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Abstract

Traveling waves of neural activity have been observed throughout the brain at a
diversity of regions and scales; however, their precise computational role is still
debated. One physically grounded hypothesis suggests that the cortical sheet may
act like a wave-field capable of storing a short-term memory of sequential stimuli
through induced waves traveling across the cortical surface. To date, however,
the computational implications of this idea have remained hypothetical due to
the lack of a simple recurrent neural network architecture capable of exhibiting
such waves. In this work, we introduce a model to fill this gap, which we denote
the Wave-RNN (wRNN), and demonstrate how both connectivity constraints and
initialization play a crucial role in the emergence of wave-like dynamics. We then
empirically show how such an architecture indeed efficiently encodes the recent
past through a suite of synthetic memory tasks where wRNNs learn faster and
perform significantly better than wave-free counterparts. Finally, we explore the
implications of this memory storage system on more complex sequence modeling
tasks such as sequential image classification and find that wave-based models
not only again outperform comparable wave-free RNNs while using significantly
fewer parameters, but additionally perform comparably to more complex gated
architectures such as LSTMs and GRUs. We conclude with a discussion of the
implications of these results for both neuroscience and machine learning.

1 Introduction

Traveling waves have been observed during awake and sleep states throughout the brain, including
the cortex and hippocampus, in many frequency bands, and have recently been shown to have a
direct impact on behavior in awake behaving primates [11]. Their existence and ubiquity appear to
challenge the classical receptive field representation of visual stimuli, which assumes that neurons in
cortex carry information that is spatially and temporally localized.

Several computational hypotheses for traveling waves have been suggested, including that they can
tag locations in a cortical region with a unique phase [14], and that they can aid memory consolidation
[31]. A promising hypothesis, derived from the study of physical wave fields [34], suggests that
traveling waves may serve to efficiently encode recent sequential inputs [30]. To date however, it
has been challenging to test these hypotheses due to a lack of standard artificial neural network
architectures shown to exhibit such wave-like dynamics.
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Figure 1: Illustration of three input signals (top)
and a corresponding wave-field with induced trav-
eling waves (bottom). From an instantaneous snap-
shot of the wave-field at each timestep we are able
decode both the time of onset and input channel of
each input spike. Furthermore, subsequent spikes
in the same channel do not overwrite one-another.

Here we introduce a minimal recurrent neural
network model that exhibits traveling waves of
activity within its latent space and test several
computational hypotheses. Specifically, we use
a suite of synthetic memory tasks to show that
models exhibiting traveling waves can solve
these tasks orders of magnitude more quickly,
do so more accurately, and are able to handle sig-
nificantly longer sequences than their matched
wave-free counterparts. To measure the extent to
which this wave-based memory results in gener-
alized performance benefits beyond pathological
synthetic tasks, we test the wRNN on modern
long-sequence modeling tasks and show that it
indeed outperforms wave-free counterparts and
is comparable or better than more complex gated
recurrent networks such as LSTMs and GRUs.
At its core, our work offers two main contribu-
tions: first, a simple recurrent neural network architecture that exhibits traveling waves admissible
to computational and neuroscientific investigation in a task-oriented manner; and second, a demon-
stration that traveling waves efficiently encode the recent past thereby benefiting performance on
long-sequence tasks.

2 Traveling Waves in Recurrent Neural Networks

In this section, we outline how to integrate traveling wave dynamics into a simple recurrent neural
network architecture and provide preliminary analysis of the emergent waves.

Simple Recurrent Neural Networks. As mentioned, the primary goal of this work is to analyze
the computational implications of traveling wave dynamics on artificial neural network architectures.
In order to reduce potential confounders in this analysis, we strive to study the simplest possible
architecture which exhibits traveling waves in its hidden state. To accomplish this, we start with a
simple recurrent neural network also known as an Elman Network [12] and consider how we may
define its recurrence in order to bias its hidden dynamics towards a simple wave equation. For an
input sequence {xt}Tt=0 with xt ∈ Rd, and hidden state h0 = 0 & ht ∈ Rn, a simple RNN (sRNN)
is defined with the following recurrence:

ht+1 = σ(Uht +Vxt + b) (1)

In such a model, the input encoder and recurrent connections are both linear, i.e. V ∈ Rn×d and
U ∈ Rn×n, where n is the hidden state dimensionality and σ is a nonlinearity. The output of the
network is then given by another linear map of the final hidden state: y = WhT, with W ∈ Ro×n.

Discrete Traveling Waves. To understand our goal for the time-dynamics of h, we start with the
simplest equation which defines our desired dynamics, the one-dimensional one-way wave equation:

∂h(x, t)

∂t
= ν

∂h(x, t)

∂x
(2)

Where t is our time coordinate, and x defines the continuous spatial coordinate of our hidden state.
Since we wish these waves to propagate through an artificial neural network with discrete neurons
and discrete timesteps, we first must discretize Equation 2 in both space and time. If we define our
hidden neurons to be laid out on a one-dimensional line at regular intervals, we see that the neuron at
location x, i.e. h(x, t) is equivalent to the x’th neuron: hx

t . In practice, we define our neurons to be
arranged in a one-dimensional circle (S1) to avoid boundary effects. Then, if we assume a velocity
ν = 1, we see that we can write a discretization of this equation for small ∆t as: hx

t+∆t = hx+∆x
t . In
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matrix form, this is equivalent to multiplication of the hidden state vector with a circular shift matrix:

ht+1 = Σht where Σ =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0

 (3)

We thus see that starting from the sRNN in Equation 1, there are three components we need to consider
to reach solutions approaching Equation 3: the activation function σ, the recurrent connectivity U
and proper initialization. In the following we will outline the choices for each which ultimately define
what we call the Wave-RNN (wRNN).

Activation Functions. Common choices for recurrent neural network activation functions include
logistic functions (sigmoid), hyperbolic tangent functions (tanh), and rectified linear functions
(ReLU). Prior work studying simple recurrent neural networks has found that linear and rectified
linear activations have theoretical and empirical benefits for long-sequence modeling [26, 32]. In this
work, we define σ = ReLU in order to align with Equation 3 and this prior work. Empirically we
also find this to be significantly more performant than σ = tanh.

