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iological structures show tremendous complexity and diversity at the
subcellular level. For example, a single cubic millimeter of the cerebral
cortex may contain on the order of five billion interdigitated synapses of
different shapes and sizes.! Subcellular communication is based on a
wide variety of chemical signaling pathways, and for synaptic transmis-
sion these include neurotransmitter and neuromodulator molecules,
proteins involved with exo- and endocytosis, receptor proteins, trans-
port proteins, and oxidative and hydrolytic enzymes. Synaptic crosstalk
may result when ligand molecules released from one synapse diffuse to
another (Clements, 1996; Barbour and Hausser, 1997; Rusakov and
Kullmann, 1998; Rusakov et al., 1999), so the range over which ligands
can act likely extends from nanometers to microns. In addition, chemical
and structural plasticity at synapses undoubtedly contributes to infor-
mation storage and processing, and it is widely discussed in relation to
high-level cognitive functions such as learning and memory (Edwards,
1995a,b; see Grimwood et al., this volume).

Theoretical studies of ligand diffusion and chemical reaction have
been used to investigate synaptic structure-function relationships since
the late 1950s (Eccles and Jaeger, 1958), but until recently computer
hardware and software limitations have precluded highly realistic three-
dimensional (3-D) simulations of reconstructed synapses. As a result the
contribution of actual ultrastructure to synaptic current variability (or
other signaling phenomena) has gone largely unexplored, and quanti-
tative modeling of synaptic physiology has been severely hampered.
Computer hardware limitations have now been significantly overcome
by massively parallel systems and, on a smaller scale, by affordable multi-
processor workstations with large amounts of memory and fast graphics-
handling capabilities. The major remaining bottleneck is the development
of programs that not only provide the requisite simulation capabilities
but also interface smoothly with interactive 3-D reconstruction and ani-
mation programs. We describe here a program that opens up the study
of synapses with realistic geometries at the subcellular level.

Our simulation program, MCell,? is based on Monte Carlo (MC) al-
gorithms and incorporates highly realistic 3-D reconstructions into mod-
els of ligand diffusion (e.g., neurotransmitter exocytosis) and signaling
(e.g., synaptic currents). As shown in Fig. 15.1, MCell simulations are po-
sitioned at a biological scale above molecular dynamics but below whole-
cell and network modeling studies. Its structural realism lies between
the space-filled atomic resolution of molecular dynamics (e.g., AMBER
or CHARMM simulations; Cornell et al., 1995; MacKerell et al., 1998) and
that of less structure-dependent approaches, such as proteomics (e.g.,
E-CELL simulations; Tomita et al., 1999) and compartmental models of
“Hodgkin-Huxley -style neurons (e.g., NEURON or GENESIS simula-
tions; Hines, 1993; Bower and Beeman, 1995). In a compartmental model,
the complex geometry of an individual cell is subdivided into approx-
imately isopotential parts, each of which becomes a resistive-capacitive
element in a branched electrical circuit representation. The actual 3-D

683



684

Stiles, Bartol, Salpeter, Salpeter, and Sejnowski

g Information

pigan 0 Processing
system @ §
(cm) o
S

I Neural Networks

S
cellular 'g'

i i) ‘E Groups of Neurons
> Single Neurons
£

subcellular 3

(um to nm) o Groups of Synapses

g Single Synapses

molecular v Molecular Dynamics
(angstroms)

Figure 15.1. Physical scales versus structural realism in computational neuro-
science models. MCell simulations encompass diffusion and chemical reaction of
molecules in 3-D reconstructions and hence are situated between compartmental
models of single- or multiple-neuron excitation and molecular dynamics models
of single-molecule structure.

configuration of the neuron(s) and surrounding tissue volume is not
explicitly considered, nor is the molecular nature of various conductances
and currents that can be incorporated into different compartments.
MCell and these other modeling approaches are mostly complementary,
and integration of the various approaches is an important direction for
future research.

In MCell simulations, the diffusion of individual ligand molecules
within a reconstructed 3-D environment is simulated using a Brownian
dynamics random walk algorithm, and bulk solution rate constants are
converted into MC probabilities so that the diffusing ligands can inter-
act stochastically with individual binding sites, such as receptor proteins,
enzymes, and transporters. Such methods can be applied to many ques-
tions related to synaptic transmission, such as:

1. How does the architecture of the synaptic cleft affect quantal and
multiquantal current amplitudes and time courses at central and pe-
ripheral synapses?

2. How do the kinetics and precise localization of transmitter release,
receptors, and reuptake sites influence current variability and cross-
talk between synapses?

3. How might intra- and extracellular ion fluxes from repeated synaptic
activation in realistic synaptic architectures, together with discrete
transmembrane conductances and pumps, influence particular re-
gions of neuropil?
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4. How do the many calcium-binding proteins in 3-D subcellular micro-
environments trigger and regulate a multitude of signaling pathways?

We begin this chapter with a short historical look at the vertebrate
neuromuscular junction (NM]), which has long served as a model synapse
for investigations of structure and function. We then review our model-
ing approach, validate the latest algorithms, and discuss factors that af-
fect numerical accuracy. MCell is used to simulate acetylcholine (ACh)
exocytosis at the NMJ and to show how realistic synaptic architecture may
account for a significant fraction of miniature endplate current (MEPQC)
variability. We conclude by describing future directions for continued
synaptic reconstruction, simulation, and combined theoretical and ex-
perimental studies.

Historical Overview of Structure and Function
at the Vertebrate Neuromuscular Junction

The vertebrate NMJ has long served as a model synapse owing to its easy
accessibility, large size, and singular distribution. A wealth of physiolog-
ical and morphological data is available, and, in spite of its unique char-
acteristics, the NMJ has provided many insights into our understanding
of central synapses.

Basic features of the NM]J on vertebrate twitch fibers were first de-
scribed in the 1840s (Doyere, 1840), yet the modern view of NMJ or-
ganization began with Couteaux in the 1940s. In a series of illuminating
articles, he identified the postjunctional muscle surface as a unique
palisade-like specialization rich in acetylcholinesterase (AChE), which is
now known as the junctional folds (JFs). Couteaux also helped clarify the
relationship between Schwann cells and the NMJ. From him came some
of the best early descriptions of the morphology of the vertebrate NM],
as well as a fascinating view of some early controversies (e.g., Couteaux,
1946, 1955, 1958). However, the detailed morphology of the NMJ was not
revealed until the advent of transmission electron microscopy (TEM) in
the 1950s and 1960s.

It is now clear that chemically transmitting synapses like the NM]J
consist of three distinct compartments: (1) the presynaptic nerve ter-
minal, containing large numbers of synaptic vesicles, numerous mito-
chondria, and one or more active zones (thickened presynaptic mem-
brane); (2) the postsynaptic apparatus, characterized in part by a dense
membrane with an underlying filamentous cytoskeleton; and (3) an in-
tervening synaptic cleft that at the NM] contains basal lamina material.

A major difference between neuroneuronal synapses and the NM]J is
the organization of the second and third compartments. The post-
synaptic membrane of the NMJ often is extensively folded, forming JFs
of variable depth (generally 0.5-1 um). These JFs create secondary extra-
cellular cleft spaces connected to the primary cleft, which lies between
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the nerve terminal membrane and the tops of the folds. For neuro.
neuronal synapses the width of the synaptic cleft is about 10-20 nm, whjje
for the NMJ it is about 50 nm in both the primary and secondary clef;
spaces. The overall organization of NM]Js on typical vertebrate twitch
fibers is shown in Fig. 15.2. The primary and secondary clefts contain
AChHE active sites and basal lamina proteins, and the latter are part of
complex scaffold that connects neural and musculocytoskeletal elements
(Froehner, 1986; Hall and Sanes, 1993; Matsumura and Campbell, 1994;
Apel and Merlie, 1995; Sanes and Lichtman, 1999).

Small round vesicles (circa 50 nm in diameter; Fig. 15.2B) were seen
in the presynaptic terminals in the first TEM images (Palade and Palay,
1954; Reger, 1955; Robertson, 1956). The anatomical description of
synaptic vesicles coincided with physiological studies showing that exci-
tation at the NMJ occurs in multiples of quantal depolarizing events (del
Castillo and Katz, 1954). This led to the suggestion that synaptic vesicles
contain neurotransmitter molecules that are released by fusion of vesicles
with the presynaptic membrane, and that there is a one-to-one corre-
spondence between the release of a single vesicle’s contents and a quan-
tal physiological signal. Numerous studies were undertaken in the 1950s
and 1960s using biochemical (DeRobertis et al., 1961; Whitaker, 1965),
physiological, and electron microscopic (EM; Ceccarelli et al., 1973;
Heuser and Reese, 1973) techniques, which supported the claim that
vesicles contain the releasable pool of ACh. In addition, the TEM visual-
ization of “omega figures” in fast-frozen tissue (Ceccarelli et al., 1973;
Heuser and Reese, 1973)—vesicles fused to the presynaptic membrane
by means of an open pore—finally convinced many investigators that ACh
is released by exocytosis of quantal packets from synaptic vesicles.

The JFs were initially thought necessary to increase the muscle’s post-
synaptic receptive surface area. This idea was supported by the proposed
mosaic model of acetylcholine receptor (AChR) and AChE distribution
(Barnard et al., 1971; Porter et al., 1973). However, the mosaic model
was suspect on physiological and theoretical grounds, because it seemed
unlikely that many ACh molecules would reach AChRs at the bottom of
the JFs during the rising phase of an MEPC. EM autoradiography finally
provided direct evidence that AChRs are, in fact, highly concentrated
on the crests (i.e., the top 200-300 nm) of the JFs and are present at
decreasing average density along the depth of the JF, with essentially
none at the bottom (Salpeter et al., 1984). High AChR density therefore
is spatially correlated with the presence of the postsynaptic membrane
density, which also is mostly observed at the crests of JFs (Fig. 15.2B;
Albuquerque et al., 1974; Fertuck and Salpeter, 1974, 1976). Another
important result provided by EM autoradiography is that AChE active
sites are distributed throughout the primary and secondary cleft spaces,
but at average densities much lower than that for the crest AChRs (Sal-
peter, 1967, 1969; Rogers et al., 1969; Anglister et al., 1994). The high
ratio of AChR- to AChE-binding sites at the receptive surface gave rise to
the “saturated disc” model of MEPC generation (Matthews-Bellinger and
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Figure 15.2. Overall organization of mammalian or reptilian NMJ.

(A) Schematic diagram of a branched, myelinated axon innervating two muscle
fibers. The myelin sheath ends above the nerve terminals, which are encapsu-
lated by Schwann cells and are twisted to form compact endplates. If the nerve
terminal is removed, the openings into JFs are visible (arrow). Schwann cell and
postsynaptic sole plate nuclei are also indicated.

(B) TEM view of mouse sternomastoid NMJ. Synaptic vesicles and mitochon-
dria are visible throughout the nerve terminal (NT), and active zones (filled arrows)
are localized across from the openings of JFs. Dense postsynaptic membrane is
present mostly at the crests of JFs (asterisk), while nondense membrane is mostly
lower and sometimes includes fused vesicles (open arrowhead). One sole plate
nucleus (N) and numerous mitochondria are visible. Note also the relative regu-
larity of JF contours at the left and center, and the extreme structural complexity
at the right (cf. Fig. 15.18A). Scale bar = 1 um.

