
Letter
https://doi.org/10.1038/s41586-018-0533-0

Glider soaring via reinforcement learning in the field
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Soaring birds often rely on ascending thermal plumes (thermals) 
in the atmosphere as they search for prey or migrate across large 
distances1–4. The landscape of convective currents is rugged and 
shifts on timescales of a few minutes as thermals constantly form, 
disintegrate or are transported away by the wind5,6. How soaring 
birds find and navigate thermals within this complex landscape 
is unknown. Reinforcement learning7 provides an appropriate 
framework in which to identify an effective navigational strategy as a 
sequence of decisions made in response to environmental cues. Here 
we use reinforcement learning to train a glider in the field to navigate 
atmospheric thermals autonomously. We equipped a glider of two-
metre wingspan with a flight controller that precisely controlled 
the bank angle and pitch, modulating these at intervals with the 
aim of gaining as much lift as possible. A navigational strategy was 
determined solely from the glider’s pooled experiences, collected 
over several days in the field. The strategy relies on on-board 
methods to accurately estimate the local vertical wind accelerations 
and the roll-wise torques on the glider, which serve as navigational 
cues. We establish the validity of our learned flight policy through 
field experiments, numerical simulations and estimates of the noise 
in measurements caused by atmospheric turbulence. Our results 
highlight the role of vertical wind accelerations and roll-wise torques 
as effective mechanosensory cues for soaring birds and provide a 
navigational strategy that is directly applicable to the development 
of autonomous soaring vehicles.

In reinforcement learning, an animal maximizes its long-term reward 
by taking actions in response to its external environment and internal 
state. Learning occurs by reinforcing behaviour based on feedback from 
past experiences. Similar ideas have been used to develop intelligent 
agents that have achieved spectacular performance in strategic games 
such as backgammon8 and Go9, visual-based video game play10 and 
robotics11,12. In the field, however, constraints imposed by variable 
and uncontrolled conditions prevent learning agents from using data- 
intensive learning algorithms and the optimization of model design 
needed for quicker learning. These are the conditions most often faced 
by living organisms.

A striking example in nature is provided by thermal soaring. 
Atmospheric convection is not consistent across days and, even under 
suitable conditions, the locations, sizes, durations and strengths of 
nearby thermals are unpredictable. As a result, the distribution of sam-
ples used to train the glider differs day-to-day. Gliders and birds oper-
ate at spatial and temporal scales where fluctuations in wind velocities 
are due to turbulent eddies lasting a few seconds that may mask or 
falsely enhance a glider’s estimate of its mean climb rate. Further, the 
measurement of navigational cues using standard instrumentation 
may be consistently biased by aerodynamic effects that require pre-
cise quantification. Here, we demonstrate that reinforcement learning 
can meet the challenge of learning to soar effectively in atmospheric 
turbulent environments. In past work, by contrast, the manoeuvring 
of an autonomous helicopter in ref. 11 is a control problem that is 
decoupled from environmental fluctuations and has little trial-to-trial 
variability. Past autonomous soaring algorithms have largely relied 
on locating the centroid of a drifting Gaussian thermal13–16, which 

is unrealistic, or have applied learning methods in highly simplified 
simulated settings17–19

.
Using the reinforcement learning framework7, we may describe the 

behaviour of the glider as an agent traversing different states (s) by 
taking actions (a) while receiving a local reward (r). The goal is to 
find a behavioural policy that maximizes the ‘value’: that is, the mean 
sum of future rewards up to a specified horizon. We seek a model-free 
approach, which estimates the value of different actions at a particular  
state (called the Q function) solely through the agent's experiences during  
repeated instances of the task, thereby bypassing the modelling of  
complex atmospheric physics and aerodynamics (see Methods). The 
optimal policy is subsequently derived by taking actions with the  
highest Q value at each state, where the state includes sensorimotor 
cues and the glider’s aerodynamic state.