Recurrent Connectivity. In pursuit of the goal of equating equations 1 and 3, we see that defining
the matrix U to be a randomly initialized dense matrix is likely to be detrimental to the emergence
of waves given the desired diagonal structure of Σ. However, a common linear operator which has
a very similar diagonal structure to Σ is the convolution operation. Specifically, assuming a single
input channel, and a length 3 convolutional kernel u = [0, 0, 1], we see the following equivalence:

u ⋆ ht−1 = Σht−1 (4)

where ⋆ defines circular convolution over the hidden state dimensions n. In practice we find that
increasing the number of channels helps the model to learn significantly faster and reach lower error.
To do this, we define u ∈ Rc×c×f where c is the number of channels, and f is the kernel size, and
we reshape the hidden state from a single n dimensional circle to c separate n′ = ⌊n

c ⌋ dimensional
circular channels (e.g. h ∈ Rc×n′

). We can then write the full recurrence as:

ht+1 = σ(u ⋆ ht +Vxt + b) (5)

where Vxt is similarly reshaped to match the channel structure of h.

Initialization. Finally, similar to the prior work with recurrent neural networks [17, 26], we find
careful choice of initialization can be crucial for the model to converge more quickly and reach
lower final error. Specifically, we initialize the convolution kernel such that the matrix form of
the convolution (known as a Toeplitz matrix) is exactly that of the shift matrix Σ for each channel
separately. Succinctly, in the PyTorch framework [33], this initialization can be implemented as:

1 # Shift initalization for U
2 U = torch.zeros(size=(c, c, kernel_size))
3 torch.nn.init.dirac_(U)
4 U = torch.roll(input=U, shifts=1, dims=-1)

Furthermore, we find that initializing the matrix V to be zero with a single identity mapping from the
input to a single hidden unit to further drastically improve training speed. Again, explicitly:

1 # Sparse identity initialization for V
2 V = torch.zeros(size=(n_hidden , n_input))
3 v = V.view(n_channels , n_hidden // n_channels , n_inp)
4 v[:, 0] = 1.0

Intuitively, these initalizations combined can be seen to support a separate traveling wave of activity
in each channel, driven by the input at a single source location.

Wave Recurrent Neural Networks. Combining the above ReLU activation function, convolutional
recurrent connections, and specific initalizations, we reach our definition of the Wave-RNN. We
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note that these are not the only choices which lead to wave-dynamics in the hidden state, however
empirically we find them to be the most performant and also the most conducive to wave activity. At
the end of Section 3, we empirically demonstrate this through a range of ablation experiments.

Baselines. In order to isolate the effect of traveling waves on model performance, we desire to pick
baseline models which are as similar to the Wave-RNN as possible while not exhibiting traveling
waves in their hidden state. To accomplish this, we rely on the Identity Recurrent Neural Network
(iRNN) of Le et al. (2015) [26]. This model is nearly identical to the Wave-RNN, constructed as a
simple RNN with σ = ReLU, but uses an identity initialization for U. Despite its simplicity the
iRNN is found to be comparable to LSTM networks on standard benchmarks, and thus represents the
ideal highly capable simple recurrent neural network which is comparable to the Wave-RNN.

Analysis of Traveling Waves. Before we study the memory and sequence modeling capabilities of
the proposed architecture, we first demonstrate that the model does indeed produce traveling waves
within its hidden state. To do this, in Figure 2, for the best performing (wRNN & iRNN) models
on the Sequential MNIST task of the proceeding section, we plot in the top row the activations of
our neurons (vertical axis) over time (horizontal axis) as the RNNs process a sequence of inputs
(MNIST pixels). As can be seen, there are distinct diagonal bands of activation for the Wave-RNN
(left), corresponding to waves of activity propagating between hidden neurons over time. For the
baseline simple RNN (iRNN) right, no such bands exist, but instead stationary bumps of activity exist
for durations of time and then fade. In the bottom row, following the analysis techniques of Davis et
al. (2021) [10], we plot the corresponding 2D Fourier transform of the above activation time series.
In this plot, the vertical axis corresponds to spatial frequencies while the horizontal axis corresponds
to the usual temporal frequencies. In such a 2D frequency space, a constant speed traveling wave (or
general moving object [5]) will appear as a linear correlation between spatial and time frequencies.
Specifically, the slope of that correlation will then correspond to the speed. Indeed, for the wave
RNN, we see a strong band of energy along the diagonal corresponding to our traveling waves with
velocity ≈ 0.3 units

timestep ; as expected, for the iRNN we see no such diagonal band in frequency space.

Figure 2: Visualization of hidden state (top) and associated 2D Fourier transform (bottom) for a
wRNN (left) and iRNN (right) operating on the sMNIST task. We see the Wave-RNN exhibits a clear
flow of activity across the hidden state (diagonal bands) while the iRNN does not.

3 Experiments

In this section we aim to leverage the model introduced in Section 2 to test the computational
hypothesis that traveling waves may serve as a mechanism to encode the recent past in a wave-
field short-term memory. To do this, we first leverage a suite of frequently used synthetic memory
tasks designed to precisely measure the ability of sequence models to store information and learn
dependencies over variable length timescales. Following this, we use a suite of standard sequence
modeling benchmarks to measure if the demonstrated short-term memory benefits of wRNNs persist
in a more complex regime. For each task we perform a grid search over learning rates, learning rate
schedules, and gradient clip magnitudes, presenting the best performing models from each category
on a held-out validation set in the figures and tables. In the appendix we include the full ranges of
each grid search as well as exact hyperparameters for the best performing models in each category.
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Copy Task. As a first analysis of the impact of traveling waves on memory encoding, we measure
the performance of the wRNN on the standard ‘copy task’, as frequently employed in prior work
[1, 15, 18, 20]. The task is constructed of sequences of categorical inputs of length T + 20 where
the first 10 elements are randomly chosen one-hot vectors representing a category in {1, . . . 8}. The
following T tokens are set to category 0, and form the time duration where the network must hold the
information in memory. The next token is set to 9, representing a delimiter, signaling the RNN to
begin reproducing the stored memory as output, and the final 9 tokens are again set to category 0. The
target for this task is another categorical sequence of length T + 20 with all elements set to category
0 except for the last 10 elements containing the initial random sequence of the input to be reproduced.
At a high level, this task tests the ability for a network to encode categorical information and maintain
it in memory for T timesteps before eventually reproducing it. Given the hypothesis that traveling
waves may serve to encode information in an effective ‘register’, we hypothesize that wave-RNNs
should perform significantly better on this task than the standard RNN. For each sequence length we
compare wRNNs with 100 hidden units and 6 channels (n = 100, c = 6) with two baselines: iRNNs
of comparable parameter counts (n = 100 ⇒ 12k params.), and iRNNs with comparable numbers
of activations (n = 625) but a significantly greater parameter count (⇒ 403k params.).