From Salpeter (1987), reprinted by permission of Wiley-Liss, Inc., a subsidiary
of John Wiley & Sons, Inc.
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Salpeter, 1978; Land et al., 1980, 1981, 1984; Salpeter, 1987), which illus-
trated how quantal packets of ACh would interact with discrete, almog;
saturated, nonoverlapping areas of postsynaptic receptive surface. The
saturated disc model agreed well with contemporary physiological studies
that indicated nonoverlapping areas of AChR activation at NMJs wih
normally active AChE, but suggested the potential for overlap if AChE
was inhibited (Hartzell et al., 1975).

Other molecules, such as Na* channels, have also been identified
at the bottom of JFs (Flucher and Daniels, 1989; Boudier et al., 1999).
As the extensive complexity of JFs is incorporated into high-resolution
3-D reconstructions and MCell simulations, the role of JFs and other
aspects of neuromuscular function (normal and pathological) are in-
creasingly open to detailed biophysical investigations. Similarly, as the
site densities and distributions of the many molecules that participate in
central synaptic transmission are defined and incorporated into realistic
simulations, complex aspects of synaptic communication and plasticity
will become increasingly accessible.

Rationale for Monte Carlo Approach to Simulation
of 3-D Diffusion and Chemical Reaction

The simultaneous diffusion of molecules and their chemical reactions in
three dimensions can be simulated using one of two fundamentally dif-
ferent methods, based either on finite element (FE) or MC algorithms.
Both require significant computer programming and computational re-
sources, and each approximates reality in a different way. The MC ap-
proach is more realistic and is generally more expensive computationally,
but as 3-D models become more detailed the difference in computer
requirements for MC versus FE simulations is not so great as it once was.
Prior to the recent explosion in computing power, limited resources
dictated that 3-D problems be simplified dramatically, for example by re-
placing a real in situ synaptic cleft with a flat, isolated, radially symmet-
rical model. In this way 3-D problems could be reduced to one dimension,
and the mathematics of diffusion and chemical reaction could be handled
with analytic approximations or sets of ordinary differential equations
that could be evaluated with simple finite difference methods. Such
equation-based approaches disregard the discrete nature of ligand and re-
ceptor molecules and instead use hypothetical concentrations that vary
smoothly as a function of position and time. The strengths of such sim-
plified approaches are rapid and precise predictions for the average
behavior of the model (assuming a small enough time step). However,
the drawbacks of simplification may in some circumstances lead to sig-
nificant errors, and stochastic variability is ignored.

For 3-D FE simulations, the molecular nature of the real system is
disregarded, and differential equations are used to compute fluxes
and reaction rates between and within spatial subdivisions or voxels (the
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finite elements). Concentration gradients are ignored within each voxel
(i.e., the contents are assumed to be well mixed), and flow occurs across
the interfaces between adjacent voxels (except, of course, where a voxel
wall coincides with a diffusion boundary). Thus, as for the simplified
one-dimensional (1-D) approach, reactant concentrations vary smoothly
throughout space, albeit with small stepwise changes from one voxel to
the next. Whereas 1-D approaches subdivide only time, the 3-D FE ap-
proach subdivides both time and space, and overly large spatial subdivi-
sions (coarse granularity) can markedly degrade numerical accuracy. Fine
granularity is easy to achieve for simple overall spatial configurations (e.g.,
a cell represented as a subdivided box), and under such conditions this
method can be extremely efficient. For complex realistic structures, how-
ever, the spatial subdivisions become correspondingly complex to plan
and implement, and the number of voxels can grow to be very large.
Under such conditions the computational expense increases tremen-
dously, and in no case do FE simulations provide direct information
about stochastic variability arising from the spatial configuration and
actual finite numbers of participating molecules.

In contrast to the equation-based simulation methods, the MC ap-
proach to 3-D diffusion and chemical reaction begins with an arbitrary
set of surfaces that represent a subcellular environment (e.g., cell and
organelle membranes), and then the surfaces and surrounding space are
populated with individual ligand and ligand-binding molecules. With
the present version of MCell, the shape of the surfaces can be as realis-
tically complex as desired, as can the biochemical pathways followed by
ligand and ligand-binding (effector) sites. Ligand movements approxi-
mate Brownian motion by means of random walk displacements, and
collisions with surfaces and effector sites can be detected without the
use of voxels by tracing random walk trajectories through space with
algorithms similar to those used to trace light rays in photorealistic com-
puter graphics. The average radial distance ([ ) traveled in a random
walk step depends on both the specified ligand mobility (diffusion co-
efficient, D) and the simulation time step (A#). High numerical accuracy
can generally be obtained under conditions in which / and Atare orders
of magnitude larger than the mean free path and time between collisions,
respectively, for true Brownian motion. Another relationship of impor-
tance to numerical accuracy is the ratio of At to the average lifetimes of
the chemical reactant states in the simulation. (Such issues underlying the
choice of input parameter values and resulting accuracy are illustrated
later in the chapter.)

During each MC time step, A¢, decisions about distance and direction
of motion, binding, unbinding, conformational changes, and all other
possible events are made by comparing the values of random numbers
to MC probabilities that are precalculated for each type of event. The
MC probabilities depend on input values for A¢, D, reaction rate con-
stants, and the surface area of effector sites, and they ensure that results
for equilibrium or steady-state conditions match analytic expectations
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based on bulk solution rate equations. The use of random numbers ¢,
make decisions during the simulation is reminiscent of throwing dice,
and the term Monte Carlo was originally coined in this context by Ulay,
and Von Neumann during the Manhattan Project (Rubenstein, 1981).
Since events occur on a molecule-by-molecule basis, the simulation re.
sults include realistic stochastic noise arising from the spatial arrangement
and finite number of participating molecules. Averaging over a number
n, of different simulations (run with different random numbers) de:
creases the noise, but generally only in proportion to 1/ Vn. This noise
may seem to be a disadvantage of MC simulations, butitis in fact a bless-
ing in disguise because its spectral properties can be compared with the
observed properties of noise present in experimental data.

Although the potential realism and generality of MC methods were
clear many years ago, large increases in computer speed and memory
were required before many applications became feasible. Because of
such increases, as well as algorithm optimizations developed for MCell,
it is now possible to simulate complex cellular reconstructions on work-
stations, and very large projects can be ported effectively to massively
parallel computer architectures. As mentioned earlier, this level of real-
ism is not simple to implement using FE methods, nor is it clear that an
FE approach would be appreciably more efficient. Most importantly, MC
simulations can now provide insights into the stochastic variability and
nonintuitive behavior of complex 3-D systems containing small numbers
of reactant molecules.

MCell Overview

History and Scope

A novel Monte Carlo approach to MEPC simulation was initiated more
than a decade ago (see Figs. 21-23 in Salpeter, 1987) in order to ad-
vance saturated disc modeling at the NM]J beyond a flat cleft configura-
tion and earlier equation-based simulation methods (Land et al., 1980,
1981, 1984). The new approach led to a computer program that could
simulate planar (simplified) JFs (see Fig. 15.13) and was run on an [BM
supercomputer (Bartol et al., 1991; Bartol, 1992). A similar program
written independently at about the same time focused primarily on de-
lineating and tracking stochastic molecular events that occur during MC
simulations of MEPCs (Stiles, 1990) and was initially run on large clus-
ters of VAX superminicomputers. These two programs were merged,
and the resulting code again was run on a supercomputer to simulate
the effect of AChE site density and hydrolytic rate at the NMJ (Anglister
et al.,, 1994). Other investigators began using the underlying random
walk and MC binding-unbinding algorithms (Bartol et al., 1991) to sim-
ulate other simplified synaptic systems (Faber et al., 1992; Bennett et al.,
1995, 1997, 1998; Wahl et al., 1996; Kruk et al., 1997).
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These early MC programs were designed to simulate one type of
simplified structure and could not be applied to more realistic prob-
lems. Such limits were removed by generalizing and optimizing the MC
methods, and the earliest versions of MCell emerged in successive stages
(Stiles et al., 1996, 1998). A Model Description Language (MDL) was
created to design and control large-scale simulations, as well as to inte-
grate models with 3-D imaging software, and it has evolved into a stan-
dardized interface and archiving system.

MCell has been used worldwide at research laboratories since 1997
(see Web sites in note 2), and it now includes new features that dramati-
cally increase its range of application, memory efficiency, and execution
speed. For example, many simulations can be run on workstations rather
than supercomputers, the realism and speed of the Brownian dynamics
random walk algorithms have been greatly enhanced, and the addition
of spatial partitions renders execution speed essentially independent of
the model’s geometric complexity. Thus simulations based on large-scale
tissue reconstructions can now be run in about the same time previously
required for highly simplified structures, in effect reducing the required
computer time from many months to hours or even minutes.

Typical events that occur during an MCell simulation include the re-
lease of ligand molecules from a structure (e.g., a vesicle), de novo cre-
ation or destruction of ligand molecules (e.g., synthesis, hydrolysis, or
redox reactions), ligand diffusion within spaces defined by arbitrary
surfaces (e.g., pre- and postsynaptic membranes or a cell membrane
with attached patch clamp micropipette), and chemical reactions un-
dergone by diffusing ligand and fixed effector (e.g., receptor or enzyme)
molecules. Ligands, effectors, reaction mechanisms, 3-D surfaces, and
other simulation components are specified using the MDL (Fig. 15.3),3
a simple programming language that was designed with biologists in mind
(Stiles and Bartol, 2000). When a simulation is run, one or more MDL
input files are interpreted (parsed) to create the simulation objects, and
then execution begins for a specified number of iterations. Each itera-
tion corresponds to one MC time step, A, which typically is on the order
of 1 psec for synapses. Simulations can be stopped and subsequently
restarted at user-specified checkpoints (Fig. 15.3), and when a simulation
restarts updated information can be read from the input MDL file(s).
Checkpointing is thus a powerful and general way to change run-time
parameters such as A¢, reaction rate constants, and surface positions; it
can also be used to split long simulations into segments that are run
sequentially.

Brownian Dynamics Random Walk

MCell simulates diffusion using a novel Brownian dynamics random
walk algorithm that has been highly optimized for speed, numerical
accuracy, and use with complex structures. In essence, extensive sets of
equally probable radial distances and directions are stored in two look-up
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Figure 15.3. Overview of MCell simulation design, execution, and output. Simu-
lations are run in UNIX or Windows environments and are designed using Model
Description Language (MDL) text files created by the user or from 3-D surface re-
construction data. When the simulation is initialized, the MDL files are interpreted
to create the objects used during execution. Execution continues for a specified
number of time steps, and the amount and type of output are under the user’s
control. Output files fall into three general categories: (1) visualization, used with
a variety of 3-D imaging and animation software; (2) numerical results, used to
tally the number of reaction intermediates and transitions as a function of time
and space; and (3) checkpointing results, used as all or part of the initial conditions
for subsequent simulations. In addition, sets of simulations may be controlled
using command files that are specific to the computer’s operating system (e.g.,
UNIX shell scripts or DOS batch files).

tables, and one value is chosen from each table to generate each random
walk movement. The use of such tables increases execution speed dra-
matically, and any reduction in accuracy is effectively immeasurable.

The values for the first table are based on diffusion theory and are
calculated from a standardized probability distribution function (p,) for
a dimensionless parameter s:
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p= 4 s2¢=5% ds. (15.1)

Vn

At the beginning of each simulation, equation (15.1) is integrated nu-
merically to obtain the cumulative probability of s, which then is finely
subdivided into bins (generally 1024) of equal area. The mean value
of s for each bin is stored in the look-up table, and then, while the sim-
ulation runs, values can be chosen from the table as needed using uni-
formly distributed random numbers. For a ligand molecule with diffusion
constant D, , a chosen value of s is converted to a radial step length ()
using a multiplicative scaling factor given by V4D, (A#), which has units
of distance.

