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Natural 

It has previously been suggested that neurons with line and edge selectivities found in primary 
visual cortex of cats and monkeys  form a sparse, distributed representation of natural scenes, and it 
has been reasoned that such responses should emerge from an unsupervised learning algorithm that 
attempts to find a factorial code of  independent visual features. We show here that a new 
unsupervised learning algorithm based on information maximization,  a nonlinear "infomax" 
network,  when applied to an ensemble of natural scenes produces sets of  visual filters that are 
localized and oriented. Some of  these filters are Gabor-like and resemble those produced by the 
sparseness-maximization network.  In addition, the outputs of  these filters are as independent as 
possible, since this infomax network performs Independent Components  Analysis or ICA, for 
sparse (super-gaussian) component  distributions. We compare the resulting ICA filters and their 
associated basis functions, with other decorrelating filters produced by Principal Components  
Analysis (PCA) and zero-phase whitening filters (ZCA). The ICA filters have more sparsely 
distributed (kurtotic) outputs on natural scenes. They also resemble the receptive fields of  simple 
cells in visual cortex, which suggests that these neurons form a natural, information-theoretic 
coordinate system for natural images. © 1997 Elsevier Science Ltd 

Information theory Independent components Neural network learning 

INTRODUCTION 

Both the classic experiments of Hubel & Wiesel (1968) 
on neurons in visual cortex, and several decades of 
theorizing about feature detection in vision (Marr & 
Hildreth, 1980), have left open the question most 
succinctly phrased by Barlow & Tolhurst (1992) "Why 
do we have edge detectors?" 

That is: are there any coding principles which would 
predict the formation of localized, oriented receptive 
fields? Barlow's answer was that edges are suspicious 
coincidences in an image. Since the mathematical 
framework for analysing such "coincidences" is Informa- 
tion Theory (Cover & Thomas, 1991), Barlow was thus 
led to propose that our visual cortical feature detectors 
might be the end result of a "redundancy reduction" 
process (Barlow, 1989; Atick, 1992), in which the 
activation of each feature detector is supposed to be as 
"statistically independent" from the others as possible. 
Such a "factorial code" potentially involves dependen- 
cies of all orders, but most studies have used only the 
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second-order statistics required for "decorrelating" the 
outputs of a set of feature detectors. 

A variety of Hebbian feature-learning algorithms for 
decorrelation have been proposed (Linsker, 1992; Miller, 
1988; Oja, 1989; Sanger, 1989; Frldi~ik, 1990; Atick & 
Redlich, 1993), but in the absence of particular external 
constraints the solutions to the decorrelation problem are 
non-unique (see: Decorrelation and Independence). One 
popular decorrelating solution is Principal Components 
Analysis (PCA) but the principal components of natural 
scenes amount to a global spatial frequency analysis 
(Hancock et al., 1992). Therefore, second-order statistics 
alone do not suffice to predict the formation of localized 
edge detectors. 

Additional constraints are required. Field (1987, 1994) 
has argued for the importance of sparse, or "minimum 
entropy", coding (Barlow, 1994), in which each feature 
detector is activated as rarely as possible. This has led to 
feature-learning algorithms (Intrator, 1992) with a 
"projection pursuit" (Huber, 1985) flavour, the most 
successful of which has been the Olshausen & Field 
(1996) demonstration of the self-organization of local, 
oriented receptive fields using a sparseness criterion. 

Here we present results similar to those of Olshausen 
and Field, using a direct information-theoretic criterion 
which maximizes the joint entropy of a nonlinearly 
transformed output feature vector. We have previously 
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FIGURE 1. The Blind Linear hnage  Synthesis model (Olshausen & Field, 1996). Each patch, x, of  an image is viewed as a linear 
combination of several (here three) underlying basis functions, given by the matrix A, each associated with an element of an 
underlying vector of  "causes",  s. In this paper, causes are viewed as statistically independent " image sources". The causes are 
recovered (in a vector u) by a matrix of  filters, W, more loosely "receptive fields", which attempt to invert the unknown mixing 

of unknown basis functions constituting image formation. 

demonstrated the ability of this nonlinear information 
maximization process (Bell & Sejnowski, 1995a) to find 
statistically independent components to solve the 
problem of separating mixed audio sources (Jutten & 
Hrrault, 1991). This "Independent Components Analy- 
sis" (ICA) problem (Comon, 1994) is equivalent to 
Barlow's redundancy reduction problem, therefore, if 
Barlow's reasoning is correct, we would expect the ICA 
solution to yield localized edge detectors. 

That it does so is the primary result of this paper. The 
secondary result is that the outputs of the resulting filters 
are indeed, more sparsely distributed than those of other 
decorrelating filters, thus supporting some of the argu- 
ments of Field (1994), and helping to explain the results 
of Olshausen's network from an information-theoretic 
point of view. 

We will return to the issues of sparseness, noise and 
higher-order statistics in the Discussion. First, we 
describe more concretely the filter-learning problem. 
An earlier account of  the application of these techniques 
to natural sounds appears in Bell & Sejnowski (1996). 