In Figure 3, we show the performance of the best performing baseline RNNs and wRNNs, obtained
from our grid search, for T = {0, 30, 80}. We see that the wRNNs achieve more than 5 orders of
magnitude lower loss and learn significantly faster for all sequence lengths. From the visualizatioon
of the model outputs in Figure 4, we see that the iRNN has trouble holding items in memory for longer
than 10 timesteps, while the comparable wRNN has no problem copying data for up to 500 timesteps.

Figure 3: Copy task with lengths T={0, 30, 80}. wRNNs achieve > 5 orders of magnitude lower loss.

Figure 4: Examples from the copy task for wRNN (n=100, c=6) and iRNN (n=100). We see the iRNN
loses significant accuracy after T=10 while the wRNN remains perfect at T=480 (MSE ≈ 10−9).

Adding Task. To bolster our findings from the copy task, we employ the long-sequence addition
task originally introduced by Hochreiter & Schmidhuber (1997) [21]. The task consists of a two
dimensional input sequence of length T , where the first dimension is a random sample from U([0, 1]),
and the second dimension contains only two non-zero elements (set to 1) in the first and second
halves of the sequence respectively. The target is the sum of the two elements in the first dimension
which correspond to the non-zero indicators in the second dimension. Similar to the copy task, this
task allows us to vary the sequence length and measure the limits of each models ability.
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The original iRNN paper [26] demonstrated that standard RNNs without identity initialization struggle
to solve sequences with T > 150, while the iRNN is able to perform equally as well as an LSTM,
but begins to struggle with sequences of length greater than 400 (a result which we reconfirm here).
In our experiments depicted in Figure 5 and Table 1, we find that the wRNN not only solves the task
much more quickly than the iRNN, but it is also able solve significantly longer sequences than the
iRNN (up to 1000 steps). In these experiments we use an iRNN with n = 100 hidden units (10.3k
parameters) and a wRNN with n = 100 hidden units and c = 27 channels (10.29k parameters).

Figure 5: wRNN and iRNN Training curves on the addition task for three different sequence lengths
(100, 400, 1000). We see that the wRNN converges significantly faster than the iRNN on all lengths,
achieves lower error, and can solve tasks which are significantly longer.

Seq. Length (T) 100 200 400 700 1000

iRNN Test MSE 1× 10−5 4× 10−5 1× 10−4 0.16 0.16
Solved Iter 14k 22k 30k × ×

wRNN Test MSE 4× 10−6 2× 10−5 4× 10−5 8× 10−5 6× 10−5

Solved Iter. 300 1k 1k 3k 2k

Table 1: Long sequence addition task for different sequence lengths. The wRNN finds the task
solution (defined as MSE ≤ 5 × 10−2) multiple orders of magnitude quicker and is able to solve
much longer tasks than the iRNN. The × indicates the model never solved the task after 60k iterations.

Sequential Image Classification. Given the dramatic benefits that traveling waves appear to
afford in the synthetic memory-specific tasks, in this section we additionally strive to measure if
waves will have any similar benefits for more complex sequence tasks relevant to the machine
learning community. One common task for evaluating sequence models is sequential pixel-by-
pixel image classification. In this work we specifically experiment with three sequential image
tasks: sequential MNIST (sMNIST), permuted sequential MNIST (psMNIST), and noisy sequential
CIFAR10 (nsCIFAR10). The MNSIT tasks are constructed by feeding the 784 pixels of each image
of the MNIST dataset one at a time to the RNN, and attempting to classify the digit from the hidden

Figure 6: sMNIST (left) and psMNIST (right) training curves for the iRNN & wRNN. The wRNN
trains much faster and is virtually unaffected by the sequence permutation, while the iRNN suffers.
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state after the final timestep. The permuted variant applies a random fixed permutation to the order
of the pixels before training, thereby increasing the task difficulty by preventing the model from
leveraging statistical correlations between nearby pixels. The nsCIFAR10 task is constructed by
feeding each row of the image (32×3 pixels) flattened as vector input to the network at each timestep.
This presents a significantly higher input-dimensionality than the MNIST tasks, and additionally
contains more complicated sequence dependencies due to the more complex images. To further
increase the difficulty of the task, the sequence length is padded from the original length (32), to
a length of 1000 with random noise. Therefore, the task of the model is not only to integrate the
information from the original 32 sequence elements, but additionally ignore the remaining noise
elements. As in the synthetic tasks, we again perform a grid search over learning rates, learning rate
schedules, and gradient clip magnitudes. Because of our significant tuning efforts, we find that our
baseline iRNN results are significantly higher than those presented in the original work (98.5% vs.
97% on sMNIST, 91% vs. 81% on psMNIST), and additionally sometimes higher than many ‘state
of the art’ methods published after the original iRNN. In the tables below we indicate results from
the original work by a citation next to the model name, and lightly shade the rows of our results.

Model sMNIST psMNIST n / #θ

uRNN [1] 95.1 91.4 512 / 9k
iRNN 98.5 92.5 256 / 68k

LSTM [38] 98.8 92.9 256 / 267k
GRU [38] 99.1 94.1 256 / 201k

IndRNN (6L) [29] 99.0 96.0 128 / 83k
Lip. RNN [13] 99.4 96.3 128 / 34k

coRNN [36] 99.3 96.6 128 / 34k
LEM [38] 99.5 96.6 128 / 68k

wRNN (16c) 97.6 96.7 256 / 47k
URLSTM [18] 99.2 97.6 1024 / 4.5M
wRNN + MLP 97.5 97.6 256 / 420k

pLMU [9] - 98.5 468 / 165k
FlexTCN [35] 99.6 98.63 - / 375k

Table 2: sMNIST & psMNIST (sorted) test accuracy.