For a given value of D,, the distribution of random walk step lengths
changes according to the value specified for At. For accurate simulation
of diffusion, A¢ must be chosen so that the mean radial step length (/)
is smaller than the dimensions of restrictive structures in the model. The
value of /, is obtained from the expectation value of s and the scaling
factor V4D, (At) and is given by

) 4D, (A
[ = 2\/%” (15.2)

In order to calculate MC binding probabilities for effector sites located
on a surface, it is necessary to know the average random walk displace-
ment with respect to a linear direction oriented perpendicular to the
surface (l_l). From a form of equation (15.1) for linear rather than radial
displacements,

4D, At

[ =\—= (15.3)

orl /2.

To generate a ligand movement, a randomly chosen radial step length
must be paired with an unbiased choice of radial direction. Complete
elimination of bias is critical because even a tiny asymmetry can accu-
mulate over thousands of iterations to produce substantial drift. The
second look-up table is used to store a set of equally probable radial di-
rections, that is, unit vectors that originate from a point and radiate out
in all directions with equal probability. These vectors are calculated nu-
merically when the simulation begins (there are generally more than
130,000), using methods that guarantee the absence of directional bias.
Once a value of s and a direction have been chosen for a particular
movement,* the x, ¥, and z components of the direction vector are mul-
tiplied by the product of s and the scaling factor V4D, (A?), and the re-
sults are added to the present (x, y, z) coordinates of the molecule.

Over any interval of time, At, longer than the time between actual
Brownian collisions (sub-picosecond scale at room temperature; e.g., Bar-
row, 1981), a real diffusing molecule follows some tortuous path between
a starting position (P1) and an ending position (P2). The molecule’s
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thermal velocity and the duration of At determine the fotal distance © tray-
eled, but the net radial distance traveled (the length of the vector 1 be-
tween P1 and P2) is proportional to VAt. This proportionality is Sh(mn
directly for the average distances [ and [, in equations (15.2) and (15. 3).
In an MCell 51mulat10n the molecule moves along the shorter,
straight-line path l rather than the actual tortuous path, and hence th(
apparent velocity of motion (1) is less than the true thermal velocity,
(2) is not constant for different chosen values of Az, and (3) d€C1€as( 25
as Atincreases. When ligand molecules must diffuse through a restriction
(e.g., a vesicle fusion pore) or can bind to effector sites, the apparent ve-
locity of motion directly influences the apparent net flux and also the M(.
binding probability and hence directly influences numerical accuracy.

Surfaces and Effector Sites

Each curved surface imported into an MCell simulation is actually com-
posed of a polygon mesh (e.g., Figs 15.7, 15.11, 15.16B, and 15.18B),
where each mesh element (ME) must be a convex planar polygon. Tri-
angles are used for the most part, because they are guaranteed to be
planar (three points in space define a plane) and are required for sur-
faces that include effector sites. Triangulated meshes are also the typical
form of output from 3-D surface reconstruction software.

The MEs within a surface can be individually classified as reflective,
transparent, or absorptive with respect to diffusing ligand molecules.
Each time that a random walk trajectory (a ray) is generated, it must be
traced to see if it intersects with an ME before the endpoint of motion
is reached. If so, the final result depends on the properties of the ME at
the point of intersection (see Stiles and Bartol, 2000, for a more com-
plete discussion). If the ME contains an effector site at that point and
binding occurs, the motion stops and the ligand molecule’s fate in sub-
sequent time steps depends on the reaction pathways defined for the ef-
fector site. If binding does not occur (whether or not an effector site is
present), then (1) if the ME is absorptive, the motion stops and the ligand
molecule is removed from the simulation; (2) if the ME is transparent,
the intersection is detected and the ray continues through unchanged;
or (3) if the ME is reflective, the ray undergoes specular reflection. In
the case of (2) or (3), the random walk movement continues until ei-
ther (a) binding or absorption occurs upon a subsequent intersection
or (b) no further reflections occur and the ligand molecule is placed at
the end of its remaining trajectory.’

Effector sites can be added to one or more MEs of any surface,
whether the MEs are reflective, transparent, or absorptive. As illustrated
subsequently, effector sites on a reflective surface are typically used to
model various types of membrane-bound proteins, while effectors on
transparent surfaces generally represent enzyme or other sites localized
in an intra- or extracellular scaffold that does not specifically impede lig-
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and movement. Effector sites on absorptive surfaces are a special case
and could be used to sample the flux across the surface. The kinetic be-
havior of effector sites is defined by reaction mechanisms specified in an
MDL file; it includes not only binding, unbinding, and conformational
transitions but also the directionality of binding and unbinding with re-
spect to the surface. For example, simple receptor sites would bind and
unbind ligand molecules on only one side of a reflective surface, re-
uptake sites would bind on the extracellular side and release on the intra-
cellular side, and sites on transparent surfaces would bind and unbind
from either side.

To use effector sites in a simulation, a global effector tile grid density, de-
noted here as 0y, must be specified in units of tiles/ um?. This param-
eter determines the maximum density of effector sites that can be added
to any surface, so if more than one type of effector is added to the same
mesh (e.g., intermixed o-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic
acid and N-methyl-pD-aspartate glutamate receptors), the sum of their
densities should not exceed 0. To add effector sites to MEs of arbi-
trary triangular shape, an individual grid is created for each ME, using
barycentric subdivision. In short this method creates interdigitated trian-
gular effector tiles that cover each ME exactly and have the same trian-
gular aspect ratio as the ME on which they reside (Fig. 15.4). If the ME
is large enough to accommodate more than just a few tiles (which is
almost always the case), the aspect ratio is unimportant to numerical re-
sults. However, long and thin triangles are not optimal for imaging, be-
cause effector molecule glyphs placed at the center of mass of each tile

~ (part of MCell’s visualization output) appear in unrealistic linear arrays
(Fig. 15.4B). With nearly equilateral triangles, on the other hand, the
molecule glyphs occupy positions in a seemingly realistic hexagonal array
(Fig. 15.4A).5

When a simulation begins, MCell makes one pass through each sur-
face that contains effector sites, and for each ME it (1) calculates its area
(Aye)s (2) performs barycentric subdivision (Fig. 15.4) to obtain an
integer number (Ng) of triangular effector files that cover its surface
exactly; (3) calculates the expected number of effector sites; (4) calculates
the probability (p) that each effector tile is occupied by an effector site
(as opposed to remaining bare surface); and (5) compares the value of
a random number, k(0 < k < 1), with the value of p, to determine the
identity of each effector tile.

Chemical Reactions: Monte Carlo Probabilities
and Heuristics

Consider a simple reversible reaction between ligand L and effector E:

k+
L+E—=LE. (15.4)
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Y0606

Figure 15.4. Simple examples of barycentric tiling. (A) Two equilateral MEs
(heavy blue lines), each with area Ayer subdivided according to the value of A
and ogg. In this case a 4 x 4 barycentric grid is obtained (narrow black lines), pro-
ducing 16 effector tiles per ME. (B) Two nonequilateral MEs, each also with iden-
tical area Ay, and therefore also subdivided using a 4 x 4 barycentric grid. When
simulation results are visualized, color-coded glyphs are used to indicate the po-
sitions and chemical states of tiles occupied by effector sites. The glyphs typically
are shaped and scaled to reflect the molecule being modeled (e.g., AChRs). In this
2-D illustration, red discs are used as glyphs, and every tile is occupied by an
effector site. The glyphs are placed at the center of mass of each tile, and with
equilateral MEs (A) the result is a hexagonal array. With long and thin MEs (B) the
result is linear arrays. For realistic imaging results, optimized meshes containing
nearly equilateral MEs are preferable (cf. Figs 15.13, 15.15, 15.16, and 15.18).

The rate constants k,_and k_are phenomenological scaling factors that re-
late an observed rate of reaction to reactant concentrations in bulk solu-
tion (e.g., Hammes, 1978). At a given point in space, the rate equation is

—9(L) =-3(E) =d(LE) = [k (L)(E) - k_(LE)]ot.  (15.5)

Under well-mixed conditions, the concentration terms are independent
of space at all times, and the partial differentials can be replaced by
finite differences (e.g., d(E) and d¢ become AE and A¢, respectively). If
concentration gradients exist, then equation (15.5) can be simulated
using the FE or MC methods discussed earlier. With the FE approach,
equation (15.5) would be used in finite difference form within each voxel,
and flux [ between each voxel would be calculated with a 1-D finite dif-




Synaptic Variability Simulations 697

ference simplification of the diffusion equation /=-D,V(C,), where C,
is ligand concentration. With the MC approach, net random walk motion
determines ligand flux directly, and (as outlined below) the rate con-
stants k, and k_ must be converted into dimensionless probabilities p,
and p,, respectively.

If the binding step in equation (15.4) is taken in isolation, then equa-
tion (15.5) becomes

—d(L) =—0d(E) =d(LE) = k,(L)(E)ot, (15.6)

and the number of binding events (N, = A(LE)) expected per unit ef-
fector concentration (E), in bulk solution during time A¢, is given by
(k,) (L) (At). The value of p, for an effector site £ is calculated from the
ratio N,/ N,,, where N,, is the average number of times during A¢ that
ligand molecules “hit” (i.e., random walk trajectories intersect) the ef-
fector tile on which site E is located. (This use of N and N,, is a useful
conceptual simplification; for a full derivation of p,, N,;, and p,, see Stiles
and Bartol [2000].) The value of N,, depends on A, the area of the
tile, and since Ap. generally differs for each ME(Apr = Ay / Nep)s Ny
and therefore b also differ for each ME. As shown in Fig. 15.5, N, can
be derived conceptually by first defining a direction vector y that is
perpendicular to the ME. The average net distance traveled by ligand
molecules along v is given by l_J_ (equation (15.3)). On average, half of
the molecules within this distance will step away from the ME, while the
other half will step toward it (and therefore will hit it). For an effector
E in particular, 2N, ligand molecules thus are contained within a vol-
ume V. that extends both “above” and “below” the tile for a distance
(%) [, along y. The value of V. therefore is 2(/,) (A1) and N,,is given
by (L)(N,) (Vi) /2, where N is Avogadro’s number. A final expression

for p, is
_ (£) (f) (k) (Ope) [ m(AL) V2 i,
b 2(N,) o] (15.7)

where 0, is the effector tile grid density. The factor f, (21) is given by
the ratio of two areas, A, and 1/0,, i.e., f, = 1/ (A 10). The addi-
tional term ( f) is unity if ligand molecules bind to either side of the ME
(e.g., the transparent surfaces as illustrated in Fig. 15.7). For a reflective
surface with binding allowed from only one side, V. would extend a
distance [, either “above” or “below” the ME and therefore would be
halved. As a result N,, would also be halved, and J. =2 would be used in
equation (15.7) to double the value of p,.