B L I N D  S E P A R A T I O N  O F  N A T U R A L  I M A G E S  

The starting point is that of Olshausen & Field (1996), 
depicted in Fig. 1. A perceptual system is exposed to a 
series of small image patches, drawn from one or more 
larger images. Imagine that each image patch, repre- 
sented by the vector x, has been formed by the linear 
combination of N basis functions. The basis functions 

form the columns of a fixed matrix, A. The weighting of 
this linear combination (which varies with each image) is 
given by a vector, s. Each component of this vector has its 
own associated basis function, and represents an under- 
lying "cause" of the image. The "linear image synthesis" 
model is therefore given by: 

x = As. ( l)  

which is the matrix version of the set of equations 
xi = ~N_ 1 aijsj, where each xi represents a pixel in an 
image, and contains contributions from each one of a set 
of N image "sources", s/, linearly weighted by a 
coefficient, aij. 

The goal of a perceptual system, in this simplified 
framework, is to linearly transform the images, x, with a 
matrix of filters, W, so that the resulting vector: 

u = W x  (2) 

recovers the underlying causes, s, possibly in a different 
order, and rescaled. Representing an arbitrary permuta- 
tion matrix (all zero except for a single "one" in each row 
and each column) by P, and an arbitrary scaling matrix 
(non-zero entries only on the diagonal) by S, such a 
system has converged when: 

u = WAs = PSs. (3) 

The scaling and permuting of the causes are arbitrary, 
unknowable factors, so we will consider the causes to be 
defined such that PS = I (the identity matrix). Then the 
basis functions (columns of A) and the filters which 
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recover the causes (rows of W) have the simple relation: 
W = A  1. 

All that remains in defining an algorithm to learn W 
(and thus also A) is to decide what constitutes a "cause". 
A number of proposals are considered in the Discussion, 
however, in the next two sections, we concentrate on 
algorithms producing causes which are decorrelated, and 
those attempting to produce causes that are statistically 
independent. 

DECORRELATION AND INDEPENDENCE 

The matrix, W, is a decorrelating matrix when the 
covariance matrix of the output vector, u, satisfies: 

(uuTI = diagonal matrix. (4) 

In general, there will be many W matrices which 
decorrelate. For example, in the case of equation (2), 
when (uu T) = I, then: 

w T w  : (xxT) 1 (5) 

which clearly leaves freedom in the choice of W. There 
are, however, several special solutions to equation (5). 

The orthogonal (global) solution [ W W  y = S] 

Principal Components Analysis (PCA) is the orthogo- 
nal solution to equation (4). The principal components 
come from the eigenvectors of the covariance matrix, 
which are the columns of a matrix, E, satisfying: 

EDE "1 : <xxT) (6) 

where D is the diagonal matrix of eigenvalues. Substitut- 
ing equation (6) into equation (5) and solving for W gives 
the PCA solution, Wp: 

Wp = D-~E T. (7) 

This solution is unusual in that the filters (rows of We) 
are orthogonal, so that w W T =  D -1, a scaling matrix. 
These filters thus have several special properties: 

1. The PCA filters define orthogonal directions in the 
vector space of the image. 

2. The PCA basis functions (columns of Ap, or rows of 
w p T - - s e e  Fig. 1) are just scaled versions of the 
PCA filters (rows of We). This latter property is true 
because W W  T = D-1 means that W -T = DW. 

3. When the image statistics are stationary (Field, 
1994), the PCA filters are global Fourier filters, 
ordered according to the amplitude spectrum of the 
image. 

Example PCA filters are shown in Fig. 3(a). 

The symmetrical (local) solution I W W  T = W 2] 

If we force W to be symmetrical, so that W T = W, then 
the solution, Wz to equation (5) is: 

Wz = (xxT) -1/2. (8) 

Like most other decorrelating filters, but unlike PCA, 
the basis functions and the filters coming from Wz will be 

W - s p a c e  

~ U E N C Y  

~ / ~  ZCA 

/ ~  J SEMI-LOCAL 

O e c o r r e l a t i n g  W ' s :  WTW = <x xT71  

FIGURE 2. A schematic depiction of weight-space. A subspace of all 
matrices W, here represented by the loop (of course it is a much higher- 
dimensional closed subspace), has the property of decorrelating the 
input vectors, x. On this manifold, several special linear transforma- 
tions can be distinguished: PCA (global in space and local in 
frequency), ZCA (local in space and global in frequency), and ICA. 
a privileged decorrelating matrix which, if it exists, decorrelates 
higher- as well as second-order moments. ICA filters are localized, but 

not down to the single pixel level, as ZCA filters are (see Fig. 3.) 

different from each other, and neither will be orthogonal. 
We might call this solution ZCA, since the filters it 
produces are zero-phase (symmetrical). ZCA is in several 
ways the polar opposite of PCA. It produces local 
(centre-surround type) whitening filters, which are 
ordered according to the phase spectrum of the image. 
That is, each filter whitens a given pixel in the image, 
preserving the spatial arrangement of the image and 
flattening its frequency (amplitude) spectrum. Wz is 
related to the transforms described by Goodall (1960) and 
Atick & Redlich (1993). 

Example ZCA filters and basis functions are shown in 
Fig. 3(b). 