In Table 2, we show our results in
comparison with existing work on the
sMNIST and psMNIST. Despite the
simplicity of our proposed approach,
we see that it performs favorably with
many carefully crafted RNN and con-
volutional architectures. We addition-
ally include wRNN+MLP, which
is the same as the existing wRNN,
but replaces the output map W with
a 2-layer MLP. We see this increases
performance significantly, suggesting
the linear decoder of the basic wRNN
may be a performance bottleneck. In
Figure 6 (left), we plot the training ac-
curacy of the best performing wRNN
compared with the best performing
iRNN over training iterations on the
sMNIST dataset. We see that while
the iRNN reaches a slightly higher final accuracy (+0.9%), the wRNN trains remarkably faster at the
beginning of training, taking the iRNN roughly 50 epochs to catch up. On the right of the figure, we
plot the models’ performance on the permuted variant of the task (psMNIST) and see the performance
of the Wave-RNN is virtually unaffected, while the simple RNN baseline suffers dramatically.

Figure 7: Number of parameters vs. accuracy for
wRNNs & iRNNs on psMNIST, attained by vary-
ing hidden state size (n) and number of channels
(c). We see that the wRNN achieves significantly
higher accuracy at all levels of parameter counts.

We note that in addition to faster training and
higher accuracy, the wRNN model addition-
ally exhibits substantially greater parameter ef-
ficiency than the iRNN due to its convolutional
recurrent connections in place of fully connected
layers. To exemplify this, in Figure 7 we show
the accuracy (y-axis) of a suite of wRNN models
plotted as a function of the number of param-
eters (x-axis). We see that compared with the
iRNN, the wRNN reaches near maximal perfor-
mance with significantly fewer parameters, and
retains a performance gap over the iRNN with
increased parameter counts.

Finally, to see if the benefits of the wRNN ex-
tend to more complicated images, we explore
the noisy sequential CIFAR10 task. In Figure
8 we plot the training curves of the best per-
forming models on this dataset, and see that the
Wave-RNN still maintains a significant advan-
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tage over the iRNN in this setting. In Table 3, we see the performance of the wRNN is ahead of
standard gated architectures such as GRUs and LSTMs, but also ahead of more recent complex
gated architectures such as the Gated anti-symmetric RNN [6]. We note that the parameter count
for the wRNN on this task is significantly higher than the other models listed in the table. This is
primarily due to the linear encoder mapping from the high dimensionality of the input (96) to the
large hidden state. In fact, for this model, the encoder V alone accounts for > 90% of the parameters
of the full model (393k/435k). If one were to replace this encoder with a more parameter efficient
encoder, such as a convolutional neural network or a sparse matrix (inspired by the initialization
for V), the model would thus have significantly fewer parameters, making it again comparable to
state of the art. We leave this addition to future work, but believe it to be one of the most promising
approaches to improving the wRNN’s general competitiveness. Ultimately, we see that the wRNN
performance is significantly improved over the matched wave-free model. Furthermore, we see that
it is surprisingly competitive with state of the art long-sequence models despite having no imposed
long-term memory inductive biases besides wave-propagation. We believe that these results therefore
serve as strong evidence in support of the hypothesis that traveling waves may be a valuable inductive
bias for encoding the recent past and thereby facilitate long-sequence learning.

Figure 8: Training curves for the noisy
sequential CIFAR10 dataset.

Model Acc. # units / params

LSTM [38] 11.6 128 / 116k
GRU [38] 43.8 128 / 88k

anti-sym. RNN [6] 48.3 256 / 36k
iRNN 51.3 529 / 336k

Incremental RNN [22] 54.5 128 / 12k
Gated anti-sym. RNN [6] 54.7 256 / 37k

wRNN (16c) 55.0 256 / 435k
Lipschits RNN [13] 57.4 128 / 46k

coRNN [36] 59.0 128 / 46k
LEM [38] 60.5 128 / 116k

Table 3: Test set accuracy on the noisy sequential CIFAR
dataset sorted by performance.

Ablation Experiments. In this section we include a final set of ablation experiments to validate the
architecture choices for the Wave-RNN and provide further evidence for the hypothesis that traveling
waves are a beneficial inductive bias for sequence learning. For each of the results reported below, a
grid search over learning rates, activation functions, initalizations, and gradient clipping values was
again performed to ensure fair comparison.

In Table 4, we show the performance of the wRNN on the copy task as we ablate various proposed
components such as convolution, u-shift initialization, and V initialization (as described in Section
2). At a high level, we see that the the u-shift initialization has the biggest impact on performance,
allowing the model to successfully solve tasks greater than length T = 10. We find the V initialization
to be slightly less impactful, improving final performance only marginally, but mainly significantlly
increasing the speed of convergence of models (not pictured). In addition to ablating the wRNN,
we additionally explore initializing the iRNN with a shift initialization (U = Σ) and sparse identity
initialization for V to disassociate these effects from the effect of the convolution operation. We see
that the addition of Σ initialization to the iRNN improves its performance dramatically, but it never
reaches the same level of performance of the wRNN – indicating that the sparsity and tied weights of
the convolution operation are critical to memory storage and retrieval on this task.

One particularly interesting finding from our ablation studies is that although models without shift
initialization do not initially exhibit traveling waves, most randomly initialized models that do learn
to perform well on the task eventually learn to exhibit waves in their hidden state. In Figure 9 we
show the activation sequence for a wRNN model after initializing kernels with the random Kaming
Uniform initialization [19], and then training on the sMNIST task. We see that early in training (left)
the model does not exhibit traveling waves; however, by the end of training (right), the randomly
initialized model has learned to exhibit waves, and ultimately achieves higher test accuracy than a
comparable identity initialized model which never learns to exhibit waves (96.5% vs. 94.8%, training
curves in appendix). In the appendix, we include additional ablation studies removing weight sharing
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Model Sequence Length (T)
0 10 30 80

wRNN 9× 10−12 1× 10−10 8× 10−11 1× 8−11

- V-init 1× 10−11 2× 10−11 4× 10−10 4× 10−11

- u-shift-init 5× 10−11 3× 10−10 7× 10−4 6× 10−4

- V-init - u-shift-init 8× 10−10 1× 10−4 3× 10−4 7× 10−4

iRNN (n=100) 1× 10−4 3× 10−3 2× 10−3 1× 10−3

+ Σ-init 1× 10−8 1× 10−7 2× 10−7 2× 10−5

+ Σ-init + V-init 1× 10−7 1× 10−7 1× 10−6 8× 10−6

Table 4: Ablation test results (MSE) on the copy task. Best results are bold, second best underlined.

in the convolutional layer, and freezing U & V at initialization, demonstrating the robustness of
traveling waves in these models and providing further support for our empirical conclusions.