Whenever a diffusing ligand molecule hits an effector site on an ME,
the occurrence of binding is tested by comparing the value of a random
number (0 <k < 1) to the value of p, for the ME. Because the apparent
MC velocity of motion decreases if At is increased, p, must increase to
keep the average MC binding rate equal to the bulk solution binding
rate. Equation (15.7) shows that p, scales with VAt (because ll scales with
VAL equation (15.3)), so if the simulation time step is doubled and all
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Figure 15.5. Derivation of N,. The illustrative ME shown here is subdivided into
16 effector tiles, one of which is an effector site E (gray). During a time step, At
diffusing ligand molecules moving in random directions are displaced an average
distance ll along a direction y perpendicular to the ME. On average, half of the
molecules (e.g., blue spheres) move away from the ME and half (e.g., yellow
spheres) move toward it, so the value of N,, is one-half the number of molecules
contained within the volume V.= 2(I_L)(AET) indicated by the extruded gray prism
for the portion of V. above the ME. Of course some of the yellow molecules ac-
tually move outside V. during At (and hence do not hit E), but on average they
are replaced by an equal number of molecules moving into V. from the sur-
rounding space.

other input parameters are held constant, the value of p, increases by
V2. The resulting impact on numerical accuracy depends on the new
value of p, and other factors. It is necessary that the value of p, not exceed
unity. ;
If the unbinding step in equation (15.4) is taken in isolation, the tran-
sition is a unimolecular Poisson process, and equation (15.5) becomes

d(L) = d(E) = —d(LE) = k (LE) dt. (15.8)
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Other types of unimolecular transitions in MCell simulations include ef-
fector site isomerizations and ligand production, transformation, and
destruction (Fig. 15.6). In any case, the generic first-order rate constant
k has the units of inverse time, and the lifetime of the source state is
exponentially distributed with a mean value (1) of 1/k The MC proba-
bility (p,) is the likelihood that the transition occurs during time A¢and
is given by 1 — exp(-kAt). If the source state has a choice of n unimole-
cular transitions with rate constants k p -k, (eg., the double-bound
A,R state in Fig. 15.6C has two unbinding paths and one isomerization
path), Tis given by 1/X."k, the total probability (p,.) of any transition is

Zk) ~At], (15.9)

and the probability of the pathway with rate , is
k

i
.
Dok
The decision between all possible events (including no transition) is
made by comparing a single random number (0 < x < 1) to the cumu-
lative set of probabilities (p,, p; + py, . . ., Zp, 1).

When an irreversible reaction is simulated using MC methods, the
algorithm design and use of p, and p, are straightforward because each
ligand and effector molecule can undergo a maximum of only one tran-
sition per time step. When reversible reactions are simulated, however,
the algorithm design can take different forms. In a “first-order” approach,
each molecule remains limited to a maximum of one transition per time
step. “Higher-order” approaches allow individual molecules to undergo
multiple “sub-A¢” transitions and thus allow some degree of “hidden” re-
versibility during each iteration. Using the reaction of equation (15.4)
as a simple example, a particular effector site initially in the LE state might
unbind at some point during the time step, and then sometime later dur-
ing the same time step it could become bound again.

If a higher-order approach can be suitably balanced for complex
cyclic reactions (e.g., Fig. 15.6B), its advantage is improved numerical ac-
curacy for a given value of At. Testing different higher-order approaches
involves simulating a set of simple and complex reactions at equilibrium
and comparing the fractional amounts of each reactant to analytic pre-
dictions or to a finite difference simulation of the corresponding rate
equations. MCell uses an extensive set of optimized rules that govern sub-
At transitions, and the numerical accuracy for both simple and highly
complex reactions is illustrated briefly in the following section.

pr=1-exp

b= pr- (15.10)

Chemical Reactions: Numerical Accuracy

The use of equilibrium conditions to quantify the accuracy of MCell sim-
ulations is summarized in Tables 15.1 and 15.2, and Figs. 15.7 and 15.8.
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Figure 15.6. Examples of chemical reaction mechanisms used with MCell simu-
lations. Rate constants for bimolecular associations (k,,) are given in units of
M-'sec™!, and for unimolecular transitions (k_, or k) in units of sec™". Ligand dif-
fusion constants are given as cm?/sec.

(A) Simple reversible binding reaction, as used for the equilibrium simulations
ofTable 15.1 and the relaxation simulations of Fig. 15.8. Except as indicated other-
wise inTable 15.1, the values of k, and k_were 2 x 108 and 50,000, respectively.
D, was 2 x 1076,

(B) Complex reaction mechanism for an effector with three ligand-binding
sites and 10 possible states (indicated by superscripts). This mechanism, with both
parallel and sequential binding, unbinding, and isomerization transitions, was de-
signed specifically to test MCell's rules governing sub-At transitions (see text). Nu-
merical accuracy for this mechanism is illustrated in Table 15.2. D, was 2 x 106,
and rate constant values were as follows: k ,, 1 x 108; k_,, 10,000; k,,, 1. 5 x 108;
k_,, 10,000; k4, 5x107; k 5, 7000; k_,, 7. 5 x 107; k_,, 7000; k,g, 8. 5 x 107; k 5, 15,000;
k.s 1%107; k_4, 50,000; k.., 2 x 107; k 5, 50,000; kg, 20,000; k 4 35,000; kg, 25,000;
k g, 33,000; k,,, 40,000; k_,,, 45,000; k,,, 38,000; k_,;, 38,000; k,,, 50,000; k_,,, 2000.
(C) Mechanism used for AChR activation in MEPC simulations. D,¢,,, 2.1 % 1075,
Koy Koo ko4 135X 108; k ,, k ,, k 5, k_,, 64,286; B, 48750; a, 1250.
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Effector sites were dispersed uniformly throughout space within a reflec-
tive spherical shell, on a series of inner concentric shells made of trans-
parent polygons (Fig. 15.7). A reaction mechanism was chosen (e.g.,
Fig. 15.6A or 15.6B),7 and the effector sites were initialized either to
the unbound state or to an expected equilibrium distribution (to simulate
either the approach to or maintenance of equilibrium, respectively).
MCell’s checkpointing feature was used to introduce ligand molecules
at uniform concentration throughout the shell. Checkpointing was also
used to create an instantaneous change in free ligand concentration
during a simulation,® so that the relaxation to new equilibrium condi-
tions could be quantified (Fig. 15.8).

Table 15.1 shows how simulation results for a simple reversible bind-
ing reaction (equation (15.4) and Fig. 15.6A) changed as a function
of the MC time step, Az. With all other input parameters held constant,
a decrease in At (1) decreases the length of random walk movements;
(2) decreases the values of the MC binding and unbinding probabilities,
p,and p,; and (3) decreases the simulation’s temporal granularity with
respect to the theoretical average lifetimes of reaction intermediates (av-
erage lifetimes are constant at equilibrium and are shown in Table 15.1).
Because the reaction space in this example is symmetrical, the scaling
effect of A/ on random walk movements is unimportant, and the simu-
lation accuracy can be assessed in terms of temporal granularity and MC
probability values. When At is small (i.e., when the temporal granularity
is fine and p, and p, are both much less than unity), the relative error in
the simulation results (average fractional concentration of each inter-
mediate) is far below 1%. If an inappropriately large value of At is
chosen so that p, exceeds unity (equation (15.7)), the results reflect the
nonsensical value of p, and will show an excess of unbound ligand and
effector molecules.

Values of p, that approach, but do not exceed, unity are perhaps sur-
prisingly well tolerated, as long as the increase in At does not also de-
grade the temporal granularity by a large amount. This last point is clearly
shown by another set of results in Table 15.1, obtained from simulations
in which the effector sites were all placed on the inside of the outer
shell, rather than on the inner concentric shells. Under these conditions,
identical equilibrium results are expected because the same amounts of
ligand and effector sites are present in the same total reaction volume.

Figure 15.6. (opposite) continued

(D) Mechanism for ACh hydrolysis by AChE in MEPC simulations. This reac-
tion illustrates unimolecular transitions in which ligand molecules are produced
(choline, Ch), transformed (ACh to acetate, Ac), or destroyed (Ac). It also includes
ACh binding to the acetylated AChE intermediate (AcE) to simulate excess sub-
strate inhibition (Rosenberry, 1979). The effective turnover number for ACh hydrol-
ysis was 16,000/sec (Stiles, 1990). k,,, 2 x 108; k_,, 14,000; k,, 112,000; k, 18,667;
k., 5x108; k ,, 21,429; k,, 1867.

+27
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Figure 15.7. Cutaway view of radially symmetrical reaction volume used for equi-
librium simulations. The outer shell (light blue mesh, actual volume 0.0628 ums3,
effective radius 0.247 um) is reflective to diffusing ligand molecules, while the 10
inner shells (gray) are transparent. Effector sites (not shown) were distributed
either on the inner shells to simulate a well-mixed solution (nearest-neighbor dis-
tance was the same within a shell as between adjacent shells) or on the inside
surface of the outer shell (see text and Table 15.1).

However, in this case the ligand molecules bind to a reflective (rather
than transparent) surface, and this doubles the value of p, for a given value
of At (Table 15.1, and see discussion of the factor f in equation (15.7)).
Comparison of these results (circa 2.5% error obtained with A¢= 3 i1sec
and p, = 0.72) to the earlier results obtained with (1) the same time step
and smaller binding probability (circa 2.5% error, p, = 0.36) or (2) a
longer time step but similar binding probability (6-13% error, At = 10
usec and p, = 0.66) shows clearly that simulation accuracy can be more
sensitive to temporal granularity than to binding probability.

As shown in Table 15.2, equilibrium simulations of extremely com-
plex reactions (Fig. 15.6B) also yield relative errors much less than 1%,
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Figure 15.8. Example of equilibrium relaxation simulations for the reaction mech-
anism of Fig. 15.6A. Effector sites were present either on the inner shells shown
in Fig. 15.7 (black data points) or on the inside surface of the outer shell (red data
points).

(A) The initial equilibrium conditions were perturbed by doubling the num-
ber of free ligand molecules at the time indicated by the arrow; hence the number
of unbound effector sites (ordinate values) relaxes to a new, lower equilibrium
value. Results are shown for individual simulations (At = 0.1 usec).

(B) The relaxation transition shown on an expanded time scale, with results
averaged across five simulations for each distribution of effector sites.