To identify mechanosensory cues that could guide soaring, we 
recently combined the above ideas with simulations of virtual gliders 
in numerically generated turbulent flow20. Two cues emerged from 
our screening: (1) the vertical wind acceleration (az) along the glider’s 
path and (2) the spatial gradients in the vertical wind velocity across 
the wings of the glider (ω). Intuitively, the two cues correspond to the 
gradient of the vertical wind velocity in the longitudinal and lateral 
directions of the glider, which locally orient it towards regions of higher 
lift. Simulations20 further showed that the glider’s bank angle is the cru-
cial aerodynamic control variable; additional variables such as the angle 
of attack, or other mechanosensory cues such as temperature or vertical 
velocity, offer minor improvements when navigating within a thermal.

To learn to soar in the field, a glider (wingspan, 2 m) was equipped 
with autonomous soaring capabilities (Fig. 1a, b). The glider is 
equipped with a flight controller, which uses a feedback control sys-
tem to modulate the glider’s ailerons and elevator such that the bank 
angle and pitch take the values desired by the behavioural policy being 
used (we use two different behavioural policies during initial learning, 
and the gliders then implement a further policy—the final navigational 
strategy—after learning). Relevant measurements, such as the altitude, 
ground velocity (u), airspeed, bank angle (μ) and pitch, are made con-
tinuously at 10 Hz with standard instrumentation (see Methods). At 
fixed time intervals, the glider changes its heading by modulating its 
bank angle in accordance with the implemented behavioural policy.

Noise and biases that affect learning in the field require the devel-
opment of appropriate methods to extract environmental cues from 
measurements made by sensory devices. We found that estimates of 
az from the derivative of the vertical ground velocity (uz) are biased 
by longitudinal motions of the glider about the pitch axis as the glider 
responds to an imbalance of forces and moments while turning. By 
modelling the glider’s longitudinal dynamics, we obtain an unbiased 
estimate of the local vertical wind velocity (wz), and az as its derivative 
(see Methods). The estimation of the spatial gradients across the wings, 
ω, poses a greater challenge, as it involves the difference between two 
noisy measurements at relatively close positions. The key observation 
that we used here is that the glider rolls because of contributions from 
vertical wind velocity gradients, the feedback control mechanism and 
various aerodynamic effects. The resulting roll-wise torque can be  
estimated from the small deviations of the true bank angle from 
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the desired one, and a new dynamical model allows us to separate 
the ω contribution due to velocity gradients from the other effects 
(see Methods). A sample trace of the resulting unbiased estimate of 
ω is shown in Fig. 1c, d, together with traces of wz, μ and unbiased 
estimates of az.

Equipped with a proper procedure for estimating environmental 
cues, we next addressed the specifics of learning in the field. First, to 
constrain our state space, we discretized the range of values of az and 
ω into three states each: positive high (+), neutral (0) and negative 
high (−). Second, we found that learning is accelerated by choosing az 
attained at the subsequent time step as the reward signal. The choice of 
az (rather than wz) is an instance of reward shaping that is justified in 
Supplementary Information, where we show that using az as a reward 
still leads to a policy that optimizes the long-term gain in height. This 
property is a special case of our general result that a particular reward 
function or its time derivatives (of any order) yield the same optimal 
policy (Supplementary Information). Choosing wz as the reward fails 
to drive learning in the soaring problem, possibly because the velocities 
(and thus the rewards) are correlated across states and their temporal 
statistics strongly deviates from the Markovianity assumption in rein-
forcement learning methods7. Velocity fluctuations in turbulent flow 
are long-correlated: that is, their correlation timescale is determined 
by the largest timescale of the flow (see, for instance, figure 9 of ref. 21),  
which is of the order of minutes in the atmosphere. Conversely, the 
correlation timescale of accelerations is controlled by the smallest 
timescale21–23 (the dissipation timescale in figure 7 of ref. 21). This is 
estimated to be only a fraction of a second, which is much smaller than 
the time interval between successive actions. Note that the previous 
experimental observations can be rationalized by the combination 
of the power-law spectrum of turbulent velocity fluctuations in the 
atmosphere and the extra factor of frequency squared in the spec-
trum of acceleration versus velocity fluctuations23. Finally, the glider’s 
experiences, represented as state–action–state–reward quadruplets, 
(st, at, st+1, rt), were cumulatively collected (over 15 days) into a set 
E using explorative behavioural policies. Learning is monitored by 

bootstrapping the standard deviation of the Q values from E (Fig. 2a), 
calculated through value iteration methods (see Methods).