Figure 9: Visualization of the hidden state for a wRNN with randomly initalized kernels (Kaming
Uniform). We see the model learns to exhibit traveling waves in its hidden state through training.

4 Discussion

In this section we include a preliminary discussion of related work with a more complete overview in
the appendix. Most related to this work in practice, Keller and Welling (2023) [24] showed that an
RNN parameterized as a network of locally coupled oscillators similarly exhibits traveling waves in
its hidden state, and that these waves served as a bias towards learning structured representations. This
present paper introduces a more minimal model capable of producing traveling waves, and thereby
permits the study of the direct implications of traveling wave dynamics compared with non-wave
models on standard sequence modeling benchmarks. Because our model is a standard simple RNN,
the experimental conclusions resulting from the wave dynamics may generalize to more complex
state of the art architectures and similarly enhance their performance.

Chen et al. (2022) [8] demonstrated that in a predictive RNN autoencoder learning sequences, a
Toeplitz connectivity emerges spontaneously, replicating multiple canonical neuroscientific measure-
ments such as one-shot learning and place cell phase precession. Our results in Figure 9 further
support these findings that with proper training and connectivity constraints, recurrent neural networks
can learn to exhibit traveling wave activity in service of solving a task.

In another related paper, Benigno et al. (2022) [3] studied a complex-valued recurrent neural network
with distance-dependant connectivity and signal-propagation time-delay, in order to understand the
potential computational role for traveling waves that have been observed in visual cortex. They showed
that when recurrent strengths are set optimally, the network is able to perform long-term closed-loop
video forecasting significantly better than networks lacking this spatially-organized recurrence. Our
model is complimentary to this approach, focusing instead on the sequence integration capabilities of
waves, rather than on forecasting, and leveraging a more traditional deep learning architecture.

Limitations & Future Work. The experiments in this paper are inherently limited due to the
relatively small scale of the datasets and models studied. For example, nearly all models in this work
rely on linear encoders and decoders, and consist of a single RNN layer. Compared with sate of the
art models consisting of more complex deep RNNs with skip connections and regularization, our
work is therefore potentially leaving significant performance on the table. However, as described
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above, beginning with small scale experiments on standard architectures yields alternative benefits
including more accurate hyperparameter tuning (due to a smaller search space) and potentially greater
generality of conclusions. In future work, we plan to test the full implications of our results for the
machine learning community and integrate the core concepts from the wRNN into more modern
sequence learning algorithms, such as those used for language modeling.

A limitation of our model specifically is the increased number of activations when using a large
number of channels. Succinctly, the wRNN requires more memory than the iRNN model in order
to store the larger hidden state over time. This limitation can be partially ameliorated by using an
adjoint method in the backwards pass so that hidden states can be recomputed when needed and not
stored for intermediate steps [7]. In preliminary experiments we find that such an approach indeed
works and produces waves, offering a suggestion for scaling such models to larger sizes.

Finally, we believe this work opens the door for significant future work in the domains of theoretical
and computational neuroscience. For example, direct comparison of the wave properties of our model
with neurological recordings may provide novel insights into the mechanisms and role of traveling
waves in the brain, analogous to how comparison of visual stream recordings with convolutional
neural network activations has yielded insights into the biological visual system [4].
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A Related Work

Deep neural network architectures that exhibit some brain-like properties are related to ours: CORnet
[25], a shallow convolutional network with added layer-wise recurrence shown to be a better match to
primate neural responses; models with topographic organization, such as the TVAE [23] and TDANN
[27]; and models of hippocampal-cortex interactions such as the PredRAE [8], and the TEM [42].
Our work is unique in this space in that it is specifically focused on generating spatio-temporally
synchronous activity, unlike prior work. Furthermore, we believe that our findings and approach may
be complimentary to existing models, increasing their ability to model neural dynamics by inclusion
of the Wave-RNN fundamentals such as locally recurrent connections and shift initalizations.

In the machine learning literature, there are a number of works which have experimented with
local connectivity in recurrent neural networks. Some of the earliest examples include Neural
GPUs [43] and Convolutional LSTM Networks [40]. These works found that using convolutional
recurrent connections could be beneficial for learning algorithms and spatial sequence modeling
respectively. Unlike these works however, the present paper explicitly focuses on the emergence of
wave-like dynamics in the hidden state, and further studies how these dynamics impact computation.
To accomplish this, we also focus on simple recurrent neural networks as opposed to the gated
architectures of prior work – providing a less obfuscated signal as to the computational role of
wave-like dynamics.

One line of work that is highly related in terms of application is the suite of models developed to
increase the ability of recurrent neural networks to learn long time dependencies. This includes
models such as Unitary RNNs [1], Orthogonal RNNs [20], expRNNs [28], the chronoLSTM [41],
anti.symmetric RNNs [6], Lipschitz RNNs [13], coRNNs [36], unicoRNNs [37], LEMs [38], Recur-
rent Linear Units [32], and Structured State Space Models (S4) [17]. Additional models with external
memory may also be considered in this category such as Neural Turing Machines [15], the DNC [16],
memory augmented neural networks [39] and Fast-weight RNNs [2]. Although we leverage many of
the benchmarks and synthetic tasks from these works in order to test our model, we note that our
work is not intended to compete with state of the art on the tasks and thus we do not compare directly
with all of the above models. Instead, the present papers intends to perform a rigorous empirical
study of the computational implications of traveling waves in RNNs. To best perform this analysis,
we find it most beneficial to compare directly with as similar of a model as possible which does not
exhibit traveling waves, namely the iRNN. We do highlight, however, that despite being distinct from
aforementioned models algorithmically, and arguably significantly simpler in terms of concept and
implementation, the wRNN achieves highly competitive results. Finally, distinct from much of this
prior work (except for the coRNN [36]), our work uniquely leverages neuroscientific inspiration to
solve the long-sequence memory problem, thereby potentially offering insights into neuroscience
observations in return.

