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metric representation and tedious parameter estimation, the 
BPNN probabilistic modeling gives a more relaxed and more 
reliable solution, as evidenced by successful application to tex- 
tured image modeling and segmentation of both artificial and 
real-world textures. 

It can be argued that the proposed BPNN modeling ap- 
proach requires more parameters (interconnection weights of 
the BPNN) than the number of clique parameters used in a 
conventional M R F  modeling. Even though this challenge is 
valid, there is no way to increase the number of clique parame- 
ters for a better performance without increasing the order of 
the neighborhood system under the very restricted MRF for- 
mulation. More importantly, when the order of the neighbor- 
hood system increases in an M R F  model, the number of clique 
parameters increases exponentially, and the parameter esti- 
mation performance degrades rapidly. Conversely, the BPNN 
probabilistic modeling increases its number of interconnection 
weights linearly (i.e., the input dimension increases), with slight 
performance degradation observed from our experience. 

In spite of its seemingly superior performance based on a 
limited set of simulations, the proposed BPNN texture model- 
ing can possibly suffer performance degradation in the pres- 
ence of texture rotation, texture scaling, and also larger num- 
ber of gray levels. All these difficulties are yet to be overcome 
before the BPNN texture modeling can be of practical use. 
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Thalamocortical Oscillations in Sleep and Wakefulness 
Terrence J .  Sejnowski, David A.  McCormick, and Mircea Steriade 

Introduction 

The brain spontaneously generates complex patterns of neural 
activity. As the brain enters slow-wave (quiescent) sleep, the 
rapid patterns characteristic of the aroused state are replaced 
by low-frequency, synchronized rhythms of neuronal activity. 
At the same time, electroencephalographic (EEG) recordings 
shift from low-amplitude, high-frequency rhythms to large- 
amplitude, slow oscillations. In what follows, we concentrate 
primarily on this slow-wave sleep, rather than rapid eye move- 
ment (REM) sleep, whose oscillatory properties resemble those 
of wakefulness. Thus, "sleep" without further qualification will 
mean "quiescent sleep." 

The dramatic reduction in forebrain responsiveness during 
sleep, the pervasiveness of these changes, and the discovery 
of the underlying specific cellular mechanisms suggest that 
sleep oscillations are highly orchestrated and highly regulated. 
Experimental and modeling studies have shown how sleep 
rhythms emerge from an interaction between the intrinsic 
properties of these neurons and the networks through which , 
they interact. 

The thalamus and cerebral cortex are intimately linked by 
means of reciprocal projections. The thalamus is the major 
gateway for the flow of information toward the cerebral cortex 
and is the first station at  which incoming signals can be blocked 
by synaptic inhibition during sleep. This mechanism contrib- 
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Utes to the shift that the brain undergoes as it changes from a n  
aroused state, open to signals from the outside world, to the 
closed state of sleep. The early stage of quiescent sleep is asso- 
ciated with EEG spindle waves, which occur at  a frequency 
of 7-14 Hz; as sleep deepens, waves with slower frequencies 
(0.1-4 Hz) appear on the EEG recording. This review of these 
thalamocortical oscillations is adapted from Steriade, McCor- 
mick, and Sejnowski (1993). 

Delta Oscillations 

Delta waves (1-4 Hz) were initially shown to arise between 
cortical layers 2-3 and 5 (Steriade, Jones, and Llinas, 1990). 
Intracellular recordings in vivo and in vitro indicate that the 
thalamus is also involved in the generation of this rhythm 
(Figure 1 A, 1B). A delta-frequency rhythm can be generated 