The navigational strategy derived at the end of the training period 
is presented in Fig. 2b, which shows the actions deemed optimal for 
the 45 possible states. The rows corresponding to ω = 0 resemble the 
Reichmann rules24—a set of simple heuristics for soaring, which sug-
gest a decrease (increase) in bank angle when the climb rate increases 
(decreases). Our strategy also gives a prescription for bank: for instance, 
when az and ω are both positive (top row in Fig. 2b)—that is, in a sit-
uation when better lift is available diagonal to the glider’s heading—it 
is advantageous not to bank to the extreme but rather to maintain an 
intermediate value between −30° and −15°. Importantly, the learned 
leftward (rightward) bias in bank angle on encountering a posi-
tive (negative) torque validates our estimation procedure for ω.

In Fig. 3a, we show a sample trajectory of a glider that used the navi-
gational strategy in the field to remain aloft for about 12 min while spi-
ralling to the height of low-lying clouds (see also Extended Data Fig. 1). 
On a day with strong atmospheric convection, the time spent aloft is 
limited only by visibility and the receiver’s range as the glider soars 
higher or is constantly pushed away by the wind. A significant improve-
ment in median climb rate of 0.35 m s−1 was measured in the field by 
performing repeated 3-min trials over 5 days (Fig. 3b, Mann–Whitney 
U = 429, ncontrol = 37, nstrategy = 49, P < 10−4 two-sided). Notably, this 
value reflects a general improvement in performance averaged across 
widely variable conditions without controlling for the availability of 
nearby thermals.

To examine possible advantages of larger gliders due to improved 
estimation of torque, we further analysed soaring performance for  
different wingspans (l). Although the naive expectation is that the  
signal-to-noise ratio in the estimate of ω scales linearly with l, we show 
that the effects of atmospheric turbulence lead to a much weaker l1/6 
scaling (see Methods). Because testing our prediction would require 
a series of gliders with different wingspans, we turned to numerical 
simulations of the convective boundary layer, adapted to reflect our 
experimental set-up (Methods). Results shown in Fig. 3c, d are con-
sistent with the predicted scaling. Intuitively, the weak 1/6 exponent 
arises because the improvement in estimation of the gradient is offset 
by the larger turbulent eddies, which only have a sweeping effect for 
smaller wingspans (that is, they do not rotate the glider but translate it, 
which does not affect the estimate of vertical velocity differences across 
its wings), and contribute to velocity differences across the wings as l 
increases. Our calculation yields an estimate of the signal-to-noise ratio 
of about 4 for typical experimental values; similar arguments for az yield 
a signal-to-noise ratio of about 7. Experimental results, together with 
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Fig. 1 | Soaring in the field by using turbulent navigational cues.  
a, A trajectory (orange line) of our glider soaring in Poway, California. 
b, A cartoon of the glider showing the available navigational cues—
gradients in vertical wind velocities (indicated by the length of the blue 
arrows) along the trajectory and across its wings, which generate a vertical 
wind acceleration az and a roll-wise torque ω, respectively. c, A sample 
trace of the estimated vertical wind velocity wz and corresponding az 
obtained in the field. d, The measured bank angle μ and the estimated 
ω during the same trial as in c. ω (solid green line) is estimated from the 
small deviations of the measured bank angle (solid blue line) from the 
expected bank angle (dashed orange line) after accounting for other effects 
(see Methods). The black arrows mark the enlarged bank angle trajectory 
shown in the inset in the left panel.
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Fig. 2 | Convergence of the learning algorithm and the learned strategy 
for navigating thermal plumes. a, The convergence of Q values during 
learning as measured by the standard deviation of the mean Q value versus 
training time in the field, obtained by bootstrapping from the experiences 
accumulated up to that point. b, The final learned policy. Each symbol 
corresponds to the best action (increasing or decreasing the bank angle  
μ by 15° or maintaining the same μ, as shown in the key on the right) to 
be taken when the glider observes a particular (az, ω) pair and is banked 
at μ. Combined symbols depict pairs of actions that are equally rewarding. 
A positive (negative) ω corresponds to a higher vertical wind velocity on 
the left (right) wing of the glider and a positive (negative) μ corresponds to 
turning right (left) with respect to the glider’s heading.
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simulations and signal-to-noise ratio estimates, establish az and ω as 
robust navigational cues for thermal soaring.