B Experiment Details

In this section, we include all experiment details including the grid search ranges and the best
performing parameters. All code for reproducing the results can be found at the following repository:
https://github.com/Anon-NeurIPS-2023/Wave-RNN. The code was based on the original code base
from the coRNN paper [36] found at https://github.com/tk-rusch/coRNN.
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Pseudocode. Below we include an example implementation of the wRNN cell in Pytorch [33]:

1 import torch.nn as nn
2

3 class wRNN_Cell(nn.Module):
4 def __init__(self , n_in , n, c, k=3):
5 super(RNN_Cell , self).__init__ ()
6 self.n = n
7 self.c = c
8 self.V = nn.Linear(n_in , n * c)
9 self.U = nn.Conv1d(c, c, k, 1, k//2, padding_mode=’circular ’)

10 self.act = nn.ReLU()
11

12 # Sparse identity initialization for V
13 nn.init.zeros_(self.V.weight)
14 nn.init.zeros_(self.V.bias)
15 with torch.no_grad ():
16 w = self.V.weight.view(c, n, n_in)
17 w[:, 0] = 1.0
18

19 # Shift initialization for U
20 wts = torch.zeros(c, c, k)
21 nn.init.dirac_(wts)
22 wts = torch.roll(wts , 1, -1)
23 with torch.no_grad ():
24 self.U.weight.copy_(wts)
25

26 def forward(self , x, hy):
27 hy = self.act(self.Wx(x).view(-1, self.c, self.n)
28 + self.Wy(hy))
29 return hy

Figure 2. The results displayed in Figure 2 are from the best performing models of the sMNIST
experiments, precisely the same as those reported in Figure 6 (left) and Table 2. The hyperparamters
of these models are described in the sMNIST section below. To compute the 2D Fourier transform,
we follow the procedure of Davis et al. (2021) [10]: we compute the real valued magnitude of the
2-dimensional Fourier transform of the hidden state activations over time (using torch.fft.fft2
(seq).abs()). To account for the significant autocorrelation in the data, we normalize the output
by the power spectrum of the spatially and temporally shuffled sequence of activations. We note
that although this makes the diagonal bands more prominent, they are still clearly visible in the
un-normalized spectrum. Finally, we plot the logarithm of the power for clarity.

Copy Task. We construct each batch for the copy task as follows:

1 def get_copy_task_batch(bsz , T):
2 X = np.zeros ((bsz , T+10))
3 data = np.random.randint(low=1, high=9, size=(bsz , 10))
4 X[:, :10] = data
5 X[:, -(10+1)] = 9
6 Y = np.zeros ((bsz , T+10))
7 Y[:, -10:] = X[:, :10]
8

9 X = F.one_hot(torch.tensor(X, dtype=torch.int64).permute (1,0), 10)
10 Y = torch.tensor(Y).int().permute (1,0)
11

12 return X, Y

For the copy task, we train each model with a batch size of 128 for 60,000 batches. The models are
trained with cross entropy loss, and optimized with the Adam optimizer. We grid search over the
following hyperparameters for each model type:
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• iRNN

– Gradient Clip Magnitude: [0, 1.0, 10.0]
– U Initialization: [I, U(− 1√

n
, 1√

n
)]

– Learning Rate: [0.01, 0.001, 0.0001]
– Activation: [ReLU, Tanh]

• wRNN

– Gradient Clip Magnitude: [0, 1.0, 10.0]
– Learning Rate [0.01, 0.001, 0.0001]

We find the following hyperparameters then resulted in the lowest test MSE for each model:

Model Parameter Sequence Length (T)
0 10 30 80 480

wRNN
(n=100, c=6, k=3)

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-4
Gradient Magnitude Clip 1 0 0 1 1

iRNN
(n=100)

Learning Rate 1e-3 1e-3 1e-4 1e-4 1e-4
Gradient Magnitude Clip 10 1 1 1 10
U-initialization U I I I I
Activation ReLU ReLU ReLU ReLU ReLU

iRNN
(n=625)

Learning Rate 1e-3 1e-4 1e-4 1e-4 1e-4
Gradient Magnitude Clip 1 10 1 1 1
U-initialization U I I I I
Activation ReLU ReLU ReLU ReLU ReLU

Table 5: Best performing hyperparamters for each model on the Copy Task. Gradient clipping 0
means not applied, U initialization U means Kaming Uniform Initialization.

The total training time for these sweeps was roughly 1,900 GPU hours, with models being trained on
individual NVIDIA 1080Ti GPUs. The iRNN models took between 1 to 10 hours to train depending
on T and n, while the wRNN models took between 2 to 15 hours to train.

Adding Task. For the adding task we again train the model with batch sizes of 128 for 60,000
batches using the Adam optimizer. For this task models are trained with a mean squared error loss.
For both the iRNN and wRNN, we then grid-search over the following hyperparameters:

• Gradient Clip Magnitude: [0, 1, 10, 100, 1000]

• Learning Rate: [0.01, 0.001, 0.0001]

In Table 6 we report the best performing parameters for each task setting.

Model Parameter Sequence Length (T)
100 200 400 700 1000

wRNN
(n=100, c=27, k=3)

Learning Rate 1e-3 1e-4 1e-4 1e-4 1e-4
Gradient Magnitude Clip 100 100 1 100 10

iRNN
(n=100)

Learning Rate 1e-3 1e-3 1e-3 1e-4 1e-3
Gradient Magnitude Clip 1000 100 10 100 1

Table 6: Best performing settings on the Adding Task. Gradient clipping 0 means not applied. We
note that the iRNN failed to solve the task meaningfully for lengths T = 700 & 1000, thus the
hyperparameters found here are not significantly better than any other combination for those settings.

