
 1
F. Darema (ed.), Dynamic.Data Driven Applications Systems, pp-pp
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Chapter #

SIMULATION-DRIVEN DYNAMIC CLAMPING OF
NEURONS

G. T. BALLSa, S. B. BADENa, T. M BARTOLb, T. J. Sejnowskib
aDepartment of Computer Science and Engineering, University of California, San Diego,
 La Jolla, California 92093-0114, USA
b he Salk Institute for Biological Studies, La Jolla, California 92186-5800 USA T

Abstract. We describe an experimentation environment that enables large-scale numerical
simulations of neural microphysiology to be fed back onto living neurons in-vitro via dynamic
wholecell patch clamping – in effect making living neurons and simulated neurons part of the
same neural circuit. Owing to high computational demands, the experimental testbed will be
dispersed over a local area network comprising several high performance computing
resources. Parallel execution, including feedback between the simulation components, will be
managed by the Tarragon, a programming model and run time library that supports
asynchronous data driven execution. Tarragon’s execution model matches the underlying
dynamics of Monte Carlo simulation of diffusive processes and it masks the long network
latencies entailed in coupled dispersed simulations. We discuss Tarragon and show how its
data driven execution model can be used to dynamically feed back the results of a neural
circuit simulation onto living cells in order to better understand the underlying signaling
pathways between and within living cells.

Keywords. Data driven execution, dynamic clamping, cell microphysiology simulation

1. INTRODUCTION
Neurons in the brain connect with each other to form exceedingly complex networks
of neural circuits which carry and transform information from neuron to neuron and
circuit to circuit. At the same time, each individual neuron in the network is a living
cell that contains within it complex biochemical signaling pathways which govern
the behavior the cell. Since the information carried by the neural circuits physically
exists in the form of the spatio-temporal state of these signaling pathways, the
behavior of the circuits depends not only on the macroscopic neural network
topology but also on the way information transforms and is itself transformed by the
microscopic signaling pathways. That is, the neural circuits between cells and the
signaling pathways within cells are coupled, spanning many length and time scales,
to form a massive information processing system.

2 S. B. BADEN ET AL.

Given the range of these scales and accompanying phenomena, study of the brain
involves many techniques and disciplines approaching the problem from the top
down and from the bottom up. A major challenge is how to integrate the
understanding gleaned from disparate experimental paradigms and levels of analysis
into one coherent picture. One promising technique that attempts to bridge the gap
between single neurons and small neural circuits involves the use of dynamic whole-
cell patch clamping of living neurons and numerical simulations of neural circuits.
 The dynamic whole-cell patch clamp technique involves using thin slices of
living brain tissue placed in a special environmental chamber and viewed through
microscope. The brain tissue is sliced in such a way that damage to the local neural
circuitry within the slice is kept to a minimum. This permits study of the behavior of
single neurons within the context of the neural circuits of which the neurons are
integral components. Under the microscope, stimulating and recording electrodes
are placed in the tissue. The recording electrodes are connected to electronic
equipment which allow measurement of the voltage and current in a single neuron
without disturbing the neighboring neurons. Early versions of this equipment also
made it possible to hold the voltage or current of the cell at a constant command
value, that is, to “clamp” the voltage or current at a constant value. Modern versions
of this equipment allow voltage or current clamping to a dynamically changing
command value—this is called a dynamic clamp. If the dynamically changing
command value is computed in real-time based on the recent behavior of the
clamped cell it becomes possible to dissect subtleties of neural circuit dynamics that
would remain inaccessible by other means. Now the question becomes: how realistic
and complex a computational model can one use to generate the dynamic command
value in real-time on available hardware?

2. ASYNCHRONOUS SIMULATION

2.1 Simulation methodology
Our starting point is a general Monte Carlo simulator of cellular microphysiology,
called MCell [2,45,42,44,43]. At the heart of the cell simulator is a 3D random walk
that models diffusion using a Monte Carlo method. A highly scalable variant of
MCell called MCell-K [8] has been implemented using the KeLP infrastructure
[18,19], but a new variant is currently under investigation that employs
asynchronous, data driven execution, and is described below. The complexity in
implementing the random walk on a scalable platform comes as the result of three
factors: (1) the unpredictable nature of molecular motion due to random walks and
encounters with cell membranes, (2) time-dependent molecular concentrations, and
(3) the need to enforce causality.
 As molecules follow their random walk through space they may occasionally
change processor owners and hence incur communication. This communication is
currently handled in bulk by the KeLP implementation: migrant molecules are
collected until the end of the current timestep and moved en masse to their
destination. Since molecules may reflect off of cell membranes, or be released after
becoming bound, termination of each timestep must be detected to avoid non-causal