(C) A semilog plot of the averaged relaxation transition (final average equi-
librium number of unbound effector sites subtracted from ordinate values). With
effector sites distributed on the inner shells, the transition is first order (linear fit
superimposed on black data points). With effector sites on the outer shell (red data
points), the curved transition reflects higher-order kinetics that include ligand dif-
fusion time.

given reasonably small values of Az. Thus simulation accuracy is largely
independent of reaction complexity, and this independence arises largely
from the optimized implementation of sub-A¢ binding and unbinding
transitions discussed earlier. Figure 15.8 shows results from equilibrium
relaxation simulations for the simple reaction of Fig. 15.6A, obtained
with effector sites located either on the concentric shells or on the outer
shell alone. In the former case, the reaction space simulates a well-mixed
solution, and hence the relaxation follows an expected exponential
time course. With effectors on the outer shell (circa 0.25 Wwm radius),
however, the diffusion time from the center of the sphere to the pe-
riphery becomes a component of the relaxation, which therefore displays
complex higher-order kinetics. This result underscores the importance
of accurate 3-D simulations for problems such as second messenger dif-
fusion and signaling in subcellular locales.
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Table 15.1. Numerical Accuracy for a Simple Reversible Binding Reaction

Percentage error

At{usec) Py Py L(t = 42 usec) E(t = 28 usec) LE(t = 20 psec)
Effector sites on concentric shells

0.01 0.021 0.00050 +0.10 +0.15 -0.21
0.10 0.066 0.0050 +0.13 +0.20 -0.49
1.00 0.21 0.49 -0.39 -0.59 +0.82
3.00 0.36 0.14 -1.7 -2.6 +3.6

10.0 0.66 0.39 -6.3 -9.4 +13

10.0* 1.32 0.39 +5.7 +4.3 -6.0

Effector sites on outer shell

3.00 0.72 0.14 -1.6 -2.4 +3.4

Note: The reaction mechanism and rate constants are given in Fig. 15.6A, and sim-
ulations were run using the radially symmetrical structure shown in Fig. 15.7. For
each set of conditions, 20 simulations were started at equilibrium and run for
20,000 iterations with a total of 7750 effector sites. The total number of ligand
molecules was 10,000, except in one case (*) where k, was doubled and the
amount of ligand was reduced to keep the expected mean number of bound (LEeq)
and unbound (E_) effector sites constant. LE,, E,, and L, (expected mean for
unbound ligand molecules) were calculated from analytic equilibrium expres-
sions, as were the expected mean lifetimes (1) for each intermediate. During a run,
the number of molecules in each state fluctuates around some average value (see
Fig. 15.8A), which was calculated after the run had been completed. These values
then were averaged across the set of 20 simulations to obtain grand averages for
the MC results (Ly,e, Eyer @nd LE,,c). To calculate the percent error values shown
in the table, the MC grand averages were compared with the analytically predicted
means, e.g., (Eyc/E.q — 1) x 100 for unbound effector sites. With small values of At
and correspondingly small values of p, and p,, the MC results are fully converged.
As At, p,, and p, increase, the accuracy is reduced, with an excess of the bound
state (LE) as long as p, remains less than unity. If p, exceeds unity (¥), then there
can never be enough binding events per unit time, and the direction of error re-
verses. The temporal granularity (value of At relative to the values of 1) is another
important factor underlying accuracy, as can be seen by comparing the results
obtained with effector sites on the outer shell to the results obtained with effectors
on the inner concentric shells (see text).

Simulation of Acetylcholine Exocytosis

The earliest models of MEPC generation simplified NM]J architecture to
a flat, coin-shaped diffusion space and used either an analog computer
(Rosenberry, 1979) or differential equation—based simulation methods
(Wathey et al., 1979; Land et al., 1980, 1981, 1984; Pennefather and
Quastel, 1981; Madsen et al., 1984). Synaptic ACh appeared instanta-
neously as either a point source or another simple distribution centered
within the space. With the introduction of early MC algorithms, planar
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Table 15.2. Numerical Accuracy for a Complex Cyclic Reaction

L E LE LE2 LE3 LE4
T (Usec) 232 32.5 27.7 22.6 28.6 30.3
Percentage error  -0.25  -0.63  +0.021 -0.28 +0.34 —-0.32
LES L,E® L,E® LE7 LE®
T (Usec) 9.76 21.6 24.7 15.4 9.80

Percentage error +0.12 +0.22 +0.28 +0.063 +0.0079

Note: The reaction mechanism and rate constants are given in Fig. 15.6B, and
otherwise the simulations were run and results were analyzed as described in the
note to Table 15.1. A single example is shown for fully converged conditions with
effector sites on the concentric shells (At = 0.1 usec).

JFs were added to a model NMJ (Bartol et al., 1991), and the impact of
AChE site density and hydrolytic rate was investigated (Anglister et al.,
1994). More recently early versions of MCell have been used to add a
simplified vesicle and fusion pore to simulations of ACh exocytosis and
MEPC generation (Stiles et al., 1996, 1998), and they have also been used
for detailed modeling of MEPC temperature sensitivity (Stiles et al.,
1999). In all of these studies, the model results and predictions were
tested against average values of experimental measurements (e.g., ampli-
tude, rise time, and fall time), and therefore the simplified models were
adequate. However, more realistic models are required to investigate dis-
tributions of measured values (i.e., synaptic variability and plasticity).

The first step in developing more realistic models is to replace flat sur-
faces with membrane contours. In general this requires high-resolution
3-D reconstructions and polygon meshes that are optimized for use in
simulations. To introduce key concepts and methods, in this section
we illustrate the use of a complex polygon mesh to represent a synaptic
vesicle that merges smoothly with an expanding exocytotic fusion pore.
The diffusion of ACh into a synaptic cleft is simulated, and the predicted
time course is shown to match earlier results that had been tested care-
fully to ensure high accuracy (Stiles et al., 1996, 1998). These earlier re-
sults were obtained with a much simpler shape for the vesicle and pore,
so the agreement with the present findings both confirms the earlier
conclusions and validates the accuracy of the new simulations. We show
that the choice of [ (and therefore A¢) is particularly important to nu-
merical accuracy when ligand molecules diffuse through a constriction
like the fusion pore, and we also briefly discuss the use of an optimization
(spatial partitioning) that renders execution speed nearly independent
of mesh size and complexity.

Figure 15.9 shows a same-scale comparison of the polygon mesh
vesicle-pore model and the earlier simplified configuration (cube with
cylindrical pore composed of rectangular facets). The cube and sphere
have the same volume (2.7 x 10* nm?®) and represent the lumen of a
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Figure 15.9. Simplified and realistic models of a synaptic vesicle and exocytotic
fusion pore.
(A) Simplified, cube-shaped vesicle (30 nm side length) that communicates
with the synaptic cleft through a cylindrical pore composed of 16 rectangular facets.
(B) Polygon mesh model of vesicle and pore, composed of 1580 triangles. See
text for discussion of vesicle volume and pore dimensions.

synaptic vesicle at the NM]J, with actual (sphere) or equivalent (cube) ra-
dius of 18.6 nm. The pore height (%) is 9 nm in both cases (i.e., midway
between a single and double thickness of plasma membrane). The aver-
age radius (r) of the mesh pore is matched to the exact radius of the
cylindrical pore (2.5 nm in this illustration). Simulations were run either
with a fixed value of ras shown or with rincreasing at a constant rate of
25 nm/msec to simulate fusion pore expansion at the NM]J (Stiles et al.,
1996).

For this model of ACh exocytosis, the steepest concentration gradient
is across the pore height A. Therefore the rate of ACh efflux is mostly de-
termined by the pore geometry, that is, its “resistance.” Concentration
gradients do form inside the vesicle and cleft as well, but their signifi-
cance depends on the value of 7 At very small 7; the concentration drop
across his very steep (the pore “resistance” is very high) and almost com-
pletely limits ACh efflux. For larger values of 7 the vesicle and cleft gra-
dients become increasingly significant, but they are appreciably steep only
within a distance several times rfrom the inner and outer pore openings
(Stiles et al., 1996). The consequences are that (1) the bounding shape
of the vesicle should not affect ACh efflux significantly, although the
vesicle volume is an important factor (thus simulation results obtained
with the polygon mesh model should match results obtained with the
simplified vesicle and pore), and (2) for accurate simulation of ACh ef-
flux, the random walk algorithm must correctly produce concentration
gradients over distances comparable to =

Because the MCell random walk algorithm is grid-free and selects
from an extensive set of radial distances and directions for each move-
ment, concentration gradients are simulated accurately within distances
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nearly as small as the average step length [ . Thus, for accurate simula-
tion of ACh exocytosis, the time step A¢ need only be chosen so that A
(equation (15.2)) is somewhat smaller than r.° However, if the value
specified for At is too long and [_is appreciably larger than 7, then the
concentration gradients inside the vesicle, pore, and cleft will not be
steep enough. As illustrated subsequently, the apparent rate of ACh ef-
flux can then easily be slowed by an order of magnitude.

Each simulation of ACh efflux was begun using checkpointing to en-
sure uniform initial ACh concentration within the vesicle.!° Figure 15.10
(inset) shows four examples of ACh efflux curves that were obtained
using the simplified vesicle structure and fixed r (Fig. 15.9A) and illus-
trates the dramatically slowed emptying that occurs with increasing At.
Each of these curves has the form of an exponential decay (Stiles et al.,
1996, 1998), and the main panel of Fig. 15.10 shows the e-fold emptying
time (7) plotted as a function of the ratio [ /([ + 1. Essentially identical
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Figure 15.10. Simulation of ACh exocytosis through a fusion pore with constant
radius (r = 2.5 nm, Fig. 15.9A). Inset shows the time course of vesicle emptying
obtained with At values of approximately 82 psec, 33 nsec, 1.0 psec, and 7.3 usec
for curves a-d, respectively (D,.,, = 6 x 10-° cm?/sec). Ordinate values are nor-
malized to the starting amount of ACh, and each curve is the averaged result of
10 simulations. Such exponential emptying curves were fitted to obtain e-fold
times, and the resulting values of © were plotted (open squares in main panel,
mean + SD for 10 simulations) as a function of the ratio /(I + r). As indicated by
the fitted curve, T converges to the correct value when l_r is less than r.The point
marked with an asterisk was obtained with l_r = 0.4r, and this condition was used
for simulations of exocytosis through an expanding pore (Figs. 15.11 and 15.12).
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results are obtained with the polygon mesh structure (not shown, byt
see subsequently), so rin this ratio is either the average (polygon mesh)
or exact (simple model) pore radius. As the value of l / (l + 7) decreaseg
(i.e., as lr becomes small compared with 7), the Value of 1 converges to
circa 30 usec. For the case with the longest time step (i.e., with [ much
greater than r), the apparent value of T (circa 300 psec) is almost apn
order of magnitude larger than the correct value, because the ACh con-
centration gradients do not form properly in the pore and immediate
vicinity.

To illustrate and validate simulation of ACh exocytosis through a re-
alistic expanding fusion pore, the polygon mesh structure was interpo-
lated (morphed) 200 times, between limiting average radii of 0.93 nm
and 5.0 nm (Fig. 15.11). This starting radius simulates instantaneous
initial opening to a conductance of circa 300 pS, that is, gap junction di-
mensions. The ending radius corresponds to an omega figure at the
NM]J and is reached by the time the vesicle empties if the pore expands at
25 nm/msec after the initial opening (see Stiles et al., 1996, for additional
details). The sequence of morphed structures then was used in a series
of checkpointed simulations, in which the elapsed time for each check-
point (dictated by the expansion rate and number of morphs) was circa
0.8 usec. For each run in the sequence, Atwas chosen so that l; remained
about 40% of ». This maintained high numerical accuracy throughout
the sequence (see equivalentvalue of /(I + r) marked by an asterisk in

Figure 15.11. Realistic expanding exocytotic fusion pore. The structures for the
beginning and ending average pore radii (0.93 and 5.0 nm, respectively) are
shown. Using 3-D solid modeling software, smoothly interpolated structures
(morphs) were created, so that a total of 200 could be used in a sequence of
MCell checkpoints.
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Figure 15.12. Simulation of ACh exocytosis through an expanding fusion pore.
The time course of vesicle emptying is shown for the realistic (polygon mesh)
and simplified (cube and faceted cylinder) models of a fusion pore expanding at
25 nm/msec (D, = 6 x 106 cm?/sec). The thickness of each curve represents the
95% confidence interval obtained from five simulations for each structure. Ordi-
nate values normalized as for Fig. 15.10 (inset).

