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Introduction 

Consider the problem of getting a neural network to associate an appro- 
priate response with an image sequence. The obvious approach is to use 
supervised training. If the network has around 1014 parameters and bnly 
lives for around lo9 seconds, the supervision signal had better contain at 
least lo5 bits per second to make use of the capacity of the synapses. It is not 
immediately obvious where such a rich supervision signal could come from. 

A more promising approach depends on the observation that images are 
not random but are generated by physical processes of limited complexity 
and that the appropriate response to an image nearly always depends on the 
physical causes of the image rather than the pixel intensities. This suggests 
that an unsupervised learning process should be used to solve the difficult 
problem of extracting the underlying causes, and decisions about responses 
can be left to a separate learning algorithm that takes the underlying causes 
rather than the saw sensory data as its inputs. Unsupervised learning can 
usually be viewed as a method of modeling the probability density of the 
inputs, so the rich sensory input itself can provide the lo5 bits per second 
of constraint that is required to amke use of the capacity of the synapses. 

The papers in this collection provide a sample of research on unsuper- 
vised learning. Some areas and important contributions are not represented 
either because an appropriate paper did not appear in Neural Computation or 
because of the limited space that was available. One entire area of research 
in unsupervised learning, self-organizing map formation, will appear as a 
separate volume in this series. Despite these limitations, the wide range of 
approaches that is included here serves as a guide to the development of 
the field of unsupervised learning. 

Redundancy Reduction 

One of the earliest formulations of unsupervised learning in the context of 
vision was the concept of redundancy reduction (Attneave 1954; Barlow 
1959; Barlow 1989). The goal was to find ways to compress the informa- 
tion contained in images, a goal that was also pursued in the commercial 
arena to reduce the bandwidth needed to transmit images. In the case of 
the human visual system, information in the array of photoreceptors in the 
retina, which number around 100 million, is compressed and represented 
by spike trains in around 1 million ganglion cells whose axons form the 
optic nerve. Atick and Redlich (1993) used an entropy reduction measure to 
show that the center-surround receptive fields found in ganglion cells are 
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optimal when the mapping is linear and the redundant information in the 
second-order correlations is removed. This was achieved by having lateral 
inhibition between neighboring cells. 

Linsker (1986) had earlier shown that the same center-surround gebme- 
try for the receptive fields could be obtained in the context of a feedforward 
neural network that used a Hebbian form of synaptic plasticity. This ap- 
proach, which he called "infomax," used a simple unsupervised Hebbian 
learning algorithm in the presence of noise on the inputs of the network 
and converged to the connection strengths needed for the center-surround 
geometry. It is unlikely that this learning mechanism is actually used in the 
retina, but it demonstrates that the response properties of neurons can be 
achieved with local learning rules and transmit visual images in an optimal 
way, in the sense defined by Atick and Redlich (1993). 

Hebbian learning at a synapse depends jointly on the activity of the 
presynaptic neuron and the postsynaptic neuron. It is a biologically plausi- 
ble leaning rule because it depends only on signals that are locally available 
at the synapse. Forms of Hebbian plasticity have been found in the hip- 
pocampus (Brown, Kairiss, and Keenan 1990) and the neocortex (Markram, 
Lubke, Frotscher, and Sakmann 1997). 

Hebbian synapses are sensitive to information contained in the second- 
order correlations of the inputs. Zhang et al. (1993) demonstrate that proper- 
ties of motionselective cells in thevisual cortex, far removed from the retina, 
can also be understood using Hebbian synaptic plasticity in a feedforward 
network. The development of the visual cortex can also be modeled by a net- 
work with Hebbian plasticity (Miller, Keller and Stryker 1989; Obermayer 
and Sejnowski 1998). 

Maximizing Mutual Information 

There are many possible objective functions for unsupervised learning, 
each of which can be optimized to produce a representation that is par- 
ticularly good at achieving some goal. In the case of reducing redundancy 
this means eliminating correlations and producing a compact code for the 
input. Linsker (1992) showed that a form of Hebbian learning was able to 
maximize the mutual information between the inputs and the outputs of 
a feedforward network in the presence of noise. The learning algorithm 
has two phases for learning, with the inputs present during the first phase 
of Hebbian learning and absent during the second, anti-Hebbian phase in 
which the sign of earning is reversed. The second phase is needed to calibrate 
the correlations that are induced in the output units by the intrinsic noise 
on the inputs. Sphased leraning algorithms were introduced by Crick and 
Mitchison (1983) and Hopfield, Feinstein, and Palmer (1983) for recurrent 
attractor networks that stored memories as stable states of the network, and 
for Boltzmann machines, which have hidden units to learn the higher-order 
structure of the inputs (Hinton and Sejnowski 1986). 
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Another way to detect higher-order structure of the inputs is to have a 
multilayer network and to introduce an objective function that measures 
coherence between different output units. Becker and Hinton (1993) intro- 
duced an objective function for maximizing the information that parameters 
extracted from different parts of an extended senssry input convey about 
some common underlying cause. The model used columns of feedfonvard 
networks and was able to detect disparity as an underlying cause from 
sterograms presented on the inputs. The learning algorithm, however, was 
quite complex and required the propagation of global information in the 
network to optimize the objective function. 