A Thalarnocortical cell, in vivo 

burst I- 
Ca2+ spike k 

% / 0.1 s pacemaker potential 

B Thalarnocortical cell, in vitro 

Figure 1. Intrinsic cellular mechanisms of thalamic delta oscillation. A, 
Voltage-dependency of delta oscillation. Intracellular recording in vivo 
of the lateroposterior thalamocortical neuron after decortication of 
areas projecting to that nucleus in an anesthetized cat is shown. The 
cell oscillated spontaneously at 1.7 Hz. A 0.5-nA depolarizing current 
pulse (between arrows), bringing the membrane potential to -63 mV, 
prevented the oscillation, and its removal set the cell back into the 
oscillatory mode. Three cycles marked by the horizontal bar in the 
upper trace are expanded below. B, Spontaneous rhythmic burst firing 
in a cat lateral geniculate relay cell recorded in vitro before and after 
block of voltage-dependent Na+ conductances with application of the 
Na+ channel blocker tetrodotoxin. C,  Computational model of rhyth- 
mic generation of I, as a consequence of interplay between I, and the 
pacemaker current I,. As the membrane becomes depolarized by I, 

in single cells by the interplay of two intrinsic currents of 
thalamocortical neurons: the hyperpolarization-activated cat- 
ion current (I,,) and the transient low-threshold Ca2+ current 
(I,). A wide variety of other ionic currents (see ION CHANNELS: 
KEYS TO NEURONAL SPECIALIZATION for a general view of such 
channels), with different voltage dependencies and kinetics of 
activation and inactivation, contribute to the shaping of the 
amplitude and time course of each burst of action potentials, 
as revealed through biological experiments and computational 
modeling (Figure I )  (McCormick and Huguenard, 1992; 
Lytton and Sejnowski, 1992). 

The hyperpolarization of thalamocortical cells is a critical 
factor for the interplay between I, and I, that generates delta 
oscillation. At the normal resting level in vivo, I, is inactivated, 
but a hyperpolarization of 10 mV can lead to spontaneous, 
self-sustained delta oscillation (Figure 1 A). The dependence of 

c Computer model 
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from hyperpolarized levels, the threshold for I, is reached, leading to a 
CaZ+ spike. D, Diagram of activation and inactivation for the primary 
ionic currents in thalamocortical cells. Each arc represents the time 
constant for activation or inactivation of a voltage-dependent current. 
Most currents begin to activate (or inactivate) on the left side of the arc 
and are fully activated (or inactivated) on the right side. One exception 
is the cation current I,,, which activates with hyperpolarization and 
does not inactivate. Different combinations of currents are active at 
different membrane potentials. The voltage-dependent Naf current, 
I,.,,, and the delayed rectifier K +  current, I,, are responsible for the 
fast action potentials; v,,, is the resting potential. (Reprinted with 
permission from Steriade, M., McCormick, D. A,, and Sejnowski, T. 
J., 1993, Thalamocortical oscillations in the sleeping and aroused brain, 
Science, 262:679-685; 0 AAAS.) 
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A 
Isolated reticular nucleus 

Thalamocortical neurons 

Isolated forebrain , 

D Computer model 

Thalamocortical 

delta oscillation on membrane hyperpolarization can also be 
demonstrated in simulations of thalamic neurons based on 
Hodgkin-Huxley-like kinetic models (see SYNAPTIC CURRENTS, 
NEUROMODULATION, AND KINETIC MODELS) of the ionic cur- 
rents (Figure 1 C). 

Corticothalamic volleys potentiate and synchronize the delta 
oscillations of simultaneously recorded thalamic cells. In simu- 
lations of thalamocortical cells oscillating in the bursting mode 
at delta frequency, depolarizing cortical inputs are easily able 
to reset the cell to a new phase of its rhythm. Thalamic syn- 
chronization can also be induced by stimulating cortical foci 
that are not directly connected to the thalamic nuclei where 
the recordings are performed; this recruitment of thalamic cells 
may be achieved through the reticular thalamic nucleus, which 
receives collaterals of layer 6 corticothalamic cells and thalamic 
neurons that project to the cortex. The reticular cells are exclu- 
sively inhibitory and project back to the thalamus, but not to 
the cerebral cortex, and also innervate other cells of the reticu- 

