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Abstract 

I' Recent evidence links osteoporosis, a disease of bone remod- 
eling, to changes in the dynamics of parathyroid hormone 
secretion. We use nonlinear and linear time series prediction 
to characterize the secretory dynamics of parathyroid hor- 
mone in both healthy human subjects and patients with 
osteoporosis. Osteoporotic patients appear to lack the peri- 
ods of high predictability found in normal humans. Our 
results may provide an explanation for why an intermittent 
administration of parathyroid hormone is effective in restor- 
ing bone mass in osteoporotic patients. (J. Clin. Invest. 1995. 
952910-2919.) Key words: parathyroid hormones osteo- 
porosis bone remodeling osteoclast osteoblast 

Introduction 

Fluctuations in parathyroid hormone (PTH) ' plasma concentra- 
tion over short time intervals seem to play an essential role in 
maintaining the physiological balance of bone resorption and 
bone formation ( 1-4). The concentration of PTH in the blood- 
stream of healthy human subjects fluctuates in an episodic, pul- 
satile manner with a mean PTH pulse frequency between l 
pulse per hour (large pulses) and 1 pulse per 10 min (small 
pulses) (1  ) . In the physiological bone remodeling process, bone 
resorption by osteoclastic cells and bone formation by osteo- 
blastic cells are functionally coupled (5). PTH has been shown 
to act directly on osteoblastic cells whereas its action on osteo- 
clastic cells is mediated by local factors (6 -  10). Animal experi- 
ments have demonstrated that an intermittent administration 
with daily injections of PTH increases bone mass and normal 
connectivity, whereas a continuous administration by infusion 
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at the same mean rate leads to a net loss of bone mass and of 
bone structure ( 11 - 13). The bone becomes more porous, as 
seen in osteoporotic patients, suggesting that this disease is 
caused by a disruption of the normal temporal dynamics of PTH 
secretion. In accordance with these results, a therapy protocol 
with daily injections of PTH produced the largest gain in trabec- 
ular bone mass in osteoporotic patients (14, 15). 

The evidence linking the secretion of PTH to bone remodel- 
ing suggests that secretory patterns in osteoporotic patients and 
healthy subjects may be different. Until recently, a comparison 
of the dynamics of PTH secretion in healthy and osteoporotic 
subjects was not possible because data at a sufficiently fine 
temporal scale were not available. In a recent experiment (1),  
we measured PTH serum concentration at 2-min intervals in 
both healthy and osteoporotic subjects (Fig. 1). These data now 
offer a unique window into the dynamics of PTH secretion in 
both subject groups. 

Traditional approaches to identifying dynamical disease 
states have involved examination of the time series and power 
spectra of physiological variables for evidence of changes in 
periodicity or regularity of a process (16, 17). Unfortunately, 
healthy subjects cannot be distinguished from patients with os- 
teoporosis using the mean or variance of PTH serum concentra- 
tion (Fig. 1) or the power spectrae (Fig. 2).  These classical 
techniques for time series analysis do not appear well suited to 
discovering differences in the dynamics of such irregular time 
series. 

Time series prediction has proved effective in characterizing 
irregular complex time series and separating deterministic (cha- 
otic) behavior from some forms of random behavior (18-20). 
Most of this work has focused on distinguishing chaotic behav- 
ior from zero order (independent identical distributed) and first 
order (the series of first differences is independent identical 
distributed) stochastic processes, and more complex forms of 
correlated processes have not been extensively analyzed. Recent 
work shows that such a predictive model is particularly effective 
when applied to short time series that contain on the order of 
a few hundred data points (19, 20). Systematic differences in 
the dynamics may lead to very different degrees of predictabil- 
ity. Such a predictive model has recently been applied to time 
series analysis of electroencephalogram (EEG) data (21). 

We describe a technique for identifying differences in the 
dynamics of PTH secretion between healthy subjects and pa- 
tients with osteoporosis using time series prediction. A single 
predictor trained on pooled data from several healthy subjects 
as well as predictors individually trained on each time series 
were used to predict time series from both healthy and osteopo- 
rotic subjects. Differences in the rate at which predictions di- 
verged from the true evolution of the time series were used to 
divide healthy subjects into groups exhibiting states of low 
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Figure I .  Representative time series of PTH(1-84) serum concentration (4-h period). (a) Four healthy subjects (total of nine subjects), mean PTH 
serum concentrations: ( 0 )  60.5t9.5 nglliter; (m) 47.827.4 nglliter; (u) 43.7k5.5 nglliter; ( e )  31.926.1 nglliter; (b) Four osteoporotic patients 
(total of six patients), mean PTH serum concentrations: (m) 53.356.7 nglliter; (o) 32.6k3.9 nglliter; ( 0 )  30.9t15.9 nglliter; ( e )  18.859.4 ngl 