The independent (semi-local) solution [fu(u) = 

Another way to constrain the solution is to attempt to 
produce outputs which are not just decorrelated, but 
statistically independent, the much stronger requirement 
of Independent Components Analysis, or ICA (Jutten & 
Hrrault, 1991; Comon, 1994). The ui are independent 
when their probability distribution, fu, factorizes as 
follows: f u  (u) = Hi fuiui, equivalently, when there is zero 
mutual information between them: I(ui,uj) = O, V i # j. A 
number of  approaches to ICA have some relations with 
the one we describe below, notably Cardoso & Laheld 
(1996), Karhunen et al. (1996), Amari et al. (1996), 
Cichocki et al. (1994) and Pham et al. (1992). We refer 
the reader to these papers, to the two above, and to Bell & 
SejnowskJ (1995a) for further background on ICA. 

As we will show, in the Results, ICA on natural images 
produces decorrelating filters which are sensitive to both 
phase (locality) and frequency information, just as in 
transforms involving oriented Gabor functions (Daug- 
man, 1985) or wavelets.* They are, thus, semi-local, 

*See the Proceedings of IEEE, 84, 4, April 199~-a special issue on 
wavelets. 
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depicted in Fig. 2 as partway along the path from the local 
(ZCA) to the global (PCA) solutions in the space of 
decorrelating solutions. 

Example ICA filters are shown in Fig. 3(d) and their 
corresponding basis functions are shown in Fig. 3(e). 

AN ICA ALGORITHM 

It is important to recognize two differences between 
finding an ICA solution, Wt, and other decorrelation 
methods: (i) there may be no ICA solution; and (ii) a 
given ICA algorithm may not find the solution even if it 
exists, since there are approximations involved. In these 
senses, ICA is different from PCA and ZCA, and cannot 
be calculated analytically, for example, from second- 
order statistics (the covariance matrix), except in the 
gaussian case (when second-order statistics completely 
characterize the signal--see section entitled: Second- and 
Higher-order Statistics). 

The approach developed in Bell & Sejnowski (1995a) 
was to maximize by stochastic gradient ascent the joint 
entropy, H[g(u)], of the linear transform squashed by a 
sigmoidal function, g. When the nonlinear function is the 
same (up to scaling and shifting) as the cumulative 
density functions (c.d.f.s) of the underlying independent 
components, it can be shown (Nadal & Parga, 1994)* that 
such a nonlinear "infomax" procedure also minimizes the 
mutual information between the ui, exactly what is 
required for ICA. 

However, in most cases we must pick a nonlinearity, g, 
without any detailed knowledge of the probability density 
functions (p.d.f.s) of the underlying independent compo- 
nents. The resulting "mismatch" between the gradient of 
the nonlinearity used, and the underlying p.d.f.s may 
cause the infomax solution to deviate from an ICA 
solution. In cases where the p.d.f.s are super-gaussian 
(meaning they are peakier and longer-tailed than a 
gaussian, having kurtosis greater than 0), we have 
repeatedly observed, using the logistic or tanh nonlinea- 
rities, that maximization of H[g(u)] still leads to ICA 
solutions, when they exist, as with our experiments on 
speech signal separation (Bell & Sejnowski, 1995a). 
Although the infomax algorithm is described here as an 
ICA algorithm, a fuller understanding needs to be 
developed of under exactly what conditions it may fail 
to converge to an ICA solution. 

The basic infomax algorithm changes weights accord- 
ing to the entropy gradient. Defining Yi = g(ui) tO be the 
sigmoidally transformed output variables, the learning 
rule is then: 

A W  (x O H ( y ) _  E[OlnlJI] 
0 w  Low-J (9) 

In this, E denotes expected value, y = [g(u~)...g(UN)] T, 

*In a previous conference paper (Bell & Sejnowski, 1995b), we also 
published a proof of this result, which ought to have referenced the 
equivalent proof by Nadal & Parga. 

and IJI is the absolute value of the determinant of the 
Jacobian matrix: 

J = d e t [  Oyi] (10) 
LOxjJ 

In stochastic gradient ascent we remove the expected 
value operator in equation (9), and then evaluate the 
gradient to give (Bell & Sejnowski, 1996): 

m w  0<i [W T] I _~_yx T (l  l )  

^ ~ T where $ = [Yl-..YN] , the elements of which depend on 
the nonlinearity as follows: 

0 0 y i  0 Oyi 
?}i -- OyiOui ouilnc~ui " (12) 

Amari et al. (1996) have proposed a modification of 
this rule, which utilizes the natural gradient rather than 
the absolute gradient of H(y). The natural gradient exists 
for objective functions which are functions of matrices, 
as in this case, and is the same as the relative gradient 
concept developed by Cardoso & Laheld (1996). It 
amounts to multiplying the absolute gradient by WVW, 
giving, in our case, the following altered version of 
equation (11): 

0H(y) WT w = (I + :~uT)W (13) 

This rule has the twin advantages over equation (11) of 
avoiding the matrix inverse, and of converging several 
orders of magnitude more quickly, for data, x, that are not 
prewhitened. The speed-up is explained by the fact that 
convergence is no longer dependent on the conditioning 
of the underlying basis function matrix, A, of equation 
(1). This is the equivariant property explained by Cardoso 
& Laheld (1996). 