Reticular 

Figure 2. Sleep spindles. A ,  left: Field 
potentials recorded in vivo through a 
microelectrode inserted in the deafer- 
ented reticular thalamic nucleus of a 
cat. The arrow indicates one spindle 
sequence. A, right: Spindles recorded 
in vivo in the intralaminar centrolat- 
era1 thalamic nucleus of a cat in an 
isolated forebrain preparation. Two 
spindle sequences are shown (the sec- 
ond marked by an arrow), and be- 
tween them are lower-frequency (delta) 
waves. B, Schematic diagram of neu- 
ronal connections involved in spin- 
dling. C, Intracellular recordings of 
one spindle sequence in three neuronal 
types (cortical, reticular thalamic, and 
thalamocortical) of cats in vivo. D, 
Computer model of 8- 10-Hz spindling 
in a pair of interconnected thalamo- 
cortical and reticular neurons. A burst 
of spikes in the thalamocortical cell ex- 
cites the reticular thalamic cell, which 
in turn hyperpolarizes and produces a 
rebound burst in the thalamocortical 
neuron (as in vivo; compare with part 
C). (Reprinted with permission from 
Steriade, M., McCormick, D. A., and 
Sejnowski, T. J., 1993, Thalamocorti- 
cal oscillations in the sleeping and 
aroused brain, Science, 262:679-685; 
0 AAAS.) 

lar thalamic nucleus (Figure 2B). The reticular nucleus is 
uniquely positioned to influence the flow of information be- 
tween the thalamus and the cerebral cortex (see THALAMUS). 

Spindle Waves 

Spindle oscillations consist of 7-14-Hz waxing and waning 
field potentials, grouped in sequences that last for 1-3 s and 
recur once every 3-10 s (see Figure 2A). The EEG spindles are 
the epitome of brain electrical synchronization at  sleep onset, 
an electrographic landmark for the transition from waking to 
sleep that is associated with loss of perceptual awareness. ~ h e s e  
oscillations are eenerated in the thalamus as the result of u 

synaptic interactions and intrinsic membrane properties of in- 
hibitory neurons of the reticular thalamic nucleus and excita- 
tory thalamocortical cells, and their interaction with cortical 
pyramidal neurons (see Figure 2B). 
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In intracellular recordings of reticular and thalamocortical 
cells as well as from computational modeling, these two neu- 
ronal classes behave inversely during spindles (Figure 2C). In 
reticular cells, rhythmic (7- 14 Hz) bursts are generated by low- 
threshold Caz+ spikes and are superimposed on a slowly rising 
and decaying depolarizing envelope. The bursts of reticular 
cells inhibit large numbers of thalamocortical cells through 
their divergent GABAergic axons, leading to the appearance of 
rhythmic (7-14 Hz) inhibitory postsynaptic potentials (IPSPs) 
in thalamocortical neurons (Figure 2C). Some of these IPSPs 
result in enough removal of inactivation of the low-threshold 
CaZ+ current to be followed by a rebound Ca2+ spike and an 
associated burst of action potentials (Figure 2C). These peri- 
odic bursts in thalamocortical cells converge onto reticular 
neurons and facilitate their rhythmic oscillation. 

A simple model consisting of a thalamocortical cell recipro- 
cally interacting with a reticular cell already demonstrates the 
essential features of spindling (Destexhe, McCormick, and Sej- 
nowski, 1993). The waxing and waning of the spindling in this 
two-neuron model is controlled by the intracellular calcium 
level in the thalamocortical neuron, which increases with each 
Caz+ spike; calcium binding to the I,, channels changes their 
voltage dependence and eventually terminates the spindle, as 
shown in Figure 2 0  (Destexhe, Babloyantz, and Sejnowski, 
1993). 