! liter. Whether a PTH serum concentration time series is from a healthy subject or an osteoporotic patient cannot be determined from the mean 
concentration nor from the standard deviation. 

and high predictability. Examination of longer time series from 
several healthy subjects suggests a tendency to switch between 
these states of low and high predictability. Osteoporotic patients 
exhibited divergence rates similar to the healthy subjects in the 
low predictability group, and none showed any evidence of the 
highly predictable behavior found in some healthy subjects. 
These differences could not be found using "classical" methods 
of time series analysis. Our findings suggest, that osteoporosis 
may be a disease in which the dynamics of hormonal fluctua- 
tions is altered in a subtle but critical manner. 

Methods 
Subjects. Twelve healthy men (aged 24-42 yr), three women with 
postmenopausal osteoporosis (aged 55-62 yr), and three men with 

idiopathic osteoporosis (aged 31-42 yr) took part in this study. The 
studies reported were approved by the local Committee on Medical 
Ethics, and all subjects gave their informed written consent. All healthy 
subjects had an unremarkable personal and family medical history. Phys- 
ical examination, electrocardiogram, white blood count, differential, 
protein, creatinine clearance, albumin, total calcium, sodium, potassium, 
magnesium, chloride, creatinine, triglycerides, cholesterol, glucose, and 
nitrogen were normal in both groups. In addition to parameters to ex- 
clude secondary osteoporosis and other diseases, we measured alkaline 
phosphatase, osteocalcin, calcium, ionized calcium, and phosphate. 
Body weight, diet, and daily physical activity were comparable between 
groups. In the patients with osteoporosis bone density was assessed 
by single-energy computed tomography (the mean value was 49% of 
reference) and dual-energy computed tomography (the mean value was 
52.6% of reference). Lateral spine (thoracic and lumbar) x-rays were 
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Figure 2. Power spectra of the time series from 
Fig. 1. ( a )  Healthy subjects; ( b )  osteoporotic 
patients. All spectra of both groups are broad 
and quite flat up to the Nyquist frequency (4.17 
mHz), characteristics common to stochastic and 
chaotic dynamic processes. None of the spectra 
exhibits strong spectral features that would indi- 
cate strong periodic behavior and could be easily 
used for reliable classification. 

obtained from all patients. The typical configuration of osteoporotic 
vertebral bodies was present in all subjects. Vertebral fractures, i.e., 
height reduction of > 25% was present only in two of the patients. 
Some of the subjects in this study as well as the details on design and 
measurements are described in more detail in a previous publica- 
tion (1). 

Sampling protocol. In three of the healthy subjects, PTH serum 
concentrations were measured in blood samples taken every 2 min over 
an extended period (21 h for one subject and 24 h for the other two). 
In the remaining nine healthy subjects and the six osteoporotic patients, 
PTH serum concentrations were also measured at 2-min intervals, but 
over much shorter periods of time (3.5-9 h). All PTH concentrations 
were measured in duplicate using either a two-site chemiluminometric 
(sandwich) immunoassay or an intact PTH immunoradiometric assay. 
Blood samples (1  ml) were drawn via a central venous catheter. The 
specimens were then centrifuged at 4°C and frozen at -20°C within 45 
min and stored for 1-3 mo. 24 h before sampling no alcohol intake, 

medication, or caffeine was permitted. The central venous catheter was 
placed 1 h before the initiation of blood sampling. Throughout the study, 
the subjects rested in bed. i 

Measurement of PTH serum concentrations. The PTH concentra- 
tions of all serum samples were measured in duplicate. To avoid in- 
terassay variations, all samples from an individual subject were analyzed 
in the same assay. The 21- and 24-h PTH serum concentration time 
series and half of the other PTH time series were measured using a 
two-site chemiluminometric (sandwich) immunoassay (Magic Lite In- 
tact PTH; Ciba-Corning Diagnostics corporation, Medfield, MA; intra- 
assay coefficient of variation [CV] 3.4%, interassay CV 4.3%). The 
other half of the results were obtained with the Allegro intact PTH 
immunoradiometric assay system (Nicols, San Juan Capistrano, CA; 
intra-assay CV 5.1%; interassay CV 7.8%). Exactly one third of the 
samples of normal subjects and one third of the samples of osteoporotic 
patients were analyzed with the chemiluminometric immunoassay and 
in both groups two thirds with the immunoradiometric assay. 
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Figure 3. Architecture of the prediction network. The estimate of the 
current value of the time series (R( t ) )  is the weighted sum of the 
previous 15 values of the time series. Gray squares represent the weights 
of the network related to the samples of the time series ( x ( t  - 15),  
. . . , x ( t  - 1 ) ) .  The size of the white or black square inside each 
gray square indicates the magnitude of the weight assigned to that 
sample (black squares: negative weights, white squares: positive 
weights). 