The real-world intricacies of soaring impose severe constraints on 
the complexity of the underlying models, reflecting a fundamental 
trade-off between learning speed and performance. Notably, the choice 
of a proper reward signal was crucial to make learning feasible with the 
limited samples available. Although reward shaping has received some 
attention in the machine learning community25, its relevance to animal 
behaviour remains poorly understood. We remark that our navigational 
strategy constitutes a set of general reactive rules, with no learning 
occurring during a particular thermal encounter. A soaring bird may 
use a model-based approach of constantly updating its estimate of the 
location of nearby thermals based on recent experience and visual cues. 
Still, the importance of vertical wind accelerations and torques for our 
policy suggests that they are likely to be useful for any other strategy; 
our methods of estimating them in a glider suggest that they should be 
accessible to birds as well. The hypothesis that birds use those mechan-
ical cues while soaring can be tested in experiments.

Finally, we note that single-thermal soaring is just one face of a mul-
tifaceted question: how should a migrating bird or a cross-country 
glider fly among thermals over hundreds of kilometres for a quick, yet 
risk-averse, journey26–28? This calls for the development of effective 
methods for identifying areas of strong updraft based on mechanical 
and visual cues. Such methods, coupled with our current work, would 
pave the way to a better understanding of how birds migrate and the 
development of autonomous vehicles that can fly for long distances and 
long periods with minimal energy cost.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0533-0.
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Methods
Experimental set-up. A Parkzone Radian Pro fixed-wing plane of 2-m wing-
span was equipped with an on-board Pixfalcon autonomous flight controller 
operating on custom-modified Arduplane firmware (http://www.ardupilot.org). 
The instrumentation available to the flight controller includes a GPS, compass, 
barometer, airspeed sensor and an inertial measurement unit. Measurements 
from multiple instruments are combined by an extended Kalman filter (EKF) to 
give an estimate of relevant quantities such as the altitude z, the sink rate with 
respect to the ground −uz, pitch φ, bank angle μ and the airspeed V, at a rate of 
10 Hz (see Extended Data Fig. 2 for the definitions of the angles). Throughout the 
paper, we use μ > 0 when the glider is banked to the right and φ > 0 for the glider 
pitched with its nose above the horizontal plane. For a given desired pitch φd and 
desired bank angle μd, the controller modulates the aileron and elevator control 
surfaces at 400 Hz by using a proportional–integral–derivative feedback control 
mechanism at a user-set timescale τ (see Extended Data Table 1 for parameter 
values) such that:

τ φ φ φ= −
t

d
d

(1)d

τ μ μ μ= −
t

d
d

(2)d

The desired pitch is fixed during flight and can be used to indirectly modulate the 
angle of attack, α, which determines the airspeed and sink rate with respect to air 
of the glider (−vz). Actions of increasing, decreasing or keeping the same bank 
angle are taken in time steps of ta by changing μd such that μ increases linearly 
from μi to μf in time interval ta:

μ μ μ μ τ
= + −

+t t
t

( ) ( ) (3)d i f i
a

Estimation of the vertical wind acceleration. The vertical wind acceleration is 
defined as:

≡ = −a w
t t

u vd
d

d
d

( ) (4)z
z

z z

where u and v are the velocities of the glider with respect to the ground and air 
respectively, and w is the wind velocity. Here, we have used the relation w = u − v. 
An estimate of u is obtained in a straightforward manner from the EKF, which 
combines the GPS and barometer readings to form the estimate. However, vz is 
confounded by various aerodynamic effects that affect it on timescales of a few 
seconds (Extended Data Fig. 3). Artificial accelerations introduced by these effects 
impair accurate estimation of the wind acceleration and thus alter the perceived 
state during decision-making and learning. Two effects strongly affect variations 
in vz: (1) sustained pitch oscillations with a period of a few seconds and varying 
amplitude, and (2) variations in angle of attack, which occur to compensate for 
the imbalance of lift and weight while rolling. In Supplementary Information, we 
present a detailed analysis of the longitudinal motions that affect the glider, sum-
marized here for conciseness. Changes in vz can be approximated as:

α φΔ = − Δ − Δv V( ) (5)z

where Δ denotes the deviation from their value during steady, level flight. We 
obtain Δφ directly from on-board measurements, whereas Δα can be approxi-
mated for bank angle μ as:

α α α
μ

Δ ≈ −





−





( ) 1
cos

1 (6)0 i

where α0 is the angle of attack at steady, level flight and αi is a parameter that 
depends on the geometry and the angle of incidence of the wing. The constant 
pre-factor (α0 − αi) is inferred from experiments. Measurements of uz together 
with the estimate of Δvz are now used to estimate the vertical wind velocity wz 
up to a constant term, which can be ignored as it does not affect az. The vertical  
wind acceleration az is then obtained by taking the derivative of wz and is  
further smoothed using an exponential smoothing kernel of timescale σa (Extended  
Data Fig. 4).
Estimation of vertical wind velocity gradients across the wings. Spatial gradi-
ents in the vertical wind velocity induce a roll-wise torque on the plane, which 
we estimate using the deviation of the measured bank angle from the expected 
bank angle. The total roll-wise torque on the plane has contributions from three 
sources: (1) the feedback control of the plane; (2) spatial gradients in the wind 
including turbulent fluctuations; and (3) roll-wise moments due to various  

aerodynamic effects. Here, we follow an empirical approach: we note that the 
latter two contributions perturb the evolution of the bank angle from equation (2).  
We can then write an effective equation

μ μ μ

τ
ω ω=

−
+ +

t
t td

d
( ) ( ) (7)d

aero

where ω(t) and ωaero(t) are contributions to the roll-wise angular velocity due to 
the wind and aerodynamic effects, respectively. We empirically find four major 
contributions to ωaero: (1) the dihedral effect, which is a stabilizing moment 
due to the effects of sideslip on a dihedral wing geometry; (2) the overbanking 
effect, which is a destabilizing moment that occurs during turns with small 
radii; (3) trim effects, which create a constant moment due to asymmetric lift 
on the two wings; and (4) a loss of rolling moment generated by the ailerons 
when rolling at low airspeeds. We quantify the contributions from the four 
effects and model their dependence on the bank angle (see Supplementary 
Information for more details on modelling and calibration). An estimate of 
ω is then obtained as:

ω μ μ μ

τ
ω= −

−
−

t
d
d

(8)d
aero

Finally, an exponential smoothing kernel is applied to obtain a smoothed ω 
(Extended Data Fig. 5).
Design of the learning module. The navigational component of the glider is mod-
elled as a Markov decision process, closely following the implementation used in 
ref. 20. The Markovian transitions are discretized in time into intervals of size ta. 
The state space consists of the possible values taken by az, ω and μ. To make the 
learning feasible within experimental constraints and to maintain interpretability, 
we use a simple tile coding scheme to discretize our state space: continuous values 
of az and ω are each discretized into three states (+, 0, −), partitioned by thresh-
olds ±Ka and ±Kω respectively. The thresholds are set at ±0.8 times the standard 
deviation of az and ω. Because the width of the distributions of az and ω can vary 
across days, the data obtained on a particular day are normalized by the standard 
deviation calculated for that day. In effect, the filtration threshold to detect a signal 
against turbulent ‘noise’ is higher on days with more turbulence. The consequence 
is that the behaviour of the learned strategy could change across days, adapting to 
the recent statistics of the environment. The bank angle takes five possible values 
(0°, ±15°, ±30°), while the three possible actions allow for increasing, decreasing by 
15° or keeping the same bank angle. In summary, we have a total of 3 × 3 × 5 = 45 
states in the state space and three actions in the action space.