In a movie, the temporal sequence of images is correlated and addi- 
tional information can be extracted by lookking for temporal as well as 
spatial structure. For example, a movie of a rigidly moving object contains 
highly redundant information because the image of the object will appear 
in slightly different spatial locations on successive frames of the movie. 
FoIdi6k (1991) showed how this translation invariance can be captured in 
simple feedforward network that used Hebbian synapses and an output 
layer of units with a short-term memory of previous inputs. The network 
was trained with moving lines and the response properties of neurons in 
the network were similar to those found in the visual cortex. This principle 
was generalized by Stone (1996), who applied it to learning stereo disparity 
from dynamic stereograms. 

Independent Component Analysis 

Neurons in the visual cortex have receptive fields that are compact and 
elongated, so that the best stimulus is often a thin bar or edge of light (Hubel 
and Wiesel 1968). The simple cells have separate excitatory and inhibitory 
subregions. Barlow conjectured that these neurons formed feature detectors 
that were maximally independent over the ensemble of natural images. 
Independence is a much stronger property than second-order decorrelation 
since independence entails that all higher-order correlations between pixels 
in the ensemble of images must also be zero. Field (1994) recognized that the 
output values of the feature detectors ought to have a sparse distribution 
with high kurtosis (manyvalues near zero and a few quite highvalues). Field 
and Olshausen (1994) showed that an unsupervised learning algorithm that 
maximized sparseness produced visual feature detectors that resembled 
those found in the visual cortex. 

Unsupervised learning algorithms have recently been found developed 
for finding independent components in linear mixtures and blind signal sep- 
aration (Comon 1994). An efficient algorithm for Independent Component 
Analysis (ICA) of super-Gaussian signals was derived by Bell and Sejnowski 
(1995) from Linsker's infomax principle. When applied to natural images, 
ICA developed localized edge and and bar detectors similar to the simple 
cells that are found in the visual cortex (Bell and Sejnowski 1997). Amari 
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(1997) provided an improvement for speeding up this learning algorithm, 
and Lee, Girolami, and Sejnowski (1999) have extended it to sub-Gaussian 
sources. Other fast ICA algorithms have also been developed (Hyrarinen 
and Oja 1997). One of the advantages of these algorithms is that they are 
able to separate non-Gaussian sources, which are common in auditory and 
visual signal processing. One of the limitations is that the source model 
is linear and is not capable of adequately representing visual images with 
occlusion and other structured properties. 

Clustering and Dimensionality Reduction 

The goal of clustering is to group together similar inputs. Many algorithms 
exist for clustering in low-dimensional spaces, but the problem becomes 
more difficult as the dimensionality increases. Platt (1991) introduced an 
on-line clustering method that progressively adjusts the prototypes for each 
new input and adds a new prototype when none of the existing ones is 
sufficiently close by. This is an example of a constructive learning algorithm 
that adds resources sequentially as needed during the learning (Fahlman 
and Lebiere 1990). This approach has the advantage of starting out with 
relatively few parameters at the outset and avoids overfitting by increasing 
the number of parameters only when justified by additional inputs. 

The distance measures used in most clustering algorithms are typically 
simple ones such as the Euclidean distance. However, two objects may be 
similar despite differences in position, orientation, and scale. Clustering 
with a graph-matching distance measure that incorporates these invari- 
ances, and which is also insensitive to permutation and missing data, was 
introduced by Gold, Rangarajan, and Mjolsness (1996). Their method is 
computationally efficient and scales well with the dimensionality of the 
problem. 