Time series prediction. In this approach to time series analysis, we 
find models that attempt to predict the next value x ( t , )  of a time series 
from a number of previous values: 

where ~ ( t , - ~ )  is the value at time t,_, , m is the number of previous 
values used for prediction, and t, represents noise or fitting error. The 
model f is selected by minimizing some measure of misfit (such as 
mean square error) over a set of training examples drawn from observed 
samples of the time series. When the predictive model is linear 
( f ( ~ ( t , - ~ ) ,  . . . , x ( t  ,-,,, )) = Zol ,~ ( t , -~ ) ) ,  this type of modelling is 
equivalent to fitting an autoregressive ( A R )  model of order m to the 
data. By modeling the series of first differences using a similar form 
of predictor we can also fit autoregressive integrated moving average 
(ARIMA) models, and nonlinear extensions of these models, to a 
data set. 

In this study we used feedforward networks to predict future values 
of the time series of PTH serum concentration (Fig. 3, Table I). This 

Table I. CoefJicients of the Predictive Model 

Coefficient Weight value 

x(t - 1)  1.339 
x(t - 2) -0.350 
x(t - 3) 0.022 
x(t - 4)  -0.004 
~ ( t  - 5)  0.028 
~ ( t  - 6 )  -0.102 
x(t - 7 )  0.139 
~ ( t  - 8) -0.177 
x(t - 9) 0.065 
~ ( t  - 10) -0.073 
x(t - 11) 0.266 
x(t - 12) -0.217 
~ ( t  - 13) -0.013 
x(t - 14) 0.029 
x(t - 15) 0.046 
Bias 0.566 

Coefficients with values less than 0.1 are not significant and may be 
removed from the model without qualitatively effecting the results of 
predictions on the test subjects. 

form of a predictive model was chosen because it is relatively easy to 
control over-fitting using regularization functions and cross-validation 
and such models have proven to be effective predictors for other short, 
noisy time series (22-24). This class of model implicitly includes the 
classes of moving average (MA) and AR models (25 ) .  

Networks were trained to predict a single time step into the future. 
To predict multiple steps into the future the single-step map was iterated 
by feeding back the output of the network into its input. If the predicted 
value one step into the future is 

then the predicted value two steps into the future is computed as 

This process can be repeated to predict any number of steps into the 
future. The correlation between observed ( x i )  and predicted ( f i )  values 
was measured using 

arv = 
((xi - i i ) 2 )  

u 2 ( x i )  ' 

where arv is the average relative variance, the angle brackets denote an 
average over all values of the indexed variable, and u Z ( x , )  denotes the 
variance of the indexed variable. This statistic is one measure of the 
regularity of a time series, and other forms of regularity measure have 
previously been used to discriminate among hormone secretion time 
series (26 ) .  

To improve the signal-to-noise ratio the raw PTH time series were 
filtered before prediction by an acausal filter (27 )  (rolloff frequency q 
= 0.002), which does not affect certain nonlinear measures. To avoid 
any bias due to the filtering process, we selected this particular type of 
filter because we also used neural network predictors with nonlinear 
activation functions. 

Training and testing ofpredictive models. Before selecting a distinct 
network architecture for our detailed analysis, we explored a large vari- 
ety of different network architectures, applying linear as well as nonlin- 
ear sigmoidal feedforward networks with 1-30 input units, 0-50 hidden 
units, and 1 output unit. A regularization technique (23 )  was used to 
control overfitting to the training data, with the weight assigned to 
the regularization term chosen by cross validation. The value for the 
regularization term varied from lo-' for the nonlinear networks to lo-'' 
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for the linear networks. The weights were updated by a conjugate gradi- 
ent descent method. (For a linear model, this fitting technique is formally 
equivalent to a least-squares linear fit.) 

