope of peak exercise 
ST segment 
# major vess. col. flourosc. 
Defect type 
Description 

Values 
continuous 
malelfemale 
four types 
continuous 
continuous 
It or gt 120 mgldl 
five values 
continuous 
yeslno 
continuous 

Values 
Not ~resend4 tvves 

p = xt and p' = xt-1. After each question (i.e. time step), the utility matrix U was updated 
by 

AU = aU(p - pl)e, 

and e by 

At the end of the diagnosis sequence the reinforcement z  is known. U is updated by 

AU = aU(z  - p)e. 

and e as in (3). 

The reinforcement given in our system were the correct diagnosis for each case, with a 1 
for the correct position and a 0 otherwise. Other reinforcement values could be used (see 
Section 4). The patterns were presented randomly to remove possible ordering bias in the 
database. A complete randomized presentation of the entire data set is called an iteration. 
We reset the diagonal values to one after each of the iterations. Experiments without this op- 
eration still worked but resulted in a larger average number of questions, as well as a higher 
error rate. - 

3 RESULTS 

The publically abailable Cleveland heart-disease database was used to test the method. It 
consists of 303 cases where the disorder is one of four types of heart-disease or its absence. 
There are thirteen variables as shown in Table 1. Continuous variables were converted into a 
1-of-N binary code. Nominal and categorical variables were coded with one unit per value. 
In total 55 binary variables coded the 14 original variables. 



Iteration I Average I St. dev. I Errors 
initial 1 5.31 1 1.77 1 78 

Table 2: Results of TD-learning of the utilities with X = 0.1, a = 0.01. 

Figure 1: Initial utility matrix (left). After 8 iterations with X = 0.1, a = 0.01 (right). 

To find the parameter values, the EM-algorithm was run until convergence. A mixture 
model with 98 binomial mixture components gave the best classification results using just 
the mixture model to predict the probabilities of the outcomes from the observations of each 
case. We tried from 40 to 120 mixture components. The classification error was 46 or 15.2% 
with 98 components.2 

Using the full utility/decision model and the 011-approximation for the utility matrix (left 
part of Figure l), there were 78 errors. Over the whole data set an average of 5.3 1 questions 
were used with a standard deviation of 1.77. This is without TD-learning, ie.,  a = 0. 

With TD-learning, we varied X from 0 to 1 in increments of 0.1, and found that X = 0.1 
gave us the best result. The learning rate a was also varied, a = 0.01 was best for X = 0.1. 
A higher learning rate gave rise to large fluctuations and instability, a lower one gave similar 
results but took longer time. Simulation results are shown in Table 2 for the best parameter 
values. The initial utility matrix is shown in the left side of Figure 1. The utility matrix after 
8 iterations is shown on the right. 

As can be seen in Table 2, the price paid for increased robustness is an increase in the average 
number of questions, but note that we can in fact get the same accuracy as we have w5en 
we use all of the input variables by using only less than half of them on average. 

We have sometimes noted that the results get worse after a number of iterations. This is 
probably due to over-training and the stochasticity of the presentations. It has also been 
noted by others that have used TD-learning [Tesauro, 19921. We can of course use early 

 his result is considerably better than the 101 errors (33.3%) reported in [Stensmo & Sejnowski, 
19941. This is due to a better coding of the continuous variables and the use of binomial instead of 
Gaussian mixture components. 3 



stopping to prevent this, and do not consider it to be a problem. 

4 CONCLUSIONS AND FURTHER WORK 

We have demonstrated that Temporal-Difference learning can be used to improve the ac- 
curacy of an automated diagnosis system based on probability and decision theory. The 
reinforcement that we used were chosen to make the system more robust. Other kinds of 
reinforcement can be used to bring down the number of questions needed, and to keep the 
total cost of the diagnosis to a minimum. The complicated and potentially error-pronepro- 
cess of eliciting utility values from an expert can thus be simplified. We believe that this 
technique could also be useful for other decision theoretic systems with linear or non-linear 
utility models. 

This method can be extended in several directions. We intend to explore as many as possible 
of the following ideas within the next six months: 

The technique should be tested on more databases. Medical databases are not easy 
to find [Stensmo & Sejnowski, 1994; Stensmo & Sejnowski, 19951. 

0 Explore how different question costs will affect the behavior. This is already in the 
model and should be explored. 

We attempt to explore methods to automatically find good values for the a and X 
parameters, perhaps along the lines of [Sutton & Singh, 19941. 

0 Utilities are considered to be non-linear [Grimmett & Stirzaker, 1992; Russell & 
Norvig, 19951 but are, probably by convenience, modeled linearly in decision the- 
ory, since manual specification and interpretation of the utility values then is easy. 
We believe that non-linear utilities could be useful. This eliciting can also be done 
through TD-learning with a multilayer utility network [Sutton, 1988; Tesauro, 
19921. 

An alternative to learning the utility or value function is to directly learn the opti- 
mal actions to take in each state. A method for this is Q-learning [Watkins, 19891. 
In our case this would be to learn which question to ask in each situation instead 
of the utility values. The myopic approximation would then not be necessary, but 
it would lead us away from the normal decision theoretic formulation. 
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