 SIMULATION-DRIVEN DYNAMIC CLAMPING OF NEURONS
 3

behavior. If a processor were to begin the next timestep, and a “straggler” molecule
arrived that had not completed its random walk in the previous timestep, then the
computation would be in error. This is a classic problem in parallel discrete event
simulation [21]. MCell-K employs a conservative strategy [14,34] for ensuring
correctness, synchronizing several times each timestep in order to detect
termination.
 The behavior of neural circuits spans a multitude of length and time scales. For
the reasons explained above, we envision computational models that must include
not just the macroscopic behavior of neural circuits—such as arises from simple
integrate-and-fire neurons as modeled by NEURON [23]—but also the microscopic
behavior of individual synapses and downstream signal transduction cascades (e.g.
as modeled by MCell). NEURON is widely-used modeling environment for
simulation of the electrophysiology of neurons and neural circuits. The MCell
simulations of microscopic behavior will be integrated with neural circuit-level
simulations handled by NEURON. In turn these will be fed into the dynamic patch
clamp assembly.

2.2 Requirements
Our simulations introduce two requirements: they are computationally demanding
and they entail processing of asynchronous events. To meet our resource
requirements we will run simulations on a collection of high performance computing
resources dispersed over a local area network. To support asynchronous event
processing we will employ a data driven execution model which is currently under
investigation. This model is called Tarragon and it will be implemented as a run
time library.
 Asynchronous data driven execution actually plays two roles. First, it manages
physical processes that are inherently asynchronous, such as the random walk
process of the Monte Carlo simulation algorithm, and the coupling of the numerical
model output to the dynamic patch clamp. Second, asynchronous execution is
invaluable in managing the complexity of writing latency tolerant algorithms. Many
scientific users lack the background or the inclination to manage asynchronous
execution and are already burdened with the issues surrounding parallelization.

2.3 The Pitfalls of Masking Communication
During the course of making their random walks molecules will inevitably bounce
off cell membrane surfaces. Their precise trajectory cannot be known in advance,
though the maximum distance a molecule can diffuse in a single timestep is
bounded. The only way to be certain that all walks have completed is to have
processors exchange local completion information. The computation associated with
detecting termination takes time to settle; on average 6 to 8 synchronization points
are required per timestep in MCell-K.
 While the cost of such synchronization is not significant on scalable platforms it
is expected to grow significantly when computations are dispersed over a network.
In order to meet real time constraints it is important that communication be kept out

4 S. B. BADEN ET AL.

of the critical path. We can avoid the unnecessary synchronization steps by
permitting ligands to migrate instantaneously, i.e. using single-sided
communication. However, the resultant communication costs would be unacceptable
since such communication is inherently fine grained–each ligand consumes roughly
50 bytes. While techniques for realizing overlap can reduce communication costs
e.g. via a communication proxy [5,33], significant and intrusive programmer
intervention is required to reformulate the algorithm [6]. Many programmers lack
the background to manage split-phase execution, computation re-ordering, and the
bookkeeping needed to handle overlap effectively. A data driven execution model is
inherently well matched to handling communication overlap since it can order tasks
dynamically according to the availability of data, without requiring programmer
intervention.

3. RUN TIME SUPPORT ISSUES
Two run time support issues arise in our application: load balancing and sceduling.
A good load balancing strategy helps ensure that the work is assigned fairly over all
the processors. This is important since any load imbalance will exacerbate
communication wait times [18]. A good schedule helps ensure that the processors
are making progress along the critical path which is essential in order to meet real
time deadlines.