Networks were trained using pooled time series data from the three 
healthy male subjects whose PTH serum concentrations were measured 
every 2 min for an extended period. Furthermore we trained our net- 
works using pooled time series data from the osteoporotic patients. 
Using such a network for testing the osteoporotic subjects we used a 
"leave one out technique," where the time series actually being tested 
is left out of the training procedure. The performances of these networks 
were compared on a validation set that was not used during training 
and the architecture with the best performance was a feedforward neural 
network with one layer of weights, linear activation functions, 15 input 
units, and 1 output unit (Fig. 3, Table I ) .  This network is equivalent 
to a 15th order AR model, however the regularization procedure yields 
a final model with only seven significant coefficients (Table I) .  This 
model was also the best predictor of the PTH time series in the 15 
test subjects and also the best discriminator between the normal and 
osteoporotic subjects of the 76 different models of various orders that 
we fit to the data. Furthermore we used the 15 input units-1 output 
unit network as well a variety of other linear and nonlinear network 
architectures to perform individual training and testing of each normal 
and osteoporotic time series. To account for possible nonstationarity in 
our data (Fig. 1)  we also fitted the best predictive ARIMA model 
individually to the first two thirds of each time series using a variety 
of different AR, I, and MA orders, which were identified with the help 
of the autocorrelation and partial autocorrelation function (using the 
MATLAB System Identification Toolbox; The Mathworks, Inc., Natick, 
MA). After fitting, the last third of each time series was predicted by 
the fitted ARIMA model. Furthermore we fitted the best predictive 
ARIMA model to the pooled PTH data from the three healthy subjects 
and evaluted the predictive ability on each of the nine remaining time 
series from normal subjects and six time series from osteoporotic pa- 
tients. We then compared the predictive results to those obtained from 
individual training and testing of each time series and also to training 
on pooled data using the neural network approach. 

The 15 input units-1 output unit network was used for most of the 
simulations discussed in the remainder of this paper. It was used to 
predict the time series from an additional 15 test subjects; 9 healthy 
subjects and 6 patients with osteoporosis. 

Our use of a single predictive model for all time series differs from 
other studies, which used a different predictor for each time series (19, 
22, 24). We chose this approach because we were primarily interested 
in discriminating the PTH secretory patterns of healthy subjects from 
patients with osteoporosis on the basis of relative predictability rather 
than estimating the absolute degree of predictability in normal PTH 
concentration time series. However, we performed additional experi- 
ments in which each time series was trained (on the first two thirds of 
each time series) and tested (on the last third) with a single individual 
neural network predictor using linear as well as nonlinear activation 
functions. 

The arv was computed for each of the 15 test subjects as a function 
of the number of steps predicted into the future (Table 11). The number 
of prediction steps after which the am exceeded 0.5 was recorded for 
each time series. This number is a measure of the number of prediction 
steps into the future for which the network is useful as a predictor for 
the system dynamics. An arv of 1.0 may be achieved simply by always 
guessing the mean of the time series as the predicted value, so a predictor 
that meets our criterion is on average twice as good as predictor that 
entirely ignores the dynamics of the time series. 

To investigate the possible sensitivity of our prediction method to 
the frequency at which the PTH serum concentration was measured, we 
repeated all our prediction simulations using every 2nd and 5th data 
point of the original PTH concentration time series (4- and 10-rnin 
intervals, respectively). 

Results 
Evidence for states of low and high predictability. Using the 
15 input unit-1 output unit neural network trained on pooled 

Table II. Number of Prediction Steps (2 min) Until the Prediction 
Error (am)  Reaches a Value of 0.5 

Subject Prediction step 

Normal1 
Normal2 
Normal3 
Normal4 
Normal5 
Normal6 
Normal7 
Normal8 
Normal9 

Osteoporoticl 
Osteoporotic2 
Osteoporotic3 
Osteoporotic4 
Osteoporotic5 
Osteoporotic6 

The linear 15 input-1 output neural network was trained on pooled 
data from healthy subjects. 

data from healthy subjects, we found that the PTH serum con- 
centration time series of the group of healthy subjects exhibits 
two different types of behavior. In four subjects, the time series 
could be predicted between 8 and 12 time steps into the future 
before the arv exceeded 0.5 (Fig. 4). This group of subjects 
exhibited high predictability. In the remaining five healthy sub- 
jects, the time series could be predicted only three to five steps 
into the future before an arv of 0.5 was exceeded. This group 
of subjects exhibited low predictability. To verify the existence 
of these two groups, we clustered the data using a k-means 
procedure and compared the fit of the resulting two normal 
component model to a single normal fit, using a likelihood ratio 
test. The two component model provided a significantly better 
fit than a single component model (P < 0.03). 