Fig. 15.10). The value of At therefore increased from about 45 psec for
the first run, to about 1.3 nsec for the last run (D, ., was 6 x 1075 cm?/sec).
Figure 15.12 shows the sigmoidal ACh efflux curve obtained with the
expanding fusion pore, and for comparison it also shows the analogous
curve obtained when rwas increased at the same rate for the simplified
structure. The two curves are essentially indistinguishable and therefore
validate the accuracy of MCell’s diffusion algorithms used with complex
polygon meshes. As previously reported (Stiles et al., 1996), the vesicle
empties within about 150 psec, at which time r reaches about 5 nm. In
addition the vesicle content is reduced to about 20% of the starting
amount within about 80 psec, a length of time comparable to the 20-80%
rise time of MEPCs at room temperature (Stiles et al., 1996, 1999).
Each time that a diffusing ACh molecule takes a random walk step on
its way out of the vesicle, its trajectory must be traced to find the nearest
intersection with a polygon (if any). This search for intersections is one
of the most time-consuming steps in an MCell simulation, and, unless
the search algorithm is optimized using spatial partitions, computation
time scales with the number of polygons that compose the surface(s) in
the simulation. Spatial partitions are simply transparent planes (ligands
pass through unhindered) that can be placed in arbitrary positions along
the x, y, and/or z axes to subdivide the simulation space into smaller
compartments (see Stiles and Bartol, 2000, for further details). When the
simulation begins, the polygons contained (wholly or partly) within each
compartment are identified. As the simulation runs, random walk trajec-
tories that originate in a certain compartment need only be traced for
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intersections with those polygons in the same compartment. If no inter.
sections occur and the trajectory projects into the next compartment, the
process continues as required. If each compartment contains only a sma||
number (n) of polygons and the total number of polygons in the simy,.
lation is N, then the optimal increase in execution speed is of ordey
N,/ n_, with no loss of numerical accuracy.

For example, the vesicle-pore mesh shown previously in Figs. 15.9 and
15.11 contains 1580 polygons, and if an exocytosis simulation is run with-
out spatial partitions the computer time increases by a factor of near ly
300. Thus a simulation that ordinarily requires 1 min with partitions
would require 4.5 h without partitions, and a set of checkpoint simula-
tions that ordinarily runs in 1 day would require about 9 months. Meshes
from synaptic reconstructions can easily contain 10°-10° polygons
rather than several thousand, so even single simulations are not feasible
in the absence of partitions. With partitions, however, such large-scale
simulations are now routine.

Sources of Miniature Endplate Current Variability:
Reconstruction and Simulation of Realistic
Endplate Ultrastructure

Planar Junctional Fold Model

As outlined previously, MC simulations based on a simplified (planar)
model of JFs at the NM]J (Fig. 15.13) are sufficient when comparing pre-
dictions to average values of experimental measurements, such as MEPC
amplitude, rise time, and fall time. To address factors that underlie MEPC
variability, the model must be more realistic, and in this section we in-
troduce high-resolution reconstructions and simulations of the synaptic
ultrastructure. To begin, we first establish a baseline for comparison by
examining the variability predicted by the planar JF model itself.

The planar JF model (Fig. 15.13) represents a “thick section” through
one nerve terminal and underlying muscle from a vertebrate NM]J (see
Fig. 15.2). The real membrane topology is simplified to regular and
constant dimensions, so the structure is characterized by the following
parameters (typical values used for reptile or mammalian endplates
are shown in parentheses, e.g., Matthews-Bellinger and Salpeter, 1978;
Salpeter et al., 1984):

Primary cleft length and width (2-4 pum).

Primary cleft height and secondary cleft width (50 nm).

Distance between JFs (0.2-0.4 um).

Depth of the JFs (0.5-1.0 um).

AChR site density on the crests of the JFs (7000-10,000/um?).
Depth to which crest AChRs extend within JFs (0.2-0.3 um).
Additional depth to which AChRs extend at reduced density (0.2
0.3 um at circa 30% of crest density).

MO DT s 08 o
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8. Uniform AChE site density throughout basal lamina planes cen-
tered within the primary (1500-2500/um?) and secondary (effectively
double the primary cleft value; see Fig. 15.13) clefts.

9. Position of ACh release site.

Based on the size of a single AChR (circa 8.5 nm diameter; Unwin,
1998), the maximum packing density in postsynaptic membrane would
be some 15,000/um?. This is considerably larger than quantitative val-
ues obtained with EM autoradiography, so even crest AChRs are unlikely
to cover the entire membrane area. The actual microscopic distribu-
tion within a given area remains unknown owing to the limited resolu-
tion of experimental measurements. As a first approximation, in MCell
simulations we set 0, (the global effector grid density) to a value near
the maximum packing density, and then when AChR effector sites are

Figure 15.13. Simplified (planar) model of a vertebrate NMJ with JFs. Pre- and
postsynaptic membranes (semitransparent and blue, respectively) are represented
by rectangular planes (each rectangle is actually bisected into two triangles). The
primary cleft is 2.0 x 2.7 um in length and width and is 50 nm in height. The sec-
ondary cleft width is 50 nm; the JFs are 0.8 um deep and are separated by 0.4 um.
AChRs (blue glyphs) are present at high density (7250/um?) on the crests of the
JFs (i.e., to a depth of 0.22 um) and at reduced density (70% less) for an addi-
tional 0.2 um. Below that AChRs are absent. AChE active sites (white glyphs) are
located in transparent planes that represent anchoring points in the basal lamina
(1800/um? in the primary cleft, and effectively 3600/um? in the secondary clefts
where the basal lamina doubles back as it follows the folded postsynaptic mem-
brane). Black vesicles overlying the JFs represent 30 ACh release sites. The ap-
parent linear “stripes” of AChR glyphs result from barycentric tiling of long, thin
triangles (the bisected rectangles), as illustrated schematically in Fig. 15.4, and as
seen in closer view in Fig. 15.15.
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added at a density less than G, their actual placement in differeny
membrane regions reflects random choices between different available
effector tiles (Fig. 15.4). The same is true for AChE sites in the basal lam-
ina. If a constant amount of ACh (vesicle content, N, ) is released
during each simulation, and fixed values are chosen for all of the pa-
rameters listed previously, then the only remaining sources of stochastic
variability are ACh random walk movements and individual AChR and
AChE reaction transitions. If the ACh release site is moved to different
locations, then the regional differences in AChR and AChE positions
become an added component of variability.

Figure 15.13 shows a planar JF model with 30 different ACh release
sites located in active zones that are centered above 6 JFs (active zones
generally are observed above the opening of a secondary cleft; see
Fig. 15.2). Ten different simulations were run at each release site, using
the AChR and AChE reaction mechanisms and rate constants shown in
Fig. 6C,D. Exocytosis of ACh (i.e., diffusion through an expanding fu-
sion pore) was simulated using a timesaving method that omits the
vesicle and pore but reproduces the time course of release shown in
Fig. 15.12. This method allows the use of a constant time step on the
microsecond scale rather than an adaptive time step on the picosecond-
to-nanosecond scale and hence reduces the required computer time by
several orders of magnitude (Stiles et al., 1998).

To summarize the MEPC variability predicted by the planar JF model,
the 10 individual MEPCs simulated for each release site were averaged
together, and the resulting 30 traces are superimposed in Fig. 15.14A.
The traces are very nearly identical (e.g., the coefficient of variation
[CV] for peak amplitude is less than 1%). The mean amplitude is circa
1000 open AChR channels, and the difference between the minimum
and maximum amplitudes is less than 40 channels (essentially the same
result is obtained for each set of 10 MEPCs per release site; not shown).

For each of the 300 simulated MEPCs, ACh diffuses away from the
release site and becomes diluted as it binds to AChRs and AChEs. The
efficiency of binding therefore decreases over time and radial distance.
A snapshot at the time of peak amplitude (Fig. 15.15A) shows a central
area of double-bound open AChRs (yellow) surrounded by a sparse
fringe of single-bound states (red), that is, the saturated disc of post-
synaptic activation. The size of the saturated disc is not large enough to
reach the edge of the primary cleft, but it is large enough to sample
many AChRs over a radial distance of circa 0.2 um in the primary and
secondary cleft. The size of the saturated disc and postsynaptic response
overwhelms noise that arises from stochastic single-channel behavior and
regional membrane differences in AChR and AChE placement. Thus,
on the scale of the saturated disc, the structure of the planar JF model
is essentially constant and MEPCs show little variability.

When analogous simulations are run with AChE completely inhibited,
the mean amplitude is 35% larger and the falling phase is prolonged
(Fig. 15.14B). However, the CV remains very small (2.6%), and the 30
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Figure 15.14. MEPC variability is minimal for the planar JF model and 30 ACh re-
lease sites shown in Fig.15.13. In both A and B, 30 MEPCs are superimposed (one
per release site, each an average of 10 individual simulations in which 6200 ACh
molecules were released, At = 1.0 usec). In A, AChE was normally active (reaction
mechanism shown in Fig. 15.6D), and in B, AChE activity was completely inhibited
(k,, in Fig. 15.6D was set to zero, so ACh could never bind). The reaction mecha-
nism for AChR activation was as shown in Fig. 15.6C, and MEPC amplitude is
expressed as the number of receptors in the double-bound, open conformation
(A,R*). In B, the mean amplitude is circa 35% larger than in A, and the 30 MEPCs
fall into three groups according to the position of the ACh release site (corner,
edge, or central; see text and Fig. 15.15).

traces fall into three easily discernible categories based on their ampli-
tudes and fall times. The smallest traces are also those with the shortest
duration, and they correspond to the four corner release sites. The traces
that are intermediate in size and decay time correspond to the 14 edge
(noncorner) positions, and the largest, slowest-decaying traces corre-
spond to the 12 central release sites.

With AChE inhibited, the full amount of released ACh (N, ,, ) spreads
radially and binds to additional AChRs during formation of the saturated
disc. For release from a central location, the additional AChRs are readily
available in all directions, so the radius of the disc is somewhat larger
(Fig. 15.15B) and the increased peak amplitude is reached somewhat
later. During the falling phase, ACh binds repeatedly and hence diffuses
and dilutes slowly (buffered diffusion; Katz and Miledi, 1973). Although
the efficiency of channel opening is low, additional openings are frequent
enough to prolong the fall time circa threefold. With release from a
corner or edge site, peak amplitude increases less because a significant
fraction of spreading ACh escapes from the primary cleft even during
the rising phase. More escapes during the falling phase, which reduces
buffered diffusion and attenuates the prolongation of fall time.

The variability of quantal endplate signals has been an integral factor
in classical quantal analysis for many years (del Castillo and Katz, 1954;
Redman, 1990; Edwards, 1995a,b) and is markedly larger than the vari-
ability predicted by the planar JF model. Experimental MEPC amplitudes
vary by a factor of two to three, and the distribution is approximately
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Figure 15.15. Appearance of the saturated disc in the planar JF model. For this il-
lustration, ACh was released from two sites simultaneously (central and corner),
and the presynaptic membrane and AChE sites are omitted for clarity.

(A) Snapshot at peak amplitude with AChE active (circa 300 usec after onset of
ACh release). AChR glyphs are color-coded according to their reaction state (AR’
and AR?, red; A,R, green; A,R¥, yellow; see Fig. 15.6C). ACh molecules are tiny
dots. If bound, they have the same color as the corresponding AChR glyphs. If un-
bound, they are cyan.The radial extent of saturated disc formation is small enough
that the edge of the primary cleft space has no effect on MEPC variability (see text
and Fig. 15.14A).