Writing equation (13) in terms of individual weights, 
we have: 

Aw~] o( wij ~- Yi ~ Wl~]Uk. (14) 
k 

The weighted sum non-local term in this rule can be 
seen as the result of a simple backwards pass through the 
weights from the linear output vector, u, to the inputs, x, 
so that each weight "knows the influence" of its input, xj. 

It is also possible to write the rule in recurrent terms. 
As in the well known Jutten & H6rault (1991) network, or 
that of F61diAk (1990), we may use a feedback matrix, V, 
giving a network: u = x - Vu. Solving this gives u = (I + 
V)-~x, showing that V is just a coordinate transform of 
the W of equation (2). The learning rule for V is, 
therefore, a coordinate transform of the rule for W. This 
is calculated as follows. Since the relationship between 
W a n d V i s W = ( I + V )  - ~ , w e m a y w r i t e v = W  1 _ i .  
Differentiating, and using the quotient rule for matrices 
gives: 

/xv = /x (w = -w- (Aw)w 1 (15) 

Inserting equation (13) and rearranging gives the 
learning rule for a feedback weight matrix: 
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AV cx (I + V)(I  + guT). (16) 

In terms of an individual feedback weight, vii, this rule 
is: 

~Vij (X ~iJ -~- Vij -{- UJ( ~i + Z Vik~k (17) 

where g0 = 1 when i = j,  0 otherwise. Thus, the feedback 
rule is also non-local, this time involving a backwards 
pass through the (recurrent) weights, of quantities, yk, 
calculated from the nonlinear output vector, y. Such a 
recurrent ICA system has been further developed for 
recovering sources which have been linearly convolved 
with temporal filters by Torkkola (1996) and Lee et  al. 
(1997). 

The non-locality of the algorithm is interesting when 
we come to consider the biological significance of the 
learned filters later in this paper. 
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METHODS 

We took four natural scenes involving trees, leaves and 
so on* and converted them to greyscale byte values 
between 0 and 255. A training set, {x}, was then 
generated of 17 595, 12 × 12 samples from the images. 
The training set was "sphered" by subtracting the mean 
and multiplying by twice the local symmetrical (zero- 
phase) whitening filter of equation (8): 

x +--- 2Wz({X} - (x)) (18) 

This removes both first- and second-order statistics 
from the data, and makes the covariance matrix o f x  equal 
to 4I. This is an appropriately scaled starting point for 
further training since infomax [equation (13)] on raw 
data, with the logistic function, Yi = (1 + e x p ( - u i )  -1,  
produces a u-vector which approximately satisfies 
(uu T) = 4I. Therefore, by prewhitening x in this way, 
we can ensure that the subsequent transformation, 
u = Wx, to be learnt should approximate an orthonormal 
matrix (rotation without scaling), roughly satisfying the 
relation w T w  = I (Karhunen et  al. ,  1996). This W moves 
the solution along the decorrelating manifold from ZCA 
to ICA (see Fig. 2). 

The matrix, W, is then initialized to the identity matrix, 
and trained using the logistic function version of equation 
(13), in which equation (12) evaluates as: yi = 1 - 2yi. 
The training was conducted as follows: 30 sweeps 
through the data were performed, at the end of each of 
which the order of the data vectors was permuted to avoid 
cyclical behaviour in the learning. During each sweep, 
the weights were updated only after every 50 presenta- 
tions in order that the vectorized MATLAB code could be 
more efficient. The learning rate [proportionality constant 
in equation (13)] was set as follows: 21 sweeps at 0.001, 
and three sweeps at each of 0.0005, 0.0002 and 0.0001. 
This process took 2 hours running MATLAB on a Sparc- 
20 machine, though a reasonable result for 12 × 12 filters 
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*The images (gif files) used are available in the Web directory ftp:// 
ftp.cnl.salk.edu/pub/tony/VRimages. 
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FIGURE 3. Selected decorrelating filters and their basis functions 
extracted from the natural scene data. Each type of decorrelating filter 
yielded 144 12 × 12 filters, of  which we only display a subset here. 
Each column contains filters or basis functions of  a particular type, and 
each of  the rows has a number relating to which row of the filter or 
basis function matrix is displayed. (a) PCA (Wp): The first, fifth, 
seventh etc principal components, calculated from equation (7), 
showing increasing spatial frequency. There is no need to show basis 
functions and filters separately here since for PCA, they are the same 
thing. (b) ZCA (Wz): The first six entries in this column show the 1- 
pixel wide centre-surround filter which whitens while preserving the 
phase spectrum. All are identical, but shifted. The lower six entries (37, 
60... 144) show the basis functions instead, which are the columns of  
the inverse of  the Wz matrix. (c) W: the weights learnt by the ICA 
network trained on Wz-whitened data, showing (in descending order) 
the DC filter, localized oriented filters, and localized checkerboard 
filters. (d) W1: The corresponding ICA filters, calculated according to 
Wz = WWz,  looking like whitened versions of the W-filters. (e) A: the 
corresponding basis functions, or columns of  W l  1. These are the 
patterns which optimally stimulate their corresponding ICA filters, 

while not stimulating any other ICA filter, so that WzA = I. 

can be achieved in 30 min. To verify that the result was 
not affected by the starting condition of W = I, the 
training was repeated with several randomly initialized 
weight matrices, and also on data that were not 
prewhitened. The results were qualitatively similar, 
though convergence was much slower. 
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FIGURE 4. The matrix of  144 filters obtained by training on ZCA-whitened natural images. Each filter is a row of  the matrix W. 
The ICA basis functions on ZCA-whitened data are visually the same as the ICA filters. 