We used the two-component model to classify the predict- 
ability of the osteoporotic time series and found that all of 
the osteoporotic patients exhibited low predictability under this 
classification criterion. The PTH serum concentrations from the 
osteoporotic subjects could be predicted only two to six time 
steps into the future before the arv exceeded 0.5. Significant 
correlations between the age of the subjects, their mean PTH 
serum concentration, and the predictability could not be found. 
These categories of predictability could not be identified by 
computing the mean or the variance of the PTH serum concen- 
tration time series (Fig. 1)  nor by computing the power spec- 
trum of each time series (Fig. 2). 

We tested the significance of differences in predictability 
between various groups of test subjects using a Mann-Whitney- 
Wilcoxon rank test (Table III). There was evidence that the 
nine normal subjects as a group were more predictable than 
the osteoporotic patients. However, there was much stronger 
evidence that the four normal subjects falling in the highly 
predictable category were more predictable than either the os- 
teoporotic patients or the normal subjects falling in the low 
predictability category. This suggests that although high predict- 
ability may be an indicator of health, low predictability alone 
is not necessarily a strong indicator of disturbances in PTH 
secretion. 
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There were also qualitative differences in the graphs of 
arv versus the number of prediction steps between the healthy 
subjects and osteoporotic patients (Fig. 4 a).  All of the healthy 
subjects showed a "saturation" of the arv as the number of 
prediction steps increased, although this saturation occurred 
above an arv of 1.0 for subjects exhibiting low predictability. 
The osteoporotic subjects and the time series of colored noise 
showed,'with one exception, a linear increase of the arv with 
the number of prediction steps. 

Further analysis of the long PTH concentration time series 
from the healthy subjects showed that regions of low and high 
predictability could be found within each of the long time series 
(Fig. 5). The arv value was computed for a continuously run- 
ning 60 data points (2 h) window for the entire PTH time series 

Figure 4. Summary of predictability for 
healthy subjects and osteoporotic pa- 

osteoporosis tients. (a) arv (prediction error) vs. the 
number of prediction steps (Zmin inter- 
val): healthy subjects (a), osteoporotic 
patients (o), colored noise ( 7 )  with a 
power spectrum matched to the training 

colored noise data. The dashed line indicates an arv of 
0.5 used as the criterion for separating 
the healthy subjects from the osteoporotic 
patients. For clarity, only values with an 
arv < 2.0 are shown. The entire data set 
is shown in the inset in b. (b) Histogram 
of the number of subjects vs. the predic- 
tion step (2-min interval) at which the 
arv exceeds a value of 0.5. The inset 
shows the arv (on a logarithmic' scale) 
vs. the number of prediction steps for all 
subjects (see detail in a). 

and recorded for all of the longer PTH time series for the 1- 
15 time steps ahead prediction (Fig. 5 a ) ,  as well as the time 
step where the prediction error arv reached a value of 0.5 (Fig. 
5 b ) .  The time series were then divided into segments at points 
where the predictability (in prediction steps) was less than 1 
SD from the mean predictability across the entire time series 
(low predictability). This procedure divided each time series 
into segments of high and low predictability. 

The periods of high predictability were on average more 
common, although the exact proportion of regions of high and 
low predictability varied among the long time series (10% low, 
21% low, and 23% low). The length of the periods of low 
predictability also showed considerable variation (2 h 24 min 
to 4 h 55 min). The short time series from the nine healthy 
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Table 111. Differences in Predictability for Various Groups 
of Subjects 

Group 1 

Normals 
(n = 9 )  
7.053.5 

Pred. normals 
(n  = 4)  
10.5?1.7 

Pred. normals 
(n = 4)  
10.551.7 

Group 2 Significance 

Osteoporotics P < 0.03 
(n  = 6)  
3.5t1.5 

Nonpred. normals P < 0.01 
(n = 5)  
4.2k0.8 

Osteoporotics P < 0.01 
(n = 6)  
3.5k1.5 

The meankSD of the number of steps required to reqch an arv of 0.5 
is shown for each group. The final column shows the significance o f  
the hypothesis that the number o f  prediction steps required to reach an 
arv of 0.5 is greater in group 1 than in group 2. All tests are based on 
a nonparametric Mann-Whitney-Wilcoxon test (U statistic). 

subjects and six osteoporotic patients did not contain enough 
data points to reliably identify distinct regions of low and high 
predictability within these time series. 