The total training time for these sweeps was roughly 1,200 GPU hours. The iRNN models took
between 1 to 7 hours, while the wRNN models took 6 to 12 hours each.
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sMNIST. For the sequential MNIST task we use iRNNs and wRNNs with 256 hidden units. To have
a similar number of parameters, we use 16 channels with the wRNN. The models are trained with a
batch size of 128 for 120 epochs. The learning rate schedule is defined such that the learning rate is
divided by a factor of lr_drop_rate every lr_drop_epoch epochs. We grid search over the following
hyperparameters for each model type. We find that the iRNN does not need gradient clipping on this
task and achieves smooth loss curves without it. We highight in yellow the hyperparameters which
achieve the maximal performance, and were thus reported in the main text:

• iRNN

– Learning Rate: [0.001, 0.0001, 0.00001]
– lr_drop_rate: [3.33, 10.0]
– lr_drop_epoch: [40, 100]

• wRNN

– Gradient Clip Magnitude: [0, 1, 10, 100]
– Learning Rate: [0.001, 0.0001, 0.00001]
– lr_drop_rate: [3.33, 10.0]
– lr_drop_epoch: [40, 100]

The total training time for these sweeps was roughly 1000 GPU hours, with models being trained on
individual NVIDIA 1080Ti GPUs, iRNN models taking roughly 12 hours each, and wRNN models
taking roughly 18 hours each.

psMNIST. For the permuted sequential MNIST task, we use the same architecture and training
setup as for the sMNIST task. We find that on this task the iRNN requires gradient clipping to
perform well and thus include it in the search as follows:

• iRNN

– Gradient Clip Magnitude: [0, 1, 10, 100, 1000]
– Learning Rate: [0.001, 0.0001, 0.00001]
– lr_drop_rate: [3.33, 10.0]
– lr_drop_epoch: [40, 100]

• wRNN

– Gradient Clip Magnitude: [0, 1, 10, 100, 1000]
– Learning Rate: [0.001, 0.0001, 0.00001]
– lr_drop_rate: [3.33, 10.0]
– lr_drop_epoch: [40, 100]

In an effort to improve the baseline iRNN model performance, we performed additional hyperpa-
rameter searching. Specifically, we tested with larger batch sizes (120, 320, 512), different numbers
of hidden units (64, 144, 256, 529, 1024), additional learning rates (1e-6, 5e-6), a larger number
of epochs (250), and more complex learning rate schedules (exponential, cosine, one-cycle, and
reduction on validation plateau). Ultimately we found the parameters highlighted above to achieve
the best performance, with the only improvement coming from training for 250 instead of 120
epochs. Regardless, in Figure 6 we see the iRNN performance is still significantly below the wRNN
performance, strengthening the confidence in our result. The total compute time for these sweeps
was roughly 1,900 GPU hours with models being trained on individual NVIDIA 1080 Ti GPUs. The
iRNN models took rougly 12 hours each, with wRNN models taking roughly 18 hours each.

For each of the wRNN models in Figure 7, the same hyperparameters are used as highlighted above
and found to perform well. The wRNN is tested over combinations of n = (16, 36, 64, 144) ×
c = (1, 4, 16, 32), and the best performing models for each parameter count range are displayed. For
the iRNN, we sweep over larger batch sizes (128, 512), learning rates (1e-3, 1e-4, 1e-5) and gradient
clipping magnitudes (0, 1, 10, 100) in order to stabalize training, displaying the best models.
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nsCIFAR10. For the noisy sequential CIFAR10 task, models were trained with a batch size of 256
for 250 epochs with the Adam optimizer, lr_drop_epoch = 100, and lr_drop_rate = 10. We found
gradient clipping was not necessary for the wRNN model on this task, and thus perform a grid search
as follows, with the best performing settings highlighted:

• iRNN
– Learning Rate: [0.001, 0.0001, 0.00001]
– Number hidden units (n): [144, 256, 529, 1024]

• wRNN
– Learning Rate: [0.001, 0.0001, 0.00001]
– Number hidden units (n): [144, 256]

The total compute time for these sweeps was roughly 1,600 GPU hours with models being trained
on individual NVIDIA 1080 Ti GPUs. The iRNN models took roughly 15 hours each, with wRNN
models taking roughly 22 hours each.

Ablation. For the ablation results in Table 4, we first report the test MSE of the best performing
wRNN and iRNN models from the original Copy Task grid search (identical to those in Figure 3).
We then added the ablation settings to the grid search, and trained the models identically to those
reported above in the Copy Task section. This resulted in the final complete grid search:

• iRNN
– Gradient Clip Magnitude: [0, 1.0, 10.0]
– U Initialization: [I, U(− 1√

n
, 1√

n
),Σ]

– V Initialization: [N (0, 0.001),Sparse-Identity]
– Learning Rate: [0.01, 0.001, 0.0001]
– Activation: [ReLU, Tanh]

• wRNN
– Gradient Clip Magnitude: [0, 1.0, 10.0]
– u Initialization: [Dirac, U(− 1√

n
, 1√

n
),u-shift]

– V Initialization: [N (0, 0.001),Sparse-Identity]
– Learning Rate [0.01, 0.001, 0.0001]

where Sparse-Identity refers to the V initialization described in section 2. In the case of the iRNN, the
V matrix is defined to have 1 channel for the purpose of this initialization. The Dirac initialization is
equivalent to an identity initialization for a convolutional layer and is implemented using the Pytorch
function: torch.nn.init.dirac_. We report the best performing models from this search in Table 4.

For the wRNN (-u-shift-init), we note that for the sequence lengths T where the wRNN model does
solve the task (MSE ≤ 1 × 10−10), i.e. T=0 & 10, the best performing models always use the u
initialization N (0, 0.001) and appear to learn to exhibit traveling waves in their hidden state (as
depicted in Figure 9), while the dirac initialization always performs worse and does not exhibit waves.

C Additional Results

Performance Means & Standard Deviations. In the main text, in order to make a fair comparison
with prior work, we follow standard practice and present the test performance of each model with the
corresponding best validation performance. In addition however, we find it beneficial to report the
distributional properties of the model performance after multiple random initalizations. In Table 7 we
include the means and standard deviations of performance from 3 reruns of each of the models.