The full ICA transform from the raw image was 
calculated as the product of the sphering (ZCA) matrix 
and the learnt matrix: W, = WWz.  The basis function 
matrix, A, was calculated as W~ ~. A PCA matrix, Wp, 
was calculated from equation (7). The original (un- 
sphered) data were then transformed by all three 
decorrelating transforms, and for each the kurtosis of 
each of the 144 filters was calculated, according to the 
formula: 

K i - -  { ( l ' ~ i -  {bti))4) 3 ( 1 9 )  

Then the mean kurtosis for each filter type (ICA, PCA, 
ZCA) was calculated, averaging over all filters and input 
data. This quantity is used to quantify the sparseness of 
the filters, as will be explained in the Discussion. 

RESULTS 

The filters and basis functions resulting from training 
on natural scenes are displayed in Figs 3 and 4. Figure 3 

displays example filters and basis functions of each type. 
The PCA filters, Fig. 3(a), are spatially global and 
ordered in frequency. The ZCA filters and basis functions 
are spatially local and ordered in phase. The ICA filters, 
whether trained on the ZCA-whitened images, Fig. 3(c), 
or the original images, Fig. 3(d), are semi-local filters, 
most with a specific orientation preference. The basis 
functions, Fig. 3(e), calculated from the Fig. 3(d) ICA 
filters, are not local, and look like the edges that might 
occur in image patches of this size. Basis functions in the 
column Fig. 3(d) (as with PCA filters) are the same as the 
corresponding filters, since the matrix W (as with Wp) is 
orthogonal. This is the ICA-matrix for ZCA-whitened 
images. 

In order to show the full variety of ICA filters, Fig. 4 
shows, with lower resolution, all 144 filters in the matrix 
W. The general result is that ICA filters are localized and 
mostly oriented. Unlike the basis functions displayed in 
Olshausen & Field (1996), they do not cover a broad 
range of spatial frequencies. However, the appropriate 
comparison to make is between the ICA basis functions, 
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Filter output,  u i 

FIGURE 5. Log distributions of univariate statistics of the outputs of ICA, ZCA and PCA filters, averaged over all filters of each 
type. All three are approximately double-exponential distributions, but the more kurtotic ICA distribution is slightly peakier and 
has a longer tail, showing that it is sparser than the others. This distribution (and the 2-D ones in Fig. 6), although averaged over 
the outputs of all filters, are extremely similar to the distributions output by individual filters (respectively, pairs of filters)• The 

only exception is the DC-filter (top left in Fig. 4) which has a more gaussian distribution. 

I f u i ~ ( U i ,  U j )  fui(U i) L:U" I 

(a)  ~ (b)  

• • _ o _ .  

(c )  . . . .  (d)  

t ' , 6 

(e)  ( f )  

FIGURE 6. Contour plots of log distributions of pairwise statistics of the outputs of ICA, ZCA and PCA filters. Left column: 
joint log distributions averaged over all pairs of output filters of each type, and all images• Right column: product of marginal 
(univariate) distributions. The ICA solution best satisfies the independence criterion that the joint distribution has the same form 

as the product of the marginal distributions. 

*The definition of "localized" causes some ambiguity here. While our 
ICA basis functions contain non-zero values all over the domain of 
the filter, their "contrast energy" occurs along one oriented local 
patch. PCA filters, on the other hand, are "more non-local" since 
neither of these conditions are satisfied• 

a n d  t he  b a s i s  f u n c t i o n s  in  O l s h a u s e n  a n d  F i e l d ' s  Fig .  4. 

T h e  I C A  b a s i s  f u n c t i o n s  in  F ig .  3 (e )  a re  o r i e n t e d ,  b u t  n o t  

l o c a l i z e d  a n d  t h e r e f o r e  i t  is  d i f f i cu l t  to  o b s e r v e  a n y  

m u l t i s c a l e  p r o p e r t i e s . *  H o w e v e r ,  w h e n  w e  r a n  t he  I C A  

a l g o r i t h m  o n  O l s h a u s e n ' s  i m a g e s ,  w h i c h  w e r e  p r e p r o -  
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cessed with a whitening/lowpass filter, our algorithm 
yielded basis functions which were localized multiscale 
Gabor patches qualitively similar to those in Olshausen's 
Fig. 4. Part of the difference in our results is therefore 
attributable to different preprocessing techniques. Further 
discussion and comparison of these two approaches is 
deferred to the section entitled: Sparseness. 

Figure 5 shows the result of analysing the distributions 
(image histograms) produced by each of the three filter 
types. As emphasized by Ruderman (1994) and Field 
(1994), the general form of these histograms is double- 
exponential (exp-]ui[), or "sparse", meaning peaky with 
a long tail, when compared with a gaussian. This shows 
up clearly in Fig. 5, where the log histograms are seen to 
be roughly linear across 12 orders of magnitude. The 
histogram for the ICA filters, however, departs from 
linearity, having a longer tail than the ZCA and PCA 
histograms. This spreading of the tail signals the greater 
sparseness of the outputs of the ICA filters, and this is 
reflected in the kurtosis measure of 10.04 for ICA, 
compared with 3.74 for PCA, and 4.5 for ZCA. 