Sensitivity of results. In the following, Mann-Whitney-Wil- 
coxon rank tests were used to obtain the statistical results. Using 
the 15 input units-1 output unit neural network as an individual 
predictive approach, the degree of predictability in the healthy 
group was significantly ( P  < 0.05) lower (3.921.2 time steps) 
than in the case of the predictor trained on the pooled data 
from healthy subjects (7.023.6). In the case of the osteoporotic 
patients there was no significant difference between the pre- 
dictive results using the predictor trained on pooled healthy data 
(3.5 +- 1.5 time steps) and individually trained (2.3 20.8 time 
steps). However using the criterion of absolute predictability 
for each time series the normal group (3.9+- 1.2 prediction steps) 
was significantly ( P  < 0.02) further predictable into the future 
than the osteoporotic group (2.320.8 prediction; Table IV). 

Fitting the best predictive ARIMA model (AR = 8, I = 1, 
MA = 9) to the pooled data from three healthy subjects and 
testing the predictability of this model on the remaining time 
series, we could separate the normal group by a significantly 
( P  < 0.02) higher predictability (4.7+.1.3 prediction steps) 
compared with the osteoporotic group (2.7-cO.8 prediction 
steps; Table V).  There was no significant difference in predict- 
ability compared to the neural network approach trained on 
pooled healthy data. 

In addition, individual ARIMA models of different orders 
(AR-order: 1 . . . 15; I: 1 . . . 2; MA; 1 . . . 15) were fitted to 
each time series of normal subjects and osteoporotic patients. 
Using this procedure both groups were significantly ( P  < 0.05) 
further predictable into the future than using the individual neu- 
ral network approach. However, due to a large variability in the 
degree of predictability the normal group (8.628.2 prediction 
steps) could not be separated significantly from the osteoporotic 
group (4.322.2 prediction steps). Comparing the best pre- 
dictive ARIMA model for each time series with the results 
obtained from the network trained on pooled healthy data we 
could not find significant differences within the normal as well 
as the osteoporotic group. 

Using pooled data from the osteoporotic patients and the 
"leave one out technique" for training, the healthy subjects 

Time, min 

Figure 5. Nonuniformity of predictability in a single healthy subject. 
( a )  arv (prediction error) vs. time for a 60 points ( 2  h )  continuously 
running time window in a 21-h PTH serum concentration time series 
(acausally filtered) for 1 - 15 time steps ahead prediction (curves are 
from bottom to top). ( b )  Prediction step where the arv reached a value j 

o f  0.5 vs. time for a 60 points ( 2  h )  continuously running time window. 
( c )  Corresponding 21-h acausally filtered PTH serum concentration time 
series. , 

(6.122.9 prediction steps) were not significantly further pre- 
dictable than the osteoporotic patients (4.853.3 prediction 
steps). 

The healthy subjects were significantly more predictable 
than the osteoporotic patients using a variety of different forms 
of predictors and using predictors trained using both pooled 
data and on individual time series. Although the absolute differ- 
ence in predictability varied with different prediction tech- 
niques, the consistency of the higher predictability for healthy 
subjects using a variety of techniques suggests that this higher 
predictability is due to a difference in the dynamics of the time 
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Table IV. Number of Prediction Steps (2 min) Until the Prediction 
Error (am)  Reaches a Vabe  of 0.5 

Subject Prediction step 

Table V. Number of Prediction Steps (2 rnin) Until the Prediction 
Error (am) Reaches a Value of 0.5 

Subject Prediction step 

Normal 1 
Normal2 
Normal3 
Normal4 
Normal5 
Normal6 
Normal7 
Normal8 
Normal9 

Osteoporoticl 
Osteoporotic2 
Osteoporotic3 
Osteoporotic4 
Osteoporotic.5 
Osteoporotic6 

Normal1 
Normal2 
Normal3 
Normal4 
Normal5 
Normal6 
Normal7 
Normal8 
Normal9 

Osteoporoticl 
Osteoporotic2 
Osteoporotic3 
Osteoporotic4 
OsteoporoticS 
Osteoporotic6 

The linear 15 input- 1 output neural network was trained individually 
on the first two thirds of each time series. 

series for healthy subjects and is not merely the effect of a 
particular predictive model. 

Taking only every 2nd data point for time series prediction, 
groups exhibiting low and high predictability as defined above 
could still be found but there was only a very small difference 
in the divergence rates. If the PTH concentrations were mea- 
sured at 10-min intervals, it was impossible to make this distinc- 
tion at all. This implies that secretory patterns evolve on a 
minute-to-minute time scale whereas their significance may 
only be seen in a profile over several hours. 

