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The appearance of an object or a face changes continuously as the observer 
moves through the environment or as a face changes expression or pose. Recog- 
nizing an object or a face despite these image changes is a challenging problem 
for computer vision systems, yet we perform the task quickly and easily. This 
simulation investigates the ability of an unsupervised learning mechanism to 
acquire representations that are tolerant to such changes in the image. The 
learning mechanism finds these representations by capturing temporal relation- 
ships between 2-D patterns. Previous rnodels of temporal association learning 
have used idealized input representations. The input to this model consists of 
graylevel images of faces. A two-layer network learned face representations that 
incorporated changes of pose up to rt30°. A second network learned represen- 
tations that were independent of facial expression. 

One of the greatest challenges in visual recognition of objects or faces is that the 
projected image can vary substantially with changes in viewing conditions. In 
normal visual experience, however, these different views tend to appear in close 
temporal proximity. Unsupervised learning can find invariant representations by 
capitalizing on this dynamic information. Capturing the temporal relationships 
among patterns is a way to automatically associate different views of an object 
without requiring complex geometrical transformations or three dimensional 
structural descriptions [I]. 

Temporal association may be a fundamental component of visual processing in 
the temporal lobe. Cells in the anterior inferior temporal lobe will adjust their 
receptive fields so that they respond to temporally contiguous inputs [2]. A tem- 
poral window for Hebbian learning could be provided by the long open-time of 



the NMDA channel [3], a hysteresis in neural activity caused by reciprocal con- 
nections between cortical regions [4], or the release of a chemical signal following 
activity such as nitric oxide [5]. 

This simulation investigates the capability of such Hebbian learning mechanisms 
to acquire transformation invariant representations of complex objects such as 
faces. These mechanisms have been previously tested with idealized input rep- 
resentations with little or no crosstalk on the connections [6, 7, 41. In order to 
understand the capabilities of temporal association learning, it is important to 
evaluate it using complex, realistic stimuli. 

We tested the temporal association learning mechanism on a very simple archi- 
tecture (Figure 1). We used a feed-forward network with two layers of units. 
There were 400 input units and ten output (representation) units. The input 
layer was fully connected to  the output layer and there was winner-take-all com- 
petition in the output layer. We used a linear transfer function, and the total 
weight coming into each output unit was constrained to sum to one. At each 
time step t ,  the network took one 20 x 20 graylevel image as input. 

Figure 1: Network architecture. Images a t  resolution used in the simulations. 

The weight update rule is based on the Competitive Learning Rule [8, 91. Let 
a be the learning rate, x i k  be the value of input unit i for pattern k, and t k  be 
the total amount of input activation for pattern k. The weight update rule is 



We introduce a temporal manipulation into the competition phase. Let yj be the 
activation of output j ,  computed by a weighted sum of the inputs. After Foldiak 
[6], the winning unit i at  time t is determined by the trace of the activation:' 

winner = maxj [yj] 
Yj = (1 - ~ ) ~ ~ . - l  + xyj 
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The Competitive Learning Rule alone, without the temporal manipulation, will 
partition the set of inputs into roughly equal groups by spatial similarity. The 
resulting weights to each output unit are proportional to the probability that a 
given input unit is active when that unit wins [8]. The temporal manipulation 
allows temporal association to influence these partitions. The winning unit in 
the current time step has a competitive advantage for recruiting the pattern 
in the next time step. This learning rule therefore partitions the input by a 
combination of spatial similarity and temporal proximity, where X determines 
the relative influence of the two factors. 

We first tested the ability of this learning algorithm to develop representations 
of faces that were independent of pose. The inputs were graylevel face images 
provided by David Beymer at the MIT Media Lab [lo]. We used images of ten 
individuals at each of five different angles of view ( O O , f  15 O ,  and f 30°), for a 
total of fifty stimuli (Figure 2). A single window based on the eye and mouth 
positions in the frontal view was used for cropping and scaling the other images 
in each sequence. The faces were reduced to 20 x 20 pixels, producing a 400 
dimensional input vector, and each image was normalized for luminance. 