Univariate statistics can only capture part of the story, 
so in Fig. 6(a, c, e) are displayed, in contour plots, the 
average of the bivariate log histograms given by all pairs 
of filters, for ICA, ZCA and PCA, respectively. In 
contrast with these joint probability distributions, Fig. 
6(b, d, f) shows the corresponding distribution if the 
outputs of the filters were independent (i.e., the outer 
product of the marginal (univariate) distributions in Fig. 
5). Only the ICA joint histogram captures well the 
"diamond"-shape characteristic of the product of the 
sparse univariate distributions, thus satisfying, to a 
greater extent, the independence criterion: 

fUlU2 (Ul,U2)=ful (b/1)fu2 (U2). 

In summary, these simulations show that the filters 
found by the ICA algorithm of equation (13) with a 
logistic nonlinearity are localized, oriented, and produce 
outputs distributions of very high kurtosis. The signifi- 
cance of these results is now addressed. 

DISCUSSION 

A substantial literature exists on the self-organization 
of visual receptive fields. Many contributions have 
emphasized the roles of decorrelation and PCA (Oja, 
1989; Sanger, 1989; Miller, 1988; Hancock et al., 1992; 
F61difik, 1990). Often this has been accompanied by 
information theoretic arguments. The first work along 
these lines was by Linsker (1988), who first proposed the 
"infomax" principle which underlies our own work. 
Linsker's approach, and that of Atick & Redlich (1990), 
Bialek et al. (1991) and van Hateren (1992) uses the 
second-order (covariance matrix) approximation of the 
required information theoretic quantities, and generally 
assumes ganssian signal and gaussian noise, in which 
case the second-order information is complete. The 
explicit noise model and the restriction to second-order 
statistics mark the two differences between these 
approaches and our approach to infomax. 

Noise 

The assumption of a noise model has been generally 
thought to be a necessary ingredient. In the case where 
the decorrelating filters are of the local ZCA type (see 
section entitled: Decorrelation and Independence), the 
noise model is required (Atick & Redlich, 1990) to avoid 
centre-surround receptive fields with peaks a single pixel 
wide, as in Fig. 3(b) (see also Atick & Redlich, 1993). In 
the case of the PCA-style global filters, noise is 
automatically associated with the filters with high spatial 
frequency selectivity whose eigenvectors have small 
eigenvalues. 

In both cases, it is questionable whether such 
assumptions about noise are useful. In the case of PCA, 
there is no a priori reason to associate signal with low 
spatial frequency, and noise with high spatial frequency, 
or indeed, to associate signal with high amplitude 
components and noise with low amplitude. On the 
contrary, sharp edges, presumably of high interest, 
contain many high-frequency, low-amplitude compo- 
nents. In the case of local ZCA-type filters, some form of 
spatial integration is assumed necessary to average out 
photon shot noise. Yet we know photoreceptors and the 
brains associated with them can operate in the single 
photon detection regime. Therefore, shot noise is, in at 
least some cases, not considered by neural systems to be 
something noisy to be ignored, and such systems appear 
to operate at the limit of the spatial acuity allowed by 
their lattices of receptors. 

This raises another point: high frequency "aliasing" 
noise due to the image-sampling grid. With a frequency- 
based noise model, it might be thought that a high 
frequency cut-off should be applied to remove this. 
However, even these signal components have local phase 
structure, and therefore the correct "independent" filters 
with which to represent them are localized high- 
frequency filters, such as those seen at the bottom of 
Fig. 4. With their phase locality, these filters could extract 
information about the exact location of, for example, 
sharp edges. The point here is that if local inhomogene- 
ities in so-called aliasing-noise carry information of 
potential relevance, there is no reason to call this noise, 
and no reason to remove it with global (non-phase- 
sensitive) low-pass filtering, as is usually done. 

In a general information theoretic framework, there is 
nothing to distinguish signal and noise a priori, and we 
therefore question the use of the concept of noise in these 
models. Of course there are signals of lesser or greater 
relevance to an organism, but there is no signature in their 
spatial or temporal structure that distinguishes them as 
important or not. It is more likely that signal and noise are 
subjective concepts to do with the prior expectations of 
the organism (or neural subsystem). In the case of the 
simple linear mappings we are considering, there is no 
internal state (other than the filters themselves) to store 
such prior expectations, and therefore we consider 
"noiseless infomax" to be the appropriate framework 
for making the first level of predictions based on 
information-theoretic reasoning. 
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Second- and higher-order statistics 
The second difference in earlier infomax models, the 

restriction to second-order statistics, has been questioned 
by Field (1987); Field (1994) and Olshausen & Field 
(1996). This has coincided with a general rise in 
awareness that simple Hebbian-style algorithms without 
special constraints are unable to produce local oriented 
receptive fields like those found in area V1 of visual 
cortex, but rather produce solutions of the PCA or ZCA 
type, depending on the constraint placed on the 
decorrelating filter matrix, W. 