Isolation of the reticular nucleus from the rest of the thala- 
mus and cerebral cortex abolishes spindle oscillations in thala- 
mocortical systems, but the deafferented reticular thalamic nu- 
cleus can generate oscillations at spindle frequencies (Steriade 
et al., 1987). Axonal and, in some species, dendrodendritic in- 
terconnections between reticular cells may allow the coupling 
and interaction of these endogenous oscillators, thereby gener- 
ating oscillations in an isolated nucleus. Models of simplified 
reticular thalamic neurons with full connectivity and slow mu- 
tual inhibition exhibit synchronous oscillatory activity, but the 
frequency is below the range of the spindling rhythm (Wang 
and Rinzel, 1993; Destexhe et al., 1994a). An array of model 
reticular neurons with fast inhibition between locally con- 
nected neurons exhibits 8-10-Hz oscillations in the local field 
potential in the model (based on the average membrane poten- 
tial for a cluster of nearby neurons) that wax and wane in 
a fashion similar to what has been observed in vivo (Destexhe 
et al., 1994a). 

Spindling has been observed in thalamic slice preparations 
(von Krosigk, Bal, and McCormick, 1993). However, when 
the reticular cells were isolated from the thalamocortical cells, 
spindling was abolished. The modeling suggests that that may 
occur because a larger and more intact collection of reticular 
thalamic cells is needed to generate spindle waves autono- 
mously. Another possible reason is that the presence of neuro- 
modulators in vivo keeps the resting levels of reticular cells 
more depolarized than in vitro; in the model, the oscillations in 
the reticular network are abolished at resting levels that are too 
hyperpolarlzed (Destexhe et al., 1994b). 

Traveling spindle waves have been observed in vitro 
(McCormick, unpublished data) and in thalamic models based 
on sheets of interacting thalamocortical and reticular neurons 
(Destexhe and Sejnowski, unpublished modeling). 

Absence Seizures 

The spindles of natural sleep are related to the development of 
a peculiar pattern of oscillatory activity, the spike-and-wave 
EEG complexes, which are associated with absence (petit mal) 
epileptic seizures. Because the reticular thalamic nucleus is cen- 
tral to the genesis of spindles, decreasing or abolishing the in- 

hibitory efficacy of reticular neurons on thalarnocortical cells 
would also decrease the incidence of epileptic spike-and-wave 
discharges. This hypothesis is supported by recent experiments 
showing that, in animals with genetic absence epilepsy, thala- 
mic injections of a selective agonist of GABA, receptors in- 
crease the incidence of spike-and-wave discharges, whereas in- 
jections of a GABA, antagonist decrease these seizures in a 
dose-dependent manner. 

The activation of GABA, receptors in thalamocortical neu- 
rons produces a slow increase in K+ conductance and a deep 
hyperpolarization and also enhances the removal of inactiva- 
tion of the low-threshold Ca2+ spike. As a consequence, there 
is a larger than usual rebound burst discharge in a greater than 
usual proportion of thalarnocortical cells. These facilitated re- 
bound bursts further excite reticular cells, quickly resulting in 
the generalization of paroxysmal activity. Further support for 
the GABA, hypothesis derives from a model of spindling in 
which the frequency of spindling could be shifted from 8-10 
Hz to 2-4 Hz by slowing the kinetics of the inhibitory synaptic 
potentials from that of GABA, (5-25 ms) to that of GABA, 
(100-250 ms) (von Krosigk, Bal, and McCormick, 1993; 
Destexhe, McCormick, and Sejnowski, 1993). 

Arousal 

Electrical activation of certain brainstem and hypothalamic re- 
gions, including the reticular activating system, causes a variety 
of neurotransmitters, including acetylcholine (ACh), norepi- 
nepherine (NE), serotonin (5-HT), histamine (HA), and gluta- 
mate to be released though diffuse ascending axonal arboriza- 
tions. These neuromodulators mimic arousal by suppressing 
sleep spindles, delta waves, and slow cellular rhythms and by 
replacing these low-frequency oscillations with activity similar 
to that of the awake, attentive animal. In cortical pyramidal 
neurons, ACh, NE, 5-HT, HA, and glutamate can reduce three 
distinct K +  currents, thereby resulting in a significantly en- 
hanced responsiveness to depoiarizing inputs and changes in 
the neuronal firing mode,(McCormick, 1992). Adenosine and 
GABA can reduce excitability by increasing membrane K+ 
conductance. 