The learning was performed in two stages. In the first stage, the network was 
exposed only to the ten frontal view faces in order to associate each face with 
a different output unit. Once this initial correspondence was established, the 
training set was slowly expanded to include variations in pose. Images were 
presented in sequence beginning with the frontal view. The trace function was 
reset between sequences. 

The network stabilized after 100 training epochs. Network classification was 
assessed by presenting each image individually, without the activation trace, and 
recording the output unit with the highest activation. The network response 
was considered "correct" if the winning output unit is the one corresponding 
to the frontal view of that subject. Figure 3a compares invariance to pose 

'Representation units that failed to win for two iterations were given a competitive ad- 
vantage by increasing slightly the value of yi. This adjustment is equivalent to enlarging the 
receptive field of that unit [7]. 



Figure 2: Sample pose sequences. The example set contained ten subjects. 

after temporal association learning (dashed line) to baseline performance (solid 
line), in which the network was trained on the frontal views only. Mean correct 
classification at; each pose is shown, collapsed over the ten subjects in the data 
set. The graph is analogous to a mean tuning curve for pose. 

Temporal association (TA) learning improved the mean classification accuracy 
of the f 15' views from 65% to 90% and increased invariance to the f 30 ' views 
from 55% to 90%. Performance for the f15O views initially reached loo%, 
but fell to 95% when the f 30' views were added, indicating the beginnings of 
interference between the patterns. 

To test for interpolation between and extrapolation beyond the set of training 
views, we retrained the network, this time reserving some of the poses as test 
images. Figure 3b shows an increase in accuracy for the f 30' views following 
training on the O0 and f15 '  views only, and an increase in accuracy for the 
f 15O views when the network was trained on the 0' and f 30' views only. 
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Figure 3: a. Mean tuning curves for pose at  baseline and after temporal asso- 
ciation (TA) learning. b. Interpolation and extrapolation. 



The learning rule was also tested for learning representations invariant of facial 
. expression. Changes in facial expression introduce a particular challenge to 

recognition systems, as they produce a non rigid deformation in the image. 
The input to the network consisted of ten faces in six sequential stages of an 
expression, from low to full muscle contraction intensity (Figure 4). If the 
images included hair, Competitive Learning alone correctly classified all of the 
images. The task was therefore made more difficult by cropping out the hairline. 
Training was performed in two phases as above. 

I 

Figure 4: Sample facial expression sequences. Images provided by Paul Ekman 
and Joe Hager at  the Human Interaction Laboratory, UCSF. 

Figure 5a shows the increase in invariance to facial expression due to temporal 
association learning. These results are following exposure to sequences of length 
3. The addition of frame 4 to the training sequence caused the network to desta- 
bilize, revealing the limits of the range of invariance that this learning method 
can achieve on this kind of dataset. This network also showed interpolation 
and extrapolation between trained expression intensities following training on 
frames 1 and 3 alone (Figure 5b). 

SUMMARY AND CONCLUSIONS 
By associating patterns by temporal proximity, our system developed represen- 
tations of faces with a degree of invariance to changes in pose or changes in 
facial expression. This simulation demonstrates that unsupervised learning can 
solve a challenging problem in object recognition, and provides another example 
of how problems in image understanding can be simplified by taking advantage 
of dynamic information. This is an idea that has been espoused by the "active 
vision" approach to computer vision. 

The extent of invariance and the number of subjects that this system can tol- 
erate is limited by the redundancy in the input representation. If there is no 
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Figure 5: a. Invariance to changes in facial expression before and after temporal 
association learning on frames 1-3. b. Interpolation and Extrapolation. 

redundancy in the input, then there is no limit to the amount of invariance that 
this system can learn. This points to the importance of intermediate represen- 
tations with reduced input redundancy, such as principal components or sparse 
distributed representations [ l l ] .  Larger invariances can also be obtained in a 
hierarchical system that learns new invariances a t  each level of the hierarchy. 
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