Discussion 

Two dynamic states? A hypothesis consistent with the results 
of our analysis is that PTH secretion in healthy subjects switches 
between a dynamic state of high predictability and a dynamic 
state of low predictability. The state of low predictability is 
characterized by a rapid divergence of the predicted and actual 
time series and a linear increase of arv with the number of 
prediction steps. This behavior is similar to the dynamics of the 
colored noise process, suggesting that the state of low predict- 
ability may be a low-order stochastic (random) state. The state 
of high predictability is characterized by less divergence be- 
tween the predicted and actual time series and a saturation of 
the arv as the number of time steps is increased. Since a single 
network could predict equally well across many healthy sub- 
jects, it would appear that this deterministic component is com- 
mon to all of the healthy subjects during some periods. 

We found no evidence of a highly predictable saturating 
component in any of the osteoporotic time series using the 
approach with a neural network trained on pooled data from 
healthy subjects as well as with an individual neural network 
predictor derived from the patients themselves. This suggests 
that osteoporotic patients have lost the ability to switch from 
their dynamic state of low predictability to the dynamic state 
of high predictability. 

Using the best predictive ARIMA model fitted on pooled 

The ARIMA model predictor was trained on pooled data from healthy 
subjects. 

healthy data, we could significantly separate both groups in 
analogy to the neural network approach, although the predict- 
ability was less than obtained with the neural network predictor. 

The best predictive ARIMA model, individually fitted on 
each time series, performed better than the neural network ap- 
proaches where the time series were trained and tested individu- 
ally. The better prediction by the individual ARIMA models 
may be due to some nonstationarities in the data. However, the 
ARIMA models did not perform better than the neural network 
predictor trained on the pooled PTH data sets from healthy 
subjects. In particular, the ARIMA models could not separate 
the groups due to high variability in the predictive results. 

The bimodal distribution of the predictability of the short 
time series from the nine healthy subjects (Fig. 4 b, Table III) 
may be due to the limited measurement period for these time 
series (between 4.5 and 9 h).  Four of the healthy subjects 
have time series dominated by the state of high predictability, 
whereas the other five have time series dominated by the state 
of low predictability. The identification of distinct regions with 
low and high predictability in all of the longer time series from 
healthy subjects supports this hypothesis. Because periods of 
low predictability lasted between 2 h 24 min and 4 h 55 min 
in the long time series, it would not be surprising to find that 
the distributions of states of low and high predictability was 
not uniform in the short time series. 

Our analysis, and reexamination of the longer series, sug- 
gests that PTH secretion seems to exhibit two distinct dynamic 
states. A model in which PTH secretion in healthy subjects 
switches between a dynamic state of high predictability and one 
of low predictability on an hourly to daily temporal scale would 
be biologically plausible given the temporal scale of the refrac- 
tory period of the PTH receptor, its reduced affinity after hor- 
mone exposure (28) and the bone remodeling process with 
alternating phases of bone resorption and bone formation. Fur- 
ther evidence for a nonuniformity of PTH secretion can be 
seen by examining the most effective treatment protocol for 
osteoporosis. Daily injections of PTH show a tremendous gain 
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in bone mass in animals (1  1-13) and humans (14,15), whereas 
continuous PTH infusion results in a loss of bone mass and 
structure. 

The effectiveness of a daily PTH injection has been so 
surprising that it took a decade of consistent findings before 
becoming generally accepted. It is, however, not known whether 
this bone anabolic property of PTH finds a correlate in certain 
patterns of PTH secretion. Our data provide the first evidence 
that states of high predictability might be a regular finding in 
subjects with normal bone mass and metabolism. On the other 
hand the well-known minute-to-minute regulation of serum cal- 
cium could be of dominant influence. 

If a high rate of change of PTH concentration is the signifi- 
cant factor in maintaining normal bone remodeling, more fre- 
quent application of PTH pulses with large amplitude may be 
even more effective than a daily injection. Application of large 
pulses of PTH on an hourly scale might be feasable with the 
use of a hormone pump. This is an important area for future 
investigation. 

Two different temporal scales might be involved in the regu- 
lation of the bone remodeling process. One time scale, of - 2 
min, contains the high-frequency fluctuations of PTH serum 
concentration, which may prevent the PTH receptors from 
down-regulating. The other scale is hourly to daily, where 
switching between states of low and high predictability is ob- 
served, which might be a "switch" between bone resorption 
and bone formation in the physiological bone remodeling pro- 
cess. The absence of switching to the highly predictable secre- 
tory state in osteoporotic subjects may then lead to the loss of 
bone mass and structure due to an imbalance of bone formation 
and bone resorption. 