The technical reason for this failure is that second- 
order statistics correspond to the amplitude spectrum of a 
signal (because the Fourier transform of the autocorrela- 
tion function of an image is its power spectrum, the 
square of the amplitude spectrum). The remaining 
information, higher-order statistics, corresponds to the 
phase spectrum. The phase spectrum is what we consider 
to be the informative part of a signal, since if we remove 
phase information from an image, it looks like noise, 
while if we remove amplitude information (for example, 
with zero-phase whitening, using a ZCA transform), the 
image is still recognizable. Edges and what we consider 
"features" in images are "suspicious coincidences" in the 
phase spectrum: Fourier analysis of an edge consists of 
many sine waves of different frequencies, all aligned in 
phase where the edge occurred. 

As in our conclusions about "noise", we feel that a 
more general information theoretic approach is required. 
This time, we mean an approach taking account of 
statistics of all orders. Such an approach is sensitive to the 
phase spectra of the images, and thus to their character- 
istic local structure. These conclusions are borne out by 
the results we report, which demonstrate the emergence 
of local oriented receptive fields, which second-order 
statistics alone fail to predict. 

Sparseness 
Several other approaches have arisen to deal with the 

unsatisfactory results of simple Hebbian and anti- 
Hebbian schemes. Field (1987); Field (1994) empha- 
sized, using some of Barlow (1989) arguments, that the 
goal of an image transformation should be to convert 
"higher-order redundancy" into "first-order redundancy". 
In formal terms, if the output of two filters is Ul and u2, 
we may write their joint entropy as the sum of their 
individual entropies, minus the mutual information 
between them: 

H(ul, u2) : H(ul) + H(u2) - I(u), u2). (20) 

What is meant by higher order redundancy here is the 
I(ul,u2) term. The creation of "Minimum Entropy codes" 
is the shifting of redundancy from the I(ul ,u2) term to the 
H(uO and H(u2) terms. Assuming the H(Ul,U2) term to be 
constant, this minimization of I(ul,u2) creates minimum 
entropy in the marginal distributions. A low entropy for 
H(uO, for example, can mean that the distribution, 
fu f fu0 ,  is sparse (low number of non-zero values), and 
this quality is identified in Field (1994), with the fourth 

moment of the distribution, the kurtosis. Very sparse 
distributions are peaky with long tails, and have positive 
kurtosis. They are often referred to as "super-gaussian". 

Field's arguments led Olshausen & Field (1996), in 
work that motivated our approach, to attempt to learn 
receptive fields by maximizing sparseness. In terms of 
our Fig. 1, they attempted to find receptive fields (which 
they identified with basis functions--the columns of our 
A matrix) which have underlying causes, u (or s), which 
are as sparsely distributed as possible. The sparseness 
constraint is imposed by a nonlinear function that pushes 
the activity of the components of u towards zero. This 
search for minimum entropy sparse codes does not 
guarantee the attainment of a factorial code (any more 
than our infomax net does), but the increase in 
redundancy of the ui-distributions, while maintaining a 
full basis set, will, in general, remove mutual information 
from between the elements of u. 

Thus, the similarity of the results produced by 
Olshausen's network and ours may be explained by the 
fact that both produce what are perhaps the sparsest 
possible ui-distributions, though by different means. In 
emphasizing sparseness directly, rather than an informa- 
tion theoretic criterion, Olshausen and Field do not force 
their "causes" to have low mutual information, or even to 
be decorrelated. Thus, their basis function matrices, 
unlike ours, are singular, and non-invertible, making it 
difficult for them to say what the filters are that 
correspond to their basis functions. This is not a flaw, 
however. Presently, there is no reason why decorrelation 
or a full-rank filter matrix should be absolutely necessary 
properties of a neural coding system. 

Our results, on the other hand, emphasize indepen- 
dence over sparseness. Examining Figs 5 and 6, we see 
that our filter outputs are also very sparse. This is because 
infomax with a sigmoid nonlinearity can be viewed as an 
ICA algorithm with an assumption that the independent 
components have super-gaussian pdfs. This point is 
brought out more fully in a recent report (Olshausen, 
1996). It is worth mentioning that an ICA algorithm 
without this assumption will find a few sub-gaussian (low 
kurtosis) independent components, though most will be 
super-gaussian. This is a limitation of our current 
approach. 

In summary, despite the similarities between our (BS) 
results and those of Olshausen and Field (OF), the 
following differences are worth noting. 

1. Unlike BS, the OF network may find an over- 
complete representation (their basis vectors need not 
be linearly independent). 

2. Unlike BS, the OF network may ignore some low- 
variance direction in the data. 

3. Unlike BS, the OF basis function matrix is not 
generally invertible to find the filter-matrix. 

4. Unlike OF, the BS network attempts to achieve a 
factorial (statistically independent) feature repre- 
sentation. 

Another exploration of a kurtosis-seeking network has 
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been performed by Fyfe & Baddeley (1995), with slightly 
negative conclusions. In a further study, Baddeley (1996) 
argued against kurtosis-maximization, partly on the 
grounds that it would produce filters which are two 
pixels wide. This is, to some extent, vindicated by our 
results in Fig. 4, where the filters achieving the highest 
kurtosis in Fig. 5 are seen to be dominated by very thin 
edge detectors. However, whether such a result is 
"unphysiological" is debatable (see section entitled: 
Biological significance). 