We choose the local vertical wind acceleration az obtained in the next time 
step as the reward function. The choice of az as an appropriate reward signal is 
motivated by observations made in simulations from ref. 20. In Supplementary 
Information, we show that the obtained policy using az as the reward function is 
equivalent to a policy that also maximizes the expected gain in height.
Learning the strategy in the field. Data collected in the field are split into 
(s, a, s′, r) quadruplets containing the current state s, the current action a, the 
next state s′ and the obtained reward r, which are pooled to obtain the transition 
matrix T(s′ | s, a) and reward function R(s, a). Value iteration methods are used to 
estimate the Q values from T and R. The learning process is offline and off-policy; 
specifically, we begin training with a ‘random’ policy that takes the three possible 
actions with equal probability irrespective of the current state. This behavioural 
policy was used for 12 out of the 15 days of training. For the other days, a softmax 
policy7 with ‘temperature’ parameter set to 0.3 was used. For softmax training, the 
Q values were first estimated from the data obtained in the previous days and then 
normalized by the difference between the maximum and minimum Q values over 
the three possible actions at a particular state, as described in ref. 20.

Using a fixed, random policy as our behavioural policy has the disadvantage 
that it slows learning, as state–action pairs that rarely appear in the final policy are 
still sampled. On the other hand, it has the benefit that calibrating the parameters  
necessary for the unbiased measurement of az and ω (see Supplementary 
Information) is performed simultaneously with learning, which considerably 
reduces the number of days required in the field. Importantly, offline learning 
permits us to continuously monitor the variance of the estimated Q values by boot-
strapping from the set E of accumulated (s, a, s′, r) quadruplets up to a particular 
point. Specifically, |E| samples are drawn with replacement from E, and Q values are 
obtained for each state–action pair by value iteration. The steps are repeated and 
the average of the bootstrapped standard deviations in Q over all the state–action 
pairs is used as a measure of learning progress, as shown in Fig. 2a.

We expect certain symmetries in the transition matrix and the reward function, 
which we exploit to expedite our learning process. Particularly, we note that the 
Markov decision process is invariant to an inversion of sign in the bank angle  
μ → −μ. This transforms a state as (az, ω, μ) → (az, −ω, −μ) and inverts the action 
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from that of increasing the bank angle to decreasing the bank angle and vice versa. 
We symmetrize T and R as

=
++ −

T T T
2

(9)sym

=
++ −

R R R
2

(10)sym

where + and − denote the obtained values and those computed by applying the 
inverting transformation respectively. Finally, Tsym and Rsym are used to obtain a 
symmetrized Q function, which results in a symmetric policy as shown in Fig. 2b. 
To conveniently obtain the policy that uses only az (Fig. 3d), the above procedure 
is repeated with the threshold for ω (Kω) set to infinity.
Testing the performance of the learned policy in the field. To obtain the data 
shown in Fig. 3b, the glider is first sent autonomously to an arbitrary but fixed 
location 250 m above ground level. The learned policy for thermals is then turned 
on, and the mean climb rate (that is, the total height gained divided by the total 
time) is measured over a 3-min interval. To obtain the control data, the glider 
instead follows a random policy, which takes the three possible actions with equal 
probability. Trials in which we observe little to no atmospheric convection are 
filtered out by imposing a threshold on the standard deviation of the vertical wind 
velocity over the 3-min trial. In Extended Data Fig. 6, we show the distribution 
of the standard deviation in wz collected from about 240 3-min trials over 9 days. 
Trials below the threshold chosen as the 25th percentile mark (red dashed line) 
are not used for our analysis.
Testing performance for different wingspans in simulations. Soaring perfor-
mance is analysed in simulations similar to those developed in ref. 20 and adapted to 
reflect the constraints faced by our glider and the environments typically observed 
in the field.

The atmospheric model consists of two components: (1) a kinematic model 
of turbulence that reproduces the statistics of wind velocity fluctuations in the 
convective atmospheric boundary layer; and (2) the positions, sizes and strengths 
of updrafts and downdrafts. The temporal and spatial statistics of the generated 
velocity field satisfy the Kolmogorov and Richardson laws29 and the mean velocity  
profile in the convective boundary layer5, as described in the supplementary 
information of ref. 20. Stationary updrafts and downdrafts of Gaussian shape are 
placed on a staggered lattice of spacing approximately 125 m on top of the fluctu-
ating velocity field. Specifically, their contribution to the vertical wind velocity at  
position r is given by

= ± − − /⊥ ⊥w We (11)z
r r R( ) (2 )0 2 2

where ⊥r
0 is the location of the centre of the up(down)draft in the horizontal plane, 

W is its strength and R is its radius. W is drawn from a half-normal distribution of 
scale 1.5 m s−1, whereas the radius is drawn from a (positive) normal distribution 
of mean 40 m and deviation 10 m. Gaussian white noise of magnitude 0.2 m s−1 is 
added as additional measurement noise.