These neurotransmitter systems abolish the low-frequency 
rhythms in thalamocortical systems during waking and rapid 
eye movement (REM) sleep and also promote more tonic ac- 
tivity or the appearance of high-frequency oscillation. The 
changes in firing between sleep and arousal in thalamic neurons 
are accomplished by depolarization of the membrane potential 
by 5-20 mV, which inactivates the low-threshold Caz+ current 
and therefore inhibits burst firing. These results have been sim- 
ulated in models of thalamocortical and reticular neurons. 

High-Frequency Oscillations 

Changes in the activity pattern generated by cortical neurons 
and circuits are less stereotyped than those of thalamic cells 
and circuits, although some common features exist. The low- 
frequency oscillations of the cortical EEG disappear on arousal 
and are replaced by higher-frequency (20-80 Hz, mainly 
around 40 Hz) rhythms. As in the thalamus, these alterations 
in cortical activity occur, at least in part, through the depolar- 
ization of pyramidal cells, presumably through the reduction 
of specialized K+ conductances by ACh, NE, and other 
neuromodulators. 

The high-frequency (20-80 Hz) oscillations in the EEG oc- 
cur during some behaviors, such as immobility during hunting 
and focused attention to stimuli during complex sensory or 
motor tasks. Neurons throughout the nervous system (e.g., the 
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retina, lateral geniculate nucleus, and cortex) have the abillty to 
generate repetitive trains of action potentials in the frequency 
range of 20-80 Hz, although the synchronization of this activ- 
ity into behaviorally relevant subgroups of widely spaced neu- 
rons has only been demonstrated in the cerebral cortex (Gray, 
1994). 

The diversity of cortical cells and their complex interactions 
make it difficult to model cortical networks with the same con- 
fidence with which thalamic networks have been modeled. 
However, it is not difficult to generate oscillatory activity in 
the 20-80-Hz range with networks of simplified neurons 
(Koch, 1993). These models reveal the need to regulate the 
tendency of recurrent networks to oscillate. The excitability of 
neurons can be controlled by inhibition. However, inhibition is 
also an efficient mechanism for synchronizing large popula- 
tions of pyramidal neurons because of voltage-dependent 
mechanisms in their somas and the strategic location of inhibi- 
tory boutons on the somas and the initial segments of axons, 
where action potentials are initiated (Lytton and Sejnowski, 
1991). Realistic simulations of cortical neurons show that 
sparse excitatory connectivity between distant populations of 
neurons can produce synchronization within one or  two cycles, 
but only if the long-range connections are made on  inhibitory 
as well as excitatory neurons (Bush and Sejnowski, in press). 

Discussion 

This article has focused on the events that occur during the 
transition from wakefulness to sleep and on the rhythms of 
deep, slow-wave sleep. Dreams occur during another sleep 
state, REM sleep. This sleep state is characterized by an aboli- 
tion of low-frequency oscillations and an increase in cellular 
excitability, much like wakefulness, although motor output is 
significantly inhibited. Despite great interest, there is no gener- 
ally accepted function for dreams or, for that matter, for the 
sleep state ~tself. 

During spindling and slow-wave sleep, the thalamus excites 
the cortex with patterns of activity that are more spatially and 
temporally coherent than normally would be encountered in 
the awake state. Depolarizing pulses of Ca2+ that enter the 
thalamic and cortical neurons may influence enzyme cascades 
and regulate gene expression, homeostatically adjusting the 
balance of ionic currents and regulatory mechanisms. This 
widespread activity could be used to reorganize cortical net- 
works after learning occurs during the awake state (Wilson and 
McNaughton, 1994). 

Inhibitory neurons in the thalamus and cortex are of particu- 
lar importance in produc~ng the synchrony and controlling the 
spatial extent of the coherent populations. Synchrony and oth- 
er network properties could be used to control the flow of in- 
formation between brain areas and to decide where to store 
important information. Synchronization enhances the strength 
of signals, but also reduces the amount of information that can 
be encoded. 