Projection pursuit and other approaches 

Sparseness, as captured by the kurtosis, is one 
projection index often mentioned in projection pursuit 
methods (Huber, 1985), which look in multivariate data 
for directions with "interesting" distributions. Intrator 
(1992) has pioneered the application of projection pursuit 
reasoning to feature extraction problems. He used an 
index emphasizing multimodal projections, and con- 
nected it with the BCM (Bienenstock et al., 1982) 
learning rule. Following up from this, Law & Cooper 
(1994) and Shouval (1995) used the BCM rule to self- 
organize oriented and somewhat localized receptive 
fields on an ensemble of natural images. 

The BCM rule is a nonlinear Hebbian/anti-Hebbian 
mechanism. The nonlinearity undoubtedly contributes 
higher-order statistical information, but it is less clear, 
than in Olshausen's network or our own, how the 
nonlinearity contributes to the solution. 

Another principle, predictability minimization, has 
also been brought to bear on the problem by Schmidhuber 
et al. (1996). This approach attempts to ensure indepen- 
dence of one output from the others by moving its 
receptive field away from what is predictable (using a 
nonlinear "lateral" network) from the outputs of the 
others. Finally, Harpur & Prager (1996) have formalized 
an inhibitory feedback network which also learns non- 
orthogonal oriented receptive fields. 

Biological significance 

The simplest properties of classical V1 simple cell 
receptive fields (Hubel & Wiesel, 1968), that they are 
local and oriented, are properties of the filters in Fig. 4, 
while failing to emerge (without external constraints) in 
many previous self-organizing network models (Linsker, 
1988; Miller, 1988; Atick & Redlich, 1993). However, 
the transformation from retina to V1, from analog 
photoreceptor signals to spike-coding pyramidal cells, 
is clearly much more complex than the matrix, WI, with 
which we have been working. 

Nonetheless, recent evidence has been found for a 
feedforward origin to the oriented properties of simple 
cells in the cat (Ferster et al., 1996). Also the ZCA filters 
approximate the static response properties of ganglion 
cells in the retina and relay cells in the lateral geniculate 
nucleus, which, to a first approximation, prewhiten inputs 
reaching the cortex. 

If  we were to accept W1 as a primitive model of the 
retinocortical transformation, then several objections 

arise. One might object to the representation learned by 
the algorithm: the filters in Fig. 4 are predominantly of 
high spatial frequency, unlike the several-octave spread 
seen in cortex (Hubel & Wiesel, 1974). The reason there 
are so many high spatial frequency filters is because they 
are smaller, therefore, more are required to "tile" the 
12 × 12 pixel array of the filter. However, the active 
control of eye movements and the topographic nature of 
V1 spatial maps means that visual cortex samples images 
in a very different way from our random, spatially 
unordered sampling of 12 × 12 pixel patches. Changing 
our model to make it more realistic in these two respects 
could produce different results. 

One might also judge the algorithm itself to be 
biologically implausible. The learning rule in equation 
(13) is non-local. The non-locality is less severe than the 
original algorithm of Bell & Sejnowski (1995a), which 
involved a matrix inverse. However, in both its feedfor- 
ward [equation (14)] and feedback [equation (17)] 
versions, it involves a feedback of information from, or 
within, the output layer. One might try to imagine a 
mechanism capable of performing such a feedback. 
However, since it is difficult to identify the parameters of 
our static matrix, WI, with "true" biophysical parameters, 
we prefer to imagine that potentially real biophysical 
self-organizational processes (see, for example, Bell 
(1992)) occur in local spatial media where the feedfor- 
ward and the feedback of information are tightly 
functionally coupled, and where some microscopic and 
dynamic analogue of equation (13) may operate. 

One thing that is notable about our learning rule is its 
deviation from the simple Hebbian/anti-Hebbian correla- 
tional way of thinking about unsupervised learning. 
There is a correlational component in equation (14), but it 
is between a nonlinearly transformed output, and a term 
which is a weighted feedback from the linear outputs. In 
the experimental search for biophysical learning mechan- 
isms, perhaps too much focus has been given to simple 
correlational Hebbian rules. 

Regardless of whether any biological system imple- 
ments an unsupervised learning rule like ICA, the results 
allow us to interpret the response properties of simple 
cells in visual cortex as a form of redundancy reduction, 
as Barlow conjectured. 

Conclusion 

We have presented an analysis of the problem of 
learning a single layer of linear filters based on an 
ensemble of natural images. The localized edge detectors 
produced are the first such to result from an information 
theoretic learning rule, and their phase-sensitivity is a 
result of the sensitivity of our rule to higher-order 
statistics. 

Edges are the first level of invariance in images, being 
detectable by linear filters alone. Further levels of 
invariance (shifting, rotating, scaling, lighting) clearly 
exist with natural objects in natural settings. These 
further levels may be extractable using similar informa- 
tion theoretic techniques, but ac method for learning 
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nonlinear co-ordinate systems and non-planar image 
manifolds must found. If this can be done, it will greatly 
increase both the computational and the empirical 
predictive power of abstract unsupervised learning 
techniques. 
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