A standard engineering technique for reducing the dimensionality of the 
input is to use Principal Component Analysis (PCA). This is computation- 
ally efficient, but it suffers from the limitation that the representation in the 
principal components is linearly related to the original input. A number of 
different resedrch groups realized that this limitation of PCA can be over- 
come by combining it with clustering. The idea is to divide the data into 
clusters in such a way that the points in each cluster lie close to a plane. This 
can be done by using a simplified version of the expectation-maximization 
(EM) algorithm (Dempster, Laird, and Rubin, 1977), which alternates be- 
tween an "E-step" that assigns each datapoint to the closest plane and an 
"M-step" that refits each plane to all the datapoints that have been assigned 
to it. Kambhatla and Leen (1997) demonstrate that this piecewise linear 
approach can be quite effective in modeling nonlinear manifolds. If high- 
dimensional data is projected onto a randomly oriented line it nearly always 
has an approximately Gaussian distribution. This suggests that directions 
in the input space that yield non-Gaussian distributions are interesting and 
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that projections onto these directions wauld constitute interesting features. 
Intrator (1992) shows how neurons can discover such directions using a 
biologically plausible local algorithm called the BCM rule (Bienenstock, 
Cooper, and Munro, 1982). 

Learning Probability Distributions 

During supervised learning, each input vector comes with an associated 
desired output that is supplied by the teacher. Unsupervised learning is 
often characterized as supervised lerning with an unknown output. This 
makes it very hard to decide what counts as success and suggests that the 
central problem is to find a suitable objective function that can replace the 
goal of agreeing with the teacher. Many apparently different objectives have 
been proposed: 

Discover clusters in the data. 

Discover a mapping from the observed data to a set of painvise decor- 
related or statistically independent features. 

Discover temporal or spatial invariances in the data by getting mod- 
ules to agree with each other. 

Discover unlikely coincidences of events whose joint probability far 
exceeds the product of their individual probabilities. 

Discover highly non-Gaussian projections of the data (projection pur- 
suit). 

It is less natural, but much more revealing, to view unsupervised learning as 
supervised learning in which the observed data is the output and for which 
there is no input. This makes it obvious that the model that generates the 
output must either be stochastic or must have an unknown and varying 
input in order to avoid producing the same output every time. Given this 
view, the obvious aim of unsupewised learning is to fit a generative model 
that gives high likelihood to the observed data.l This objective is often 
accompanied by the hope that the natural causes of the data will come to 
be represented by the activities of the hidden units. 

The introduction of hidden processing units allows a network to repre- 
sent a larger class of nonlinear functions using latent variables and to ex- 
tract more complex nonlinear structure from the inputs with unsupervised 
learning The Boltzmann machine is a recurrent network of stochastic units 

The generative model approach is closely related to the idea of finding an efficient 
Code from which the data can be reconstructed, because any model that assigns high prob- 
ability density to the data can be used for efficient data-compression in which the number 
of bits required to communicate a data vector approaches the negative log probability of 
the vector under the generative model. 
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with symmetric connections between them (Hinton and Sejnowski 1,986) 
for which there is a Hebbian learning algorithm that reduces the Kullback- 
Liebler distance between the probability distribution of the inputs and that 
generated by the free-running network. The Boltzmann machine is a gen- 
erative model in the sense that after learning is complete, the free-running 
network generates patterns on the input units with the same probability 
distribution that occurred during the training phase. 

A major advantage of the generative approach is that it cleanly separates 
inference and learning. The inference process is given an observed data 
vector and a generative model, and assuming that the data came from the 
model, it computes the posterior probability distribution across the hidden 
states of the model, or an approximation to the posterior such as a ran- 
dom sample from it or a local peak. The learning process uses the inferred 
posterior distribution across hidden states to update the parameters of the 
generative model so that it is more likely to produce the observed data. In 
some popular and statistically improper generative models, such as princi- 
ple components or vector quantization, the inference process is simple and 
can be performed by projection or by a winner-take-all competition. These 
degenerate cases have tended to conceal the true nature of unsupervised 
learning. 

It is interesting to see how the five objectives above all make sense from 
the perspective of generative models. Clustering is just fitting a two-stage 
generative model in which we first make a discrete choice of a mixture com- 
ponent and then generate from a density determined by this component. 
The distance measure used for clustering corresponds to the negative log 
probability of the data under a component of the model. The usual hard 
assignment of a data vector to the closest cluster corresponds to approxi- 
mating the posterior distribution over the hidden choices by the single most 
likely choice. 

Discovering independent hidden features can be achieved by fitting a 
generative move1 in which the activities of the hidden units are chosen 
independently. Some particularly tractable special cases arise when the ob- 
served data is modeled as a linear combination of the hidden unit activities 
plus additive Gaussian noise. If the hidden units have Gaussian priors, then 
this is factor analysis (Neal and Dayan 1997). If the hidden units have im- 
proper uniform priors, then it is principal components analysis. If the priors 
for the hidden units are independent but non-Gaussian, then it is ICA. The 
inference process for ICA becomes straightforward as the additive Gaussian 
observation noise goes to zero. For nonzero noise the posterior distribution 
over hidden states must be approximated, typically by finding its peak. 