3.1 Partitioning
Due to uneven time-dependent concentrations of molecules, a load balancing
problem arises. Molecules must periodically be shuffled among processing nodes
without seriously disrupting locality. Domain specific load balancing utilities are
generally used to evenly assign work to processors. Our current plant is use a space-
filling curve to subdivide the workload, which will help conserve locality [41].
 Under this strategy, we “over-partition” computations into chunks such that each
processing node obtains several pieces of work [46]. (If the processing node has
multiple CPUs, then the processors may share the using processors self-scheduling.)
Chunks migrate gradually along the space filling curve in response to changes in the
workload distribution [17, 20, 27, 40,37].
 There are three desirable aspects of this strategy: it (1) preserves locality, (2)
facilitates communication overlap via software pipelining, and (3) relies on
workload migration in lieu of data repartitioning, obviating the need for empirically
derived models to estimate workloads [4]. There is an advantage to removing the
need for empirical models. They are data dependent and would continually change:
MCell’s computational techniques are evolving in order to meet new simulator
requirements.
 Dynamic load balancing of task graphs has been employed in the SCIRun [25]
and Uintah [36] programming environments. While SCIRun relies on shared
memory, some progress has been made in a hierarchical load balancer for clustered
SMP systems. Taylor and co-workers [31] manage load balancing of structured
adaptive mesh refinement [11,10] on distributed systems. The systems consist of a

 SIMULATION-DRIVEN DYNAMIC CLAMPING OF NEURONS
 5

small number of machines—two Origin 2000 systems. The scheduler carries out
local and global load balancing, and also takes into account network delays.
Parashar and others have treated a similar problem in a structured setting [38,39].
SMARTS [47] supports integrated task and data parallelism for MIMD, and
provides an API for coarse-grain macro-dataflow. It relies on work-stealing[35], and
has been demonstrated only on shared memory. Related work has primarily treated
functional parallelism, e.g. CILK[32], Mentat[22], and others [3]. OSCAR[28] has
similar goals to SMARTS, but operates on static graphs.

3.2 Scheduling
In a latency tolerant formulation, each processor will communicate with others to
exchange migrating molecules and to perform termination tests. The precise order in
which a processor executes its assigned work and carries out communication can
dramatically affect performance. Concerns surrounding locality, dynamically
varying workloads, and communication performance are at issue. For example, it
may be advantageous to preferentially schedule random walks involving nearby
molecules in order to enhance memory locality in accesses to the data structures that
represent surfaces the molecules react with. This in turn implies that a separate
scheduling algorithm is needed to manage communication: molecules that are
migrating to the same processor should be communicated nearby in time, so that the
preferential scheduling algorithm will have the opportunity to schedule the events as
intended. A good schedule can also enhance communication overlap so that there is
sufficient available computational work to overlap with communication. Since
scheduling policies may differ among applications (and even the initial data), it s
important to separate scheduling and algorithm correctness concerns in order to
improve application performance robustness.

4. TARRAGON
To meet our requirements, we are investigating a programming model with data
driven [24] execution semantics. Under such a model, data motion triggers
computation and vice versa. The execution model is fundamentally different from
Bulk Synchronous parallelism, which divides communication and computation into
distinct phases, and provides a cleaner way of handling ligands that cross processor
boundaries during the course of making their random walks. The flow of the data
rather than the success of heroic programming determines the ability to overlap
communication with computation and the scheduler can ensure that the processor
makes timely progress along the critical path with respect to communication and real
time deadlines. Owing to the use of overdecomposition, there will be plenty of
random walk computations available to overlap with the communication and
workloads can be migrated automatically to ensure that workloads can be evenly
balanced.
 We are implementing our experimental software testbed to support the data
driven execution model along with new scheduling algorithms and load balancing

6 S. B. BADEN ET AL.

strategies. These will be implemented as a set of run time libraries called Tarragon.
We are also investigating parameterized scheduling algorithms such that an
application can communicate performance hints in the form of performance. These
metadata have the capacity to articulate scheduling changes that can improve
performance without affecting correctness.