We assume that the glider is in mechanical equilibrium; the lift, drag and 
weight forces on the glider are balanced, except for centripetal forces while turn-
ing. The parameters corresponding to the lift and drag curves and the (fixed) angle 
of attack are set such that the airspeed is V = 8 m s−1 and the sink rate is 0.9 m s−1 
at zero bank angle, which match those measured for our glider in the field. Control 
over bank angle is similar to those imposed in the experiments: that is, the bank 
angle switches linearly between the angles 0°, ±15°, ±30° in a time interval ta, 
corresponding to the time step between actions. The glider’s trajectory and 
wind velocity readings are updated every 0.1 s. The vertical wind acceleration is 
derived assuming that the glider directly reads the local vertical wind velocity. The  
gradients in vertical wind velocity across the wings are estimated as the difference 

between the vertical wind velocities at the two ends of the wings. The readings 
are smoothed with exponential smoothing kernels; the smoothing parameters 
in experiments are chosen to coincide with those that yield the greatest height 
gain in simulations.
Estimation of noise in gradient sensing due to atmospheric turbulence. The 
cues az and ω measure the gradients in the vertical wind velocity along and per-
pendicular to the heading of the glider. Updrafts and downdrafts are relatively 
stable structures in a varying turbulent environment. Thermal detection through 
gradient sensing constitutes a discrimination problem of deciding whether a  
thermal is present or absent given the current az and ω. We estimate the magnitude 
of turbulent ‘noise’ that unavoidably accompanies gradient sensing. Intuitively, 
turbulent fluctuations in the atmospheric boundary layer (ABL) are made up of 
eddies of different length scales, with the largest being the size of the height of the 
ABL. Energy is transferred from larger, stronger eddies to smaller, weaker eddies, 
and eventually dissipates at the centimetre scale owing to viscosity in the bulk 
and owing to the boundary at the Earth’s surface. In Supplementary Information, 
we present an explicit calculation of the signal-to-noise ratio for ω estimation, 
taking into account the effect of turbulent eddies on the statistics of noise. Below, 
we give simple scaling arguments and refer to Supplementary Information for 
further details.

A glider moving at an airspeed V and integrating over a timescale T averages az 
over a length VT. For V much larger than the velocity scale of the eddies, which is 
typically the case, the decorrelation of wind velocities is due to the glider’s motion; 
the eddies themselves can be considered to be frozen in time. The magnitude of the 
spatial fluctuations across the eddy of this size scales according to the Richardson–
Kolmogorov law29 as (VT)1/3. The mean gradient signal when going up the gradient 
scales as (VT); the resultant signal-to-noise ratio in az scales as (VT)2/3.

Similar arguments are applicable for ω measurements. In this case, the signal-to- 
noise ratio has an additional dependence on the wingspan l. The dominant  
contribution to the noise comes from eddies of size l, whose strength scales as l1/3. 
As the glider moves a distance VT, for l ≪ VT, it traverses VT/l distinct eddies of 
size l. Consequently, the noise is averaged out by a factor (VT/l)−1/2, corresponding 
to the VT/l independent measurements. Multiplying these two factors, the averaged 
noise is proportional to l5/6(VT)−1/2. As the mean gradient (that is, the signal) is 
approximately l, the signal-to-noise ratio is then proportional to l1/6(VT)1/2.

From the above arguments and dimensional considerations, we get 
order-of-magnitude estimates of the signal-to-noise ratio (SNR) for az and ω  
estimation:

∝
/ / /WV T L
wR

SNR (12)a

2 3 2 3 1 3

z

∝ω

/ / / /WV T l L
wR

SNR (13)
1 2 1 2 1 6 1 3

where W is the strength of the thermal, R is its radius, w is the magnitude of turbu-
lent vertical wind velocity fluctuations and L is the length scale of the ABL. For the 
signal-to-noise ratio estimates presented in the text, we use W = 2 m s−1, R = 50 m, 
l = 2 m, V = 8 m s−1, T = 3 s, L = 1 km. The values of V and T correspond to the 
airspeed of the glider in experiments and the timescale between actions during 
learning respectively.