The ascending neuromodulatory transmitter systems deli- 
cately tune the state and excitability of the different parts of the 
nervous system so that it is appropriate for the analysis of 

sensory information, the cognitive processing and storage of 
this information, and the subsequent performance of the ap- 
propriate neuronal and behavioral responses. Uncovering and 
modeling the cellular mechanisms of these dynamic changes 
may provide important clues to long-standing questions rang- 
ing f r ~ m  the functional role of sleep to the nature of cognitive 
representations. 

Road Map: Biological Networks 
Background: Ion Channels: Keys to Neuronal Specialization 
Related Reading: Neuromodulation in Invertebrate Nervous Systems; 

Oscillatory and Bursting Properties of Neurons; Synchronization of 
Neuronal Responses as a Putative Binding Mechanism 

References 

Bush, P., and Sejnowski, T. J., in press, Inhibition synchronizes sparse- 
ly connected cortical neurons within and between columns of realis- 
tic network models, J. Cornputar. Neurosci. 

Destexhe, A,, Babloyantz, A., and Sejnowski, T. J., 1993, Ionic mecha- 
nisms for intrinsic slow oscillations in thalamic relay neurons, Bio- 
phys. J., 65:1538-1552. 

Destexhe, A., McCormick, D. A., and Sejnowski, T. J., 1993, A model 
for 8-10 Hz spindling in interconnected thalamic relay and reticu- 
laris neurons, Biophys. J., 65:2473-2477. 

Destexhe, A., Contreras, D., Sejnowski, T. J., and Steriade, M., 1994a, 
A model of spindle rhythmicity in the isolated thalamic reticular 
nucleus, J. Neurophysiol., 83:803-818. 

Destexhe, A., Contreras, D., Sejnowski, T. J., and Steriade, M., 1994b, . 
Modeling the control of reticular thalamic oscillations by neuro- 
modulators, NeuroReporf, 5:2217-2220. 

Gray, C., 1994, Synchronous oscillations in neuoronal systems: Mech- 
anisms and functions, J. Cornpufaf. Neurosci., 1:Il-38. 

Koch, C., 1993, Computational approaches to cognition: The bottom- 
up view, Curr. Opin. Neurobiol., 3:203-208. 

Lytton, W. W., and Sejnowski, T. J., 1991, Simulations of cortical 
pyramidal neurons synchronized by inhibitory interneurons, J. Neu- 
rophysiol., 66: 1059- 1079. 

Lytton, W. W., and Sejnowski, T. J., 1992, Computer model of etho- 
suximide's effect on a thalami~~neuron, Ann. Neurol., 32: 131-139. 

McCormick, D. A., 1992, Neurotransmitter actions in the thalamus 
and cerebral cortex and their role in neuromodulation of thalamo- 
cortical activity, Prog. Neurobiol., 39:337-388. 

McCormick, D. A,, and Huguenard, J. R., 1992, A model of the elec- 
trophysiological properties of thalamocortical relay neurons, J. Neu- 
rophysiol., 68: 1384- 1400. 

Steriade, M., Domich, L., Oakson, G., and Deschbnes, M., 1987, The 
deafferented reticular thalamic nucleus generates spindle rhythmi- 
city, J. Neurophysiol., S7:260-273. 

Steriade, M., Jones, E. G.,  and Llinas, R. R., 1990, Thalamic Oscilla- 
tions and Signaling, New York: Wiley-Interscience. 

Steriade, M., McCormick, D. A., and Sejnowski, T. J., 1993, Thalamo- 
cortical oscillations in the sleeping and aroused brain, Science, 262: 
679-68s. 

von Krosigk, M., Bal, T., and McCormick, D. A., 1993, Cellular mech- 
anisms of a synchronized oscillation in the thalamus, Science, 261: 
361-364. 

Wang, X.-J., and Rinzel, J., 1993, Spindle rhythmicity in the reticularis 
thalami nucleus: Synchronization among inhibitory neurons, Neuro- 
science, 53:899-904. 

Wilson, M., and McNaughton, B., 1994, Reactivation of hippocampal 
ensemble memories during sleep, Science, 265:676-679. 