Additional Baseline: Linear Layer on MNIST. One intuitive explanation for the performance
of the wRNN is that the hidden state ‘wave-field’ acts like a register or ‘tape’ where the input is
essentially copied by the encoder, and then subsequently processed simultaneously by the decoder a
the end of the sequence. To investigate how similar the wRNN is to such a solution, we experiment
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Task Metric iRNN wRNN

Adding T=100 MSE 1.40×10−5 ± 4.21×10−6 6.12×10−5 ± 7.95×10−5

Solved iter. 11,500.00 ± 2,910.33 233.33 ± 57.74

Adding T=200 MSE 5.13×10−5 ± 1.66×10−5 8.54×10−5 ± 7.91×10−5

Solved iter. 21,000.00 ± 4,582.58 1,000.00 ± 0.00

Adding T=400 MSE 7.70×10−2 ± 8.49×10−2 1.59×10−4 ± 1.07×10−4

Solved iter. 30,000.00 ± - 1,333.33 ± 577.35

Adding T=700 MSE 0.163 ± 2.08×10−3 5.29×10−5 ± 3.19×10−5

Solved iter. × 3,000.00 ± 0.00

Adding T=1000 MSE 0.160 ± - 4.36×10−5 ± 1.91×10−5

Solved iter. × 1,666.67 ± 577.35

sMNIST Test Acc. 98.20 ± 0.32 97.30 ± 0.34

psMNIST Test Acc. 90.85 ± 1.47 96.60 ± 0.10

nsCIFAR10 Test Acc. 51.80 ± 0.54 54.70 ± 0.42

Table 7: Mean and standard deviation of model performance over 3 random initializations for the
best performing models in each category. We see model performance is consistent with the best
performing models reported in the main text. The × means the models never solved the task after
60,000 iterations, and (± -) means that the other 2/3 random initalizations also did not solve the task
after 60,000 iterations or crashed.

with training a single linear layer on flattened MNIST images, equivalent to what the decoder of the
wRNN would process if this ’tape’ hypothesis were correct. In Figure 10 we plot the results of this
experiment (again showing the best model from a grid search over learning rates and learning rate
schedules), and we see that the fully connected layer achieves a maximum performance of 92.4%
accuracy compared with the 97.6% accuracy of the wRNN model.

Figure 10: Training curves for a fully connected layer trained on flattened MNIST images (FC) versus
the standard wRNN presented in the main text. We see the wRNN still performs significantly better,
however the FC model does mimic the rapid learning capability of the wRNN, suggesting that the
wRNN’s learning speed may be partially attributable to the wave-field’s memory-tape-like quality.

Additional Ablation: Frozen Encoder & Recurrent Weights. To further investigate the difference
between the wRNN model and a model which simply copies input to a register, we propose to study
the relative importance of the encoder weights V and recurrent connections U for the wRNN. We
hypothesized that the wRNN may preserve greater information in its hidden state by default, and thus
may not need to learn a flexible encoding, or perform recurrent processing. To test this, we froze
the encoder and recurrent connections, leaving only the decoder (from hidden state to class label) to
be trained. In Figure 11 we plot the training curves for a wRNN and iRNN with frozen U and V.
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We see that the wRNN performs remarkably better then the iRNN in this setting (89.0% vs. 44.3%),
indicating that the wave dynamics do indeed preserve input information by default far better than
standard (identity) recurrent connections.

Figure 11: Training curves for wRNN and iRNN models with frozen encoder and recurrent connec-
tions (U & V) on the sMNIST task. We see that the wRNN performs drastically better, indicating
that the wRNN requires significantly less flexibility in its encoder and recurrent connections in order
to achieve high accuracy.

Additional Ablation: Locally Connected RNN. In order to test if the emergence and maintenance
of waves requires the weight sharing of the convolution operation, or is simply due to local connectiv-
ity, we perform an additional experiment where we use the exact same model as the default wRNN,
however we remove weight sharing across locations of the hidden state. This amounts to replacing the
convolutional layer with an untied ‘locally connected’ layer. In practice, when initialized with same
the shift-initialization we find that such a model does indeed exhibit traveling waves in its hidden
state as depicted in Figure 12. Although we notice that the locally connected network does train to
comparable accuracy with the convoluitional wRNN on sMNIST, we present this preliminary result
as a simple ablation study and leave further tuning of the performance of this model on sequence
tasks for future work.

Figure 12: Hidden state and 2D Fourier transform for a locally connected RNN showing the existence
of traveling waves. These results imply that it is simply local connectivity which is important for the
emergence of traveling waves rather than shared weights.

Additional Visualizations of Copy Task. Here we include additional visualizations of the larger
iRNN (n=625) for the copy task. We see that while it performs slightly better than the smaller iRNN
(n=100) it still performs very poorly in comparison with the wRNN.
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Figure 13: Examples from the copy task for the larger iRNN (n=625) and wRNN (n=100, c=6) as
shown in the main text. We see the larger iRNN does slightly better than the small iRNN (n=100)
shown in Figure 4, but still significantly worse than the wRNN. These results clearly show that the
iRNN does not have the appropriate machinery for storing memories over long sequences while the
wRNN does.

On the Emergence of Traveling Waves. In this section we expand on the results of Figure 9 and
include additional results pertaining to the emergence of traveling waves in recurrent neural networks
with different connectivity and initialization schemes. Specifically, in Figure 15 we show the hidden
state visualization for models with varying initalizations. We see that models with shift-initialization
exhibit waves directly from initialization, while randomly initialized convolutional models do not
initially exhibit waves but learn to exhibit them during training, and identity initialized models never
learn to exhibit waves. Furthermore, in Figure 14 we show the respective training curves for randomly
initialized and identity initialized wRNNs. We see that the randomly initialized wRNN achieves
higher final accuracy in correspondence with the emergence of traveling waves, reinforcing the
conclusion that traveling waves are ultimately beneficial for sequence modeling performance.

Figure 14: Training curve on the sMNIST task for a wRNN with three different initialization schemes:
u-shift (default), random (U(− 1√

n
, 1√

n
)), and identity (dirac). We see that the random initalization

does not have the same rapid learning speed as the u-shift initialization, however, it does still achieve
significantly higher final accuracy than the identity initialization, implying traveling waves are
beneficial to performance.
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Figure 15: Visualization of hidden state (y-axis is hidden units) over timesteps (x-axis) for a variety of
different models and initalizations for U. We see that the wRNN with u-shift initialization achieves
the most consistent waves throughout training. Interestingly, some other models learn to achieve
traveling waves despite not having them at initalization (wRNN with random (kaming uniform)
initialization); while other models, (iRNN with U-shift) initially have stronger traveling waves, and
slowly lose them throughout training. We see the wRNN with identity (dirac) initialization never
learns waves despite using convolutional recurrent connections.
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