(B) Snapshot at peak amplitude with AChE inhibited (circa 490 psec). The sat-
urated disc has spread farther than it does with active AChE, so edge effects are
apparent for peak amplitude and fall time (see text and Fig. 15.14B). Single-bound
AChRs arising from the two release sites show clear overlap.
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Gaussian (broader and shifted slightly to larger values after AChE inhi-
bition). It has mostly been assumed that this variability arises from dif-
ferences in N s from one vesicle to another (Edwards, 1995a), but the
planar JF model can be used to suggest other alternatives. For example,
small changes (much less than twofold) in primary cleft height, JF width,
or global AChR density can all affect MEPC amplitude to an extent that
greatly outweighs the stochastic variability illustrated previously. In addi-
tion, all of these factors introduce opposing changes in amplitude and
rise time (e.g., an increase in primary cleft height would decrease am-
plitude but increase rise time). Changes in N, ., or the distance between
JFs, on the other hand, cause amplitude and rise time to change in the
same direction. Experimental MEPCs show little or no correlation be-
tween amplitude and rise time (Land et al., 1980; Bartol, 1992; J. Stiles,
unpublished data), so presynaptic factors (i.e., N, , ACh exocytosis) and
postsynaptic architecture must both contribute significantly to MEPC
variability, with offsetting influences on amplitude and the time course
of the rising phase. With AChE active, MEPC fall time is almost exclusively
determined by the apparent open time of the AChR channel (Anderson
and Stevens, 1973; Anglister et al., 1994; Stiles et al., 1999), so variability
in single-channel kinetics from one AChR to another will also be required
for a complete model of MEPC variability.

Curved and Branched Junctional Fold Model

As a first step toward modeling these complexities, we designed a more
realistic “thick section” of NMJ that has curved and branched JFs, but
that otherwise can easily be compared to the planar JF model. A portion
of pre- and postsynaptic membrane contours was traced from a TEM
image of rat diaphragm NM]J (Fig. 15.16A), and the length of primary
cleft, number of JFs, and spacing between JFs were similar to the cor-
responding parameters in the planar model. The fold structure was
morphed smoothly to obtain additional successive “sections,” which then
were reconstructed into optimized pre- and postsynaptic meshes for MCell
simulations (circa 3400 and 25,000 triangles in the nerve and muscle
membrane meshes, respectively; Fig. 15.16B). As shown in Fig. 15.16D,
the muscle membrane was clipped into pieces representing crest, inter-
mediate, and deep JF regions, and AChR effector sites were added to the
top two regions (circa 91,000 total), as had been done for the planar JF
model. A third polygon mesh containing AChE sites (circa 59,000) was
created to model the basal lamina and followed the contour of the post-
synaptic membrane (Fig. 15.16C). Thirty ACh release sites were placed
in active zones above the folds (Fig. 15.16C,D), and ACh exocytosis was
simulated using the timesaving method described previously.

Ten MEPCs were simulated and averaged for each release site of
the branched JF model, and the resulting 30 traces are shown super-
imposed in Fig. 15.17A. Comparison of these results to those for the pla-
nar JF model (Fig. 15.14A) shows that the MEPC variability is markedly
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Figure 15.16. Model of a vertebrate NMJ with curved and branched JFs.

(A) Typical TEM of rat diaphragm NMJ. Three active zones are clearly seen
above the openings of JFs. From Peters et al. (1991), used by permission of Oxford
University Press, Inc.

(B) Wireframe image of the optimized mesh created after tracing and mor-
phing a portion of the postsynaptic membrane shown in A.

(C) Pre- and postsynaptic membranes, AChR and AChE glyphs, and 30 ACh
release sites visualized as described previously for the planar JF model (Fig. 15.13).
The contour of the basal lamina (1800 AChE sites/um?) follows that of the post-
synaptic membrane throughout the branched and variable JFs. The postsynaptic
membrane was subdivided into crest, intermediate, and deep JF regions, as shown
in D, and the density of AChRs in each region was the same as for the planar JF
model. The apparently random positions of AChR glyphs reflect barycentric tiling
of the optimized mesh, which contains nearly equilateral triangles (B, and see
Fig. 15.4A).

(D) JF structure and ACh release sites. The pre- and postsynaptic membranes
shown in C were cut in a manner analogous to TEM thin sections (40 nm). At the
top is the leading edge (front) section, followed by those sections that included a
row of ACh release sites, and the final (back) section.The postsynaptic membrane
is color-coded according to JF region (and therefore AChR density): crest, red; inter-
mediate, cyan; deep, black. The line thickness along each contour is determined
by the orientation of the membrane relative to the plane of section.
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increased. The CV is 6%, that is, more than sevenfold larger than the pre-
vious result, the range of amplitudes is larger by more than fivefold, anq
a relative independence of amplitude and rise time is qualitatively evi-
dent. The mean amplitude is reduced by some 25% and reflects incréased
diffusion and dilution space within the curved and branched secondary
cleft contours. The variability for each set of 10 MEPCs per release site
was no different than that for the planar JF model (not shown), so the re-
sults shown here originate entirely from geometric differences between
release sites. The relationship between MEPC amplitude and the detailed
structure underlying each release site (see contours of Fig. 15.16D) is not
easy to predict, as some of the largest and smallest MEPCs occurred at
corner and edge positions, over single and branched JFs. In essence the
MEPC amplitude is very sensitive to the cleft volume within and around
the region of saturated disc formation, and this 3-D parameter is very
difficult to estimate by eye from membrane contours. /

When AChE inhibition is simulated (Fig. 15.17B), the mean amplitude
is 38% larger than with AChE active (Fig. 15.17A). This relative change
is almost exactly the same as that described previously for the planar NM]
model (35%), but the range and variability of amplitudes are markedly
increased (CV of 7.6%, about threefold larger; compare Fig. 15.17B to
Fig. 15.14B). Neither the amplitudes nor the falling phases shown in
Fig. 15.17B can be separated into nonoverlapping groups on the basis of
corner, edge, or central ACh release position. In addition, the amplitude
range nearly overlaps the range obtained with normal AChE activity
(Fig. 15.17A). When AChE inhibition is simulated using the branched
rather than planar JF model, diffusing ACh travels farther into the larger
available cleft volume and therefore “samples” more geometric variability.
This diminishes the influence of the primary cleft boundary and broadens
and smoothes the distributions of MEPC size and time course to resemble
experimental distributions more closely.

200
AR*
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Figure 15.17. MEPC variability for the NMJ model with curved and branched JFs.
As in Fig. 15.14, 30 MEPCs (one averaged trace per ACh release site) are super-
imposed in A (AChE active) and B (AChE inhibited). The mean amplitude is circa
38% larger in Bthan in A, that is, about the same relative increase as obtained with
the planar JF model and AChE inhibition. However, the MEPC variability is many
times larger than that obtained with the planar JF model (see text). At = 1.0 usec.
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Neuromuscular Junction Reconstruction and Simulation

Even with NACh held constant (i.e., assuming no variation in the amount
of ACh released per quantal event), the variability introduced by the
branched JF model represents an appreciable fraction of experimental
MEPC variability (e.g., 30-50% based on range of amplitudes). Hence
this model illustrates very well the importance of architectural realism in
synaptic simulations. However, the branched JF model itself remains a
simplification (surprisingly so), and therefore it also illustrates very well
the need for high-resolution, quantitative reconstructions of synaptic
architecture. It is considerably more difficult to create such reconstruc-
tions for use with simulations than it is to create them for imaging and
morphometrics, and we will detail our methods and large-scale efforts
elsewhere. We conclude here with an illustrative example and briefly
compare preliminary results from MCell simulations to those obtained
with the branched JF model.

Since the distance across primary and secondary cleft spaces is about
50 nm, the resolution for reconstructions must be about 10 nm or bet-
ter in all three dimensions for use with simulations. On the other hand,
the overall size of the reconstruction is on the order of microns in each
dimension, so the scale of the problem is quite large and presents
many technical challenges. In essence, creation of a reconstruction for
use with MCell simulations entails three steps: (1) generation of a high-
resolution EM data set for a volume of tissue, (2) extraction of mem-
brane or other surfaces of interest from the volumetric data set, and
(3) subdivision of the surfaces as needed, to add simulation objects such
as ligand release sites and different populations of effector sites (e.g.,
subdivision of JFs according to AChR density).

The conventional approach to step 1 is serial TEM sections, but typi-
cally even the thinnest sections (say, 40 nm) are thicker than the desired
resolution, and as section thickness decreases the section uniformity and
number of serial sections can become problematic. EM tomography ul-
timately may be a better approach and is becoming more accessible,
and the specific application of such methods to MC simulations is an
important area for future research. Step 2 requires both the identifica-
tion of the surfaces and their subsequent transformation into optimized
polygon meshes, and such problems are presently the focus of much com-
puter science and graphics research, particularly for highly convoluted
structures like cell membranes. Step 3 is likewise a present-day computer
science and graphics problem, and it poses particular difficulties because
of the need for interactive control over very large-scale structures.

For the example illustrated here, we reconstructed a length of nerve
terminal and postsynaptic membrane from a mouse sternomastoid
NM]J. Approximately 20 sequential TEM sections were cut to a thickness
of 100 nm to ensure high uniformity, and 7 were chosen for the recon-
struction. The resulting mesh thus had an aggregate thickness of 0.6 wm,
that is, several times the diameter of a saturated disc. Figure 15.18A (inset)
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Figure 15.18. Simulation of MEPCs in a high-resolution, partial reconstruction of
mouse sternomastoid NMJ.

(A) The inset shows aTEM image from one section used for the reconstruc-
tion. CE, contractile elements; JF, junctional fold; NT, nerve terminal; PC, primary
cleft; SC, Schwann cell; SV, synaptic vesicle. Scale bar = 1 um.The segment of re-
constructed nerve terminal is shown in translucent gray, and six ACh release sites
are indicated by color-coded synaptic vesicles that correspond to the six color-
coded MEPCs shown in Fig. 15.19. Extra- and intracellular faces of the postsynap-
tic muscle membrane are light and dark blue, respectively, and the bounding box
is 4.2x0.6x 2.5 um. SCI, Schwann cell process invaginations. Asterisks mark the
position of a tunnel between JFs.

(B) Close-up image of the ACh release sites above the postsynaptic membrane,
shown as a wireframe view of the optimized mesh.

(C-D) Illustrative snapshots of MEPC generation for the yellow and blue ACh
release sites, 100 usec (C) and 400 psec (D) after onset of release. AChRs and AChE
active sites were distributed uniformly over the postsynaptic membrane at 7250
and 1800/um?, respectively. The colors for AChR and ACh glyphs are the same
as in Fig. 15.15. Unbound AChE sites are shown as white spherical glyphs, and
bound AChE states (Fig. 15.6D) are black.
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shows a micrograph from one of the sections, and Fig. 15.2B shows a-
other representative TEM view of a mouse sternomastoid NM]J. In con-
trast to textbook depictions, the JF structure and disposition of thickened
postsynaptic membrane are extremely complicated, and tunnels can evep
cross from one secondary cleft to another (asterisk in Fig. 15.18A).