Nonuniform dynamics in other systems. Our suggestion of 
nonuniform (two state) dynamics in PTH secretion of healthy 
subjects is similar to that of Gallez and Babloyantz (29), who 
found evidence for switching between two different dynamic 
states in EEG data. Their study focused on variation of predict- 
ability in nonuniform attractors by investigating time series of 
EEG data. Recently Pawelzik et al'. (30) demonstrated switching 
between predictable and unpredictable states in data from cat 
visual cortex. Gallez and Babloyantz proposed that if there is 
evidence for nonuniformity in the dynamics of attractors, it 
would be: worth characterizing the predictability of parts of the 
attractor. The evidence that two regions of predictability exist 
in the PTH secretion, in EEG data, and in data from cat visual 
cortex suggests that it might be useful to investigate segments of 
other physiological signals such as cardiac rhythms or electrical 
activity of single neurons for distinct regions of predictability 
that may correspond to differing dynamic states. A similar ap- 
proach has been used by Drepper (3 1 ) who calculated the pre- 
dictability (using an information production profile) for a epide- 
miological time series of measles cases data. He also found 
nonuniformity in his attractor reconstructed from the measles 
cases data. 

DifSerences in linear and nonlinear prediction. We found 
no significant difference in the predictive ability of linear and 
nonlinear networks for the PTH concentration time series. How- 
ever, using classical nonlinear analysis, we found evidence for 
nonlinear determinism and possibly low-dimensional determin- 
istic chaos in the irregular pattern of PTH secretion in healthy 
human subjects (32). Our results are in accordance with the 
findings of Blinowska and Malinowski (21) who demonstrated 
that the irregular nonlinear EEG signal could be predicted 
equally well or even better by a linear autoregressive model 

than by the nonlinear prediction model proposed by Sugihara 
and May ( 19). These results differ from others who compared 
linear and nonlinear predictive models, and this may be due to 
the relatively small amount of data available in our study, but 
a final clear conclusion is still lacking (19, 22, 24). 

Although beyond the scope of this manuscript, an important 
area for future work is whether there is a nonlinear explanation 
of at least part of the behavior of PTH secretion. It may be 
possible to address this issue through the use of surrogate data 
(33). Surrogate data are simulated noisy time series that pre- 
serve certain statistical and dynamic features of the original 
time series from which they are generated. We are currently 
working on this type of analysis applied to the PTH time series. 

A PTH biosensor is needed. Because switching between 
1 

dynamic states of PTH secretion in healthy subjects seems to 
occur on a temporal scale of many hours, only extended mea- 
surements over periods of 1 d or longer could confirm our Y 

hypothesis of the nonuniformity of the PTH secretory dynamics. 
Unfortunately, the period over which PTH concentration can 
be measured frequently by blood sampling is severely limited 
by the resulting total blood loss. 

It might be feasible to extend the measurement period to 
2 d by reducing the sampling frequency from one blood sample 
every 2 min to one sample every 4 min. Longer measurement 
periods at such a high sampling frequency could only be per- 
formed by an on-line biosensor for PTH. Such a biosensor 
is not yet available although biosensors containing biological 
receptors such as the nicotinic acetylcholine receptor (34-36) 
and the L-glutamate receptor (37) have been developed. There 
is some hope of developing an on-line PTH-biosensor in the 
future because the PTH receptor has been cloned recently (38). 

A sampling interval longer than 4 min to extend the mea- 
surement period is not recommended because separation into 
groups of low and high predictability is lost, as seen in our 
results with subsampling of the 2-min time series. This provides 
further evidence that biological information that separates the 
PTH secretory dynamics of healthy from osteoporotic subjects 
is encoded in the high-frequency fluctuations of the PTH serum 
concentration. 

Time series prediction could be used for analyzing other 
dynamical diseases where methods such as computing the mean 
value for a time series or the power spectrum fail to distinguish 
normal from abnormal patterns. In particular, in such cases 
where a nonuniformity in the dynamics of a physiological at- 
tractor can be assumed, local time series prediction is a useful 
tool for characterizing different dynamic states. Our results sug- 
gest that the PTH secretory pattern in healthy subjects is an I 

example of nonuniform dynamics that exhibit at least two differ- 
ent phases of secretion, one dynamic phase of high predictability 
and one of low predictability. 
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