Discovering temporal invariances is just fitting a dynamical system (with- 
out driving inputs) in which the state-transition matrix for the hidden state 
space is the identity matrix. This makes it obvious that temporal invariance 
is naturally subsumed by linear dependence over time. If the observed data 
is modeled as a linear function of the hidden state space then temporal 
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invariants can be learning by fitting a linear dynamical system. 
Hidden units that represent unlikely coincidences arise naturally when 

fitting a generative model to data because they allow common conjunctions 
to have much higher density than they would get if their constituents were 
generated separately. The same applies to redundancies in general. An ad- 
vantage of extracting redundancies by fitting a generative model is that 
it naturally makes,differenet units within a layer do different things. No 
special decorrelating mechanism is required to make different units grab 
different redundancies. Also, in a multilayer generative model the lower 
layers can maximize the probability density of the observed data by ex- 
tracting redundancies among which there are easily extracted redundan- 
cies. There is no necessity for the lower hidden layers to extract features 
that are fully decorrelated or statistically independent. All that is required 
is that the features should be statistically independent given the features in 
the layer above. So it makes sense to extract natural causes of images like 
noses and mouths because they are approximately statistically independent 
given the face even though they are very highly correlated. 

Discovering very non-Gaussian projections is just what a linear genera- 
tive model containing a single hidden unit will do if it is given (or allowed to 
empirically construct) a non-Gaussian prior for the activity of a hidden unit. 
Assume that the generative model treats the observed data as the output of 
the model plus Gaussian noise. To maximize the log likelihood of the data 
the model needs to account for as much of the variance in the data as pos- 
sible without using improbable states of the hidden unit and without using 
large generative weights that dilute the probability density of the hidden 
activities. So the hidden unit needs to have a lot of variance in its activity 
but as little entropy as possible. This is a natural definition of what it means 
to be far from Gaussian, since the Gaussian distribution maximizes entropy 
for a given variance. 

Much of the progress in the last few years has come from fitting linear 
generative models with a single layer of hidden units. In the longer term it 
seems likely that these simple models will have to be replaced by nonlin- 
ear generative models with multiple hidden layers. Consider, for example, 
the problem of extracting from an intensity image the three position and 
three orientation parameters of a rigid three-dimensional object. Suppose 
we want the activities of hidden units to represent these "instantiation" 
parameters explicitly or to represent posterior distributions in the space of 
instantiation parameters. The instantiation parameters are nonlinearly re- 
lated to pixel intensities, so even if we ignore the formidable problems of 
image segmentation, no linear generative model will suffice. One approach 
(Gold, Rangarajan, and Mjolsness 1996) is to transform pixel intensities into 
the image coordinates of identified fragments. The alternative is to have a 
multilayer, nonlinear model in which units in higher layers somehow repre- 
sent the instantiation parameters of progressively larger and more complex 
fragments of objects. To achieve economy and generalization it seems essen- 
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tial for each fragment to potentially be generated by many different larger 
fragments in the layer above so the connectivity cannot be restricted to a 
tree structure. This is precisely the sort of architecture that is found in the 
cerebral cortex. 

A major challenge for unsupervised learning is to get a system of this 
general type to learn appropriate representations for images. The major 
difficulty is that it is intractable to compute the full posterior distribution 
across hidden states in such a complex generative modeL2 One ray of hope 
is that the standard EM method of fitting models to data can be generalized 
so that learning can proceed effectively even if the posterior distribution is 
only approximated. Neal and Hinton (1998) show that a quantity equiva- 
lent to free energy is minimized by alternating between a partial M-step that 
improves the log likelihood of the data given the assumed distribution over 
hidden states and a partial E-step that improves the approximation to the 
true posterior distribution. The free energy is equivalent to the description 
length used by Zemel and Hinton (1995) and it can also be viewed (with a 
sign reversal) as the log likelihood of the data under the model penalized 
by a measure of the difficulty of performing inference with the model. The 
penalty is just the Kullback-Liebler divergence between the approximating 
distribution and the true posterior distribution. Retrospectively, it is easy to 
see that a biological organism would much rather have a model in which 
correct inference can be approximated easily than a model which gives 
slightly higher likelihood to the data but in which the posterior distribution 
is hard to approximate. So we arrive at a new objective function for unsu- 
pervised learning that recognizes the difficulty of performing inferencein 
sophisticated generative models and builds in a measure of the tractability 
of inference. Helmholtz machines (Dayan, Hinton, Neal, and Zemel 1996) 
are an attempt to optimize such an objective function using top-down con- 
nections for the generative model and feedforward, bottom-up connections 
for the approximate inference process. 
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