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MONOGRAPHS OF THE PHYSIOLOGICAL SOCIETY

During sleep, the mammalian brain generates an orderly progres-
sion of low-frequency oscillations. The nature of these oscillations
changes as the brain moves from sleep onset into deep sleep.
Although readily measured and recorded, the underlying neural
mechanisms involved and the purpose of these oscillations have
remained unclear. However, as we learn more about the properties
of neurons in the thalamus and cerebral cortex and their inter-
actions, it has become possible to suggest a role for these occur-
rences.

This book reviews the molecular components and ionic mecha-
nisms underlying sleep oscillations, including the properties of ion
channels, synaptic receptors and the patterns of interconnectivity
among thalamic and cortical neurons. These properties have been
used to build detailed computational models of thalamocortical
assemblies and their collective behavior.

The precise experimental data collected has provided a foundation
for the study of dynamic activity in the central brain systems and it
is now possible to suggest a role for thalamocortical oscillations in
memory consolidation.

Thalamocortical Assemblies is for neuroscientists, neurobiologists,
physiologists and other researchers interested in sleep and memory
processes.
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