Data availability
The data that support the findings of this study are available from the correspond-
ing author upon reasonable request.
 
	29.	 Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, 

Cambridge, 1995).
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Extended Data Fig. 1 | Sample trajectories obtained in the field. 
The three-dimensional view and top view are shown of the glider’s 
trajectory as it executes the learned strategy for thermals (labelled ‘s’) or 
a random policy that takes actions with equal probability (labelled ‘r’). 

The trajectories are coloured according to the instantaneous vertical 
ground velocity uz. The green (red) dot shows the start (end) point of the 
trajectory. Trajectories s1, s2 and r1 last for 3 min each, whereas s3 lasts for 
about 8 min.
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Extended Data Fig. 2 | Force–body diagram of a glider. The forces on a 
glider and the definitions of the various angles that determine the glider’s 
motion.
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Extended Data Fig. 3 | Modelling the longitudinal motion of the glider. 
a, Sample trajectory of a glider’s pitch and its vertical velocity with respect 
to ground (uz) in a case in which the feedback control over the pitch is 
reduced in order to exaggerate the pitch oscillations. The blue line shows 
the measured uz, and the orange line is uz obtained after subtracting the 
contributions from longitudinal motions of the glider (see Supplementary 
Information). b, The blue line shows the average change in uz when a 

particular action is taken (labelled above each panel), averaged over n 3-s 
intervals. The 13 panels correspond to the 13 possible bank angle changes 
from the angles 0°, ±15° and ±30° by increasing, decreasing the bank 
angle by 15° or keeping the same angle. The green dashed line shows the 
prediction from the model whereas the orange line is the estimated wz. The 
axis on the right shows the averaged pitch (red dashed line).
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Extended Data Fig. 4 | The estimated vertical wind acceleration  
is unbiased after accounting for the glider’s longitudinal motion.  
a, The averaged vertical wind acceleration az in units of its standard 
deviation. az, plotted as in Extended Data Fig. 3b, is shown in orange 

with (blue line) and without (orange line) accounting for the glider’s 
longitudinal motions. The axis on the right shows the airspeed (green 
dashed line). b, Probability density functions (PDFs) of az for the different 
bank angle changes. The black dashed line shows the median.
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Extended Data Fig. 5 | The estimated roll-wise torque is unbiased after 
accounting for the effects of feedback control and glider aerodynamics. 
a, The averaged evolution of the bank angle shown as in Extended Data 
Fig. 3b. The blue line shows the measured bank angle and the dashed 
orange line shows the best-fit line obtained from simultaneously fitting the 

13 blue curves to the prediction (see Supplementary Information).  
b, PDFs of the roll-wise torque ω (in units of its standard deviation)  
for the different bank angle changes. The black dashed line shows the 
median value.
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Extended Data Fig. 6 | The distribution of the strength of vertical 
currents observed in the field. The root-mean-square vertical wind 
velocity measured in the field is pooled from about 240 3-min trials 
collected over 9 days. The dashed red line shows the threshold criterion 
imposed when measuring the performance of the strategy in the field 
(see Methods).
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Extended Data Table 1 | Parameter values

Label  Description  Value  

l Wingspan of glider used in experiments 2m 

d Desired pitch -2o 

 Feedback control time scale 0.45s 

ta Interval between actions (learning) 3s 

ta Interval between actions (soaring) 1.5s 

0 - i Net angle of attack (see eq. 6) 14o 

V Airspeed (typical) 6 to 8 m/s 

Tdih Dihedral effect timescale (typical) 14 to 30 s 

Tob  

b Trim bias (typical) 

Troll Opposing roll timescale (typical) 1.5 to 3 s 

±Ka, ±Kw Thresholds for az and  state estimation 0.8 x std. dev 

a, a’  Exponential smoothing timescales for az 8ta/3, 2ta/3 

w, w’  Exponential smoothing timescales for  ta, ta/4 

 Discount factor for RL implementation 0.8 

Overbanking effect timescale (typical) 
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