The seven sections chosen for the reconstruction were digitized, and
the pre- and postsynaptic membrane contours were traced as smooth
curves in each. The positions of synaptic structures can change a great
deal from one TEM section to the next, and such changes can markedly
degrade the output of surface reconstruction algorithms. To overcome
this problem, a method was devised to interpolate between the contours
of adjacent sections and thus in effect create additional “sections” at
finely spaced intervals between the originals.!! After interpolation, a total
of 121 “sections” were obtained at 5-nm intervals, containing smoothly
curved pre- and postsynaptic membrane contours that changed very
little from one section to the next. The sections were then used to cre-
ate corresponding images of the contours with a pixel scale of 5 nm, and
the resulting “stack” of images at 5 X 5 X 5-nm final resolution was passed
through a “marching cubes” surface reconstruction algorithm (Schroeder
et al., 1998) that in our experience is the most reliable for highly con-
voluted structures. The initial meshes obtained for the pre- and post-
synaptic membranes each contained several million triangles, and they
were subsequently decimated (reduced to fewer triangles) and optimized
for MCell simulations without appreciable degradation of topology. The
final meshes for the nerve and muscle surfaces contained 20,000 and
80,000 triangles, respectively.

Figure 15.18A shows the reconstructed nerve and muscle mem-
branes and their overall dimensions. To those preconditioned by typical
cartoons of vertebrate NMJs, the structure is exceedingly complex. Be-
cause of numerous twists, pockets, and interconnections at various
depths, the structure of the JFs is closer to that of a sponge than a
pleated sheet. A close-up view of the optimized mesh for the muscle
membrane is shown in Fig. 15.18B, together with six synaptic vesicles
positioned at different possible ACh release sites above secondary cleft
openings.

The next level of detail for this reconstruction would be realistic dis-
tributions and densities of AChR and AChE sites. However, to illustrate
the isolated effect of synaptic topology on MEPC variability, we added
AChR effector sites at uniform crest density over the entire muscle sur-
face and then intermixed AChE sites onto the muscle surface as well.
Exocytosis of ACh was simulated as described previously for the planar
and branched JF models, and Fig. 15.18C,D shows different stages of sat-
urated disc formation during release from two of the six vesicles indi-
cated in Fig. 15.18A,B. Individual color-coded MEPCs that correspond
to the six different release sites are illustrated in Fig. 15.19, and the
range of amplitudes is almost as large as the range obtained with 30 dif-
ferent release sites and the branched JF model (Fig. 15.17A). Although
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Figure 15.19. Preliminary examples of MEPC variability arising from highly real-
istic postsynaptic topology at the mouse sternomastoid NMJ. Individual color-
coded MEPCs are shown, corresponding to the ACh release positions indicated
in Fig. 15.18A,B (At = 0.5 usec). Whereas classical assumptions have mostly at-
tributed MEPC variability to differences in the amount of ACh released from each
synaptic vesicle, these examples, based only on a thin strip of reconstructed tis-
sue, show that significant differences in amplitude and rise time can arise just from
local differences in cleft architecture.

the yellow release site is positioned near the edge of the primary cleft
space, the corresponding MEPC is not the smallest of the group. The
remaining release sites are positioned about midway across the thickness
of the structure, and there is no easily discernible relationship between
their positions, the surrounding JF structure, and the relative sizes of the
MEPCs. In addition, there is no apparent correlation between MEPC
amplitude and the time-to-peak. Therefore, preliminary results obtained
with this high-resolution reconstruction substantiate the results described
previously for the branched JF model.

Close examination of TEM sections for mouse sternomastoid NM]Js
(e.g., Figs. 15.18A [inset] and 15.2) shows that the depth and disposition
of thick, ostensibly AChR-rich, postjunctional membrane is highly vari-
able, and that vesicles and active zones can be positioned at the “edge” of
the nerve terminal where the height of the primary cleft can increase
markedly. The addition of these factors to reconstructions of extended
thickness (at least 4-5 um) will allow a quantitative description of MEPC
variability (with and without AChE inhibition) arising from postsynaptic
structural variations. Thereafter distributions for additional pre- and
postsynaptic factors (e.g., N,,, vesicle volume [which would affect the
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rate of ACh release], and single channel rate constants) can be added
the model in order to deconvolve their contribution to the total observe(
variability of amplitude, rise time, and fall time, and explain correlationg
or the absence of correlations between the quantal size and time course.

A Brief Look to the Future

In this chapter we have reviewed and illustrated MC methods for simu-
lation of molecular diffusion and chemical reaction in 3-D subcellular
environments. Our focus was synaptic physiology and detailed structural
realism. Large-scale reconstructions of complex endplate morphology
presently underlie ongoing simulations of normal and pathological neuro-
muscular function.

Although 3-D reconstructions are becoming increasingly common in
biological research, the combination of reconstruction and simulation
is in its infancy. Quantitative simulations require reconstructions with
very high resolution and accuracy, and thus the reconstruction and
model design become significant computational challenges in and of
themselves. The design and use of such detailed quantitative models
drives the acquisition of more accurate experimental data and (particu-
larly with highly realistic MC models) often changes the way one thinks
about the structure and function of the modeled system. This in turn
leads to different avenues of experimental investigation, the results of
which then can be used to test or extend the model. An excellent case
in point is detailed relationships between synaptic current size and time
course, which can be used to identify and constrain pre- and postsynap-
tic parameters that contribute to synaptic variability and plasticity. Once
this approach has been worked out in a relatively simple system (e.g., the
NMYJ), it may be applied in more complex settings (e.g., a reconstructed
volume of neuropil).

Computational power continues to grow exponentially and is ex-
pected to do so throughout the foreseeable future. New algorithms will
take advantage of such increased power and will continue to add new
levels of realism to MC simulations. For example:

1. Bimolecular associations, as described here for diffusing ligand mol-
ecules and fixed effector sites, will be extended to include interactions
between multiple diffusing species (e.g., Ca®*, Ca®*-sensitive dyes, and
mobile Ca?*-binding proteins).

2. Surface properties such as membrane potential will be added and
combined with electric field and pressure gradient modifications to
diffusion algorithms, so that classical transport physiology and cellular
excitation can be simulated at the level of stochastic 3-D interactions.

3. Biomechanical properties will be added to components of models,
to simulate cellular motility and the active intracellular trafficking of
molecules and organelles.
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Such new and existing modeling capabilities, together with a rapidly
expanding experimental data base of 3-D structure, molecular con-
stituents, biochemical pathways, and physiological measurements, will
help provide quantitative answers to many existing questions centered
on synaptic plasticity, crosstalk, modulation, and functional relationships
between neurons and glia. Increasingly realistic models may also help
to identify previously unforeseen principles of peripheral and central
synaptic function. Perhaps in time functional analogies will be drawn
between JFs at the NMJ, perforated spine synapses in the brain, and
intersynaptic regions between dendritic spines—all structures that pro-
vide interspersed receptive and nonreceptive postsynaptic area and cleft
space. At present it seems that all may somehow reflect or influence
neurotransmitter receptor localization and metabolism (e.g., endplate
AChR turnover; Akaaboune et al., 1999; Salpeter, 1999) or glutamate
receptor mobilization and recruitment during long-term potentiation
of excitatory hippocampal synapses (Shi et al., 1999). Another outcome
of interleaved experimental and realistic modeling studies could be
guided development of new clinical interventions for peripheral and
central nervous system diseases.

Appendix: Symbols

Apr Area of effector tile

Ayg  Area of mesh element

C, Ligand concentration

D, Ligand diffusion constant

At Monte Carlo time step

E Effector site

h Exocytotic pore height

K Random number

k Rate constant for unimolecular transition

k., Rate constant for bimolecular association

L Ligand

b Random walk radial step length

[, Random walk average radial step length

I Random walk average step length along direction perpendicular to a
mesh element

Ny, Number of acetylcholine molecules in a synaptic vesicle

Ny Average number of ligand molecules that bind to an effector site dur-
ing A¢

Netr Number of effector tiles on a mesh element

N, Average number of ligand molecules that hit an effector tile during At

P Probability

b, Monte Carlo binding probability, obtained conceptually from N,/N,,

by Monte Carlo probability of a unimolecular transition

r Radial distance, or exocytotic pore radius

Ver Volume “above” and “below” effector tile, product of area Ap and

height 2(7))
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Notes

1. Based on observed distances between synaptic densities in 3-D reconstruc-
tions (e.g., Ventura and Harris, 1999).

2. <http://www.mcell.cnl.salk.edu> and <www.mcell.psc.edu>.

3. MCell’s MDL allows simulation models to be archived and exchanged in
readable text. An MDL Reference Guide and tutorial examples are available at
the MCell Web sites given in note 2.

4. Random numbers are used to choose step lengths and directions, and
to make other choices, and the computer time required to calculate random
numbers is a significant fraction of the time required to run a simulation. MCell
includes a self-contained cryptographic-quality random number generator that
ensures identical results across different computer platforms and is optimized
for speed in various ways (e.g., the bits obtained from calculation of a single
random number are subdivided so that two or more decisions can be made for
the price of one).

5. In computer graphics, ray tracing entails following a light ray through
successive surface intersections and reflections, and ray marching is a special
case in which some property of the ray (e.g., intensity) is decremented after
each intersection. By analogy, MCell employs highly optimized ray tracing and
ray marching algorithms for ligand movements.

6. Software packages for surface reconstruction and mesh optimization (in-
cluding adaptation to nearly equilateral triangles) are freely available in many
forms, but their design, reliability, and usefulness are highly variable. Additional
details can be found at the Web sites given in note 2.

7. If a reaction that consumes ligand is used, such as that shown for AChE
hydrolysis of ACh in Fig. 15.6D, then the ligand consumption can be balanced by
introducing additional effector sites that produce ligand at the necessary rate.
The simulation thus is run under steady-state rather than equilibrium conditions.

8. Each simulation was begun with all rate constants in the reaction mecha-
nism set to zero, so no transitions would occur and the initial state of the effec-
tor sites would be preserved. The ligand molecules were introduced at a point
in the center of the sphere, and the first checkpoint was reached when the lig-
ands had diffused to uniform average concentration. The run was then contin-
ued from this checkpoint with all rate constants changed from zero to their de-
sired values, so that the reaction could either proceed to equilibrium or remain
at equilibrium, depending on the initial state of the effector sites. To simulate a
relaxation, a second checkpoint was used to stop the run, set all rate constants
back to zero, and introduce additional free ligand molecules, which then dif-
fused to uniform concentration together with the pre-existing ligand. A final
checkpoint reset the rate constants so that the relaxation would proceed.

9. But not, for example, an order of magnitude smaller than 7, which would
likely be the case with a simpler random walk algorithm based on a fixed step
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length and movements on a lattice. Equivalent accuracy with the simpler method
(which would not execute any faster) thus would probably require a step
length about 4-fold smaller than l; Because step length scales with \/A_t, the sim-
ulation would require about 16-fold more time step iterations and a correspon-
ding increase in computer time.

10. A reflective plane was added to cut across the pore where it joins the
vesicle. The ACh molecules inside the vesicle thus could not escape and were
allowed to diffuse until they became uniformly dispersed. The simulation then
was halted and restarted from this checkpoint without the reflective plane, so
that ACh molecules could diffuse through the pore and into the cleft space.

11. Automated interpolation of highly irregular, convoluted contours is not
generally possible because there is no simple way to keep corresponding por-
tions, or segments, of the contours in register. When registration errors occur,
the interpolated surface is likely to twist and pass through itself, which will ruin
areconstruction that is to be used with simulations. In brief, our method for in-
terpolation entails (1) animating the sequence of original TEM images, because
the correspondence between structures in different sections is much easier to
grasp when the structures are seen “in motion”; (2) hand-subdivision of the
complex contours of each section into shorter segments with simple shapes
(e.g., a portion of a single JF); and (3) automated linear interpolation between
corresponding segments of adjacent contours, to create entire new contours be-
tween those of the original sections.
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