4.1 Theory of operation
Tarragon supports task parallelism in which computations are described by a
directed graph constructed at run time. The vertices correspond to tasks to be
executed, the edges correspond to data dependences between the tasks. A task graph
is distributed across processing modules, and each module is assumed to comprise
multiple CPUs sharing a common address space. Memory is not shared across
modules.
 The Tarragon Model operates with the assistance of an entity known as the
Mover-Dispatcher. The Mover-dispatcher runs concurrently with the application and
is hidden from the view of the casual programmer. As with traditional data flow
[16,26,1], parallelism arises among independent tasks. Dependent tasks are enabled
according to the flow of data among them. Task firing rules are non-strict in
Tarragon. First, a task may fire as the result of the flow of data across an individual
edge. Second, data may be treated as a stream and a task may fire upon arrival of a
subset of a stream. The Mover-Dispatcher is in charge of moving data along the
edges of a TaskGraph and handling task enablement
 The Tarragon philosophy is to support data motion with operations that have an
intuitive cost model rather than to hide the activity. It provides a simple data motion
primitive: push(). A call to push() may or may not cause information to be moved
immediately. The Mover/Dispatcher decides when to actually carry out the required
communication under the advice of the Scheduler. The specific mechanism that the
Mover-Dispatcher uses to move data among tasks is hidden from the user. It may
involve a call to MPI, TCP/IP, or a simple memory copy if the source and
destination tasks occupy the same address space.
 Incoming data is processed by the Mover/Dispatcher, which makes a callback to
a user-defined handler to deserialize the incoming data into the user data structures
associated with the receiving TaskGraph node. There is no need for programmer
intervention to invoke the handler and the Tarragon run time system will incorporate
incoming data without interference into data structures that are involved in running
computations. A task can become enabled when data has arrived on one or more
input edges. The decision to make a task runnable is made by the scheduler on the
Mover-Dispatcher's behalf. Scheduling will be discussed in detail below (§4.3).
 There is one other issue that must be handled: termination. When a task runs out
of molecules it may or may not have completed execution for the current timestep.
The reason is that at some later time during the timestep a molecule may enter the
region of space owned by the task. At this time, the task is made runnable. The task
will eventually execute at a time determined by the Scheduler. Eventually the task
will complete the current timestep and may proceed to the next one. Tasks
communicate with other tasks when they exhaust their workload and this
information is used to detect termination.

 SIMULATION-DRIVEN DYNAMIC CLAMPING OF NEURONS
 7

4.2 Coupling
The Mover/Dispatcher effectively isolates an application from policy decisions
concerning scheduling and data motion. Thus, the activities may be customized to
the application and system configuration in order to meet real time requirements,
and to tolerate the multiple scales of latency inherent to a hierarchically constructed
computing platform.
 The TaskGraph may be used not only to represent the MCell simulations, but
also to represent the coupled program structure that feeds the result of the
simulations to the in-vitro patch clamp assembly. Results from the simulations are
fed into the assembly at the time they become available, avoiding the need for
polling. The component subtasks may vary in their computational requirements but
the Tarragon run time system will allocate an appropriate amount of resources to
each simulation invocation under direction of the Scheduler, which is in turn
invoked by the Mover-Dispatcher.

4.3 Scheduling
Scheduling plays an important role in optimizing performance as its goal is to enable
progress along the critical path of outstanding communication and computation. A
good scheduler must address competing concerns surrounding locality,
communication latency and real time concerns, and it is important that all concerns
be balanced. Scheduling has received considerable attention in recent years.
Beaumont et al. [9] advocate bandwidth centric scheduling of equal sized tasks on
heterogeneous processors. Such scheduling may be useful in allocating tasks to the
same processing node based on the carried workload and communication costs.
Affinity hints have been employed by others to support locality (e.g. COOL [13]).
SMARTS used affinity information to enhance memory locality by scheduling
related tasks “back to back” at run time [47]. Kohn and Baden have used affinity in
co-locating structured adaptive meshes in order to reduce communication costs [30].
Others have proposed application level schedulers [12].
 In addition to performance, real time concerns are also at issue. For instance, it is
important to ensure that information flowing between the living tissue and the
simulations are processed in a timely manner. Flexible scheduling enables Tarragon
to meet these requirements and its task graph representation readily accommodates
both the MCell simulator as well as the clamping devices.
 To support flexible scheduling we will apply a new technique called
parameterized scheduling. Parameterized scheduling has the property that it can
read attributes decorating the task graph to help guide the scheduler. These attributes
come in the form of performance metadata [29], which can represent a variety of
quantities, e.g. affinity, priority or other metrics. The Tarragon programmer is free
to interpret the meaning of the metadata, while the scheduler examines their relative
magnitudes in order to make scheduling decisions. The flexibility offered by
parameterized scheduling significantly enhances the ability to explore alternative
scheduling policies and metrics.

8 S. B. BADEN ET AL.

4.4 Implementation
To support data driven execution, each processing module will run one or more
Mover-Dispatcher threads to coordinate communication and scheduling. The
Mover-Dispatcher listens for data motion activity and runs concurrently with
computation. It routes outgoing data to other tasks as specified in the TaskGraph
and also senses the arrival of data coming from other tasks. The arrival of incoming
data causes the Mover-Dispatcher to enable a suspended task for execution.
Although the Mover-Dispatcher consumes resources, past work with communication
proxies revealed the cost to be reasonable so long as the proxy does not utilize the
processor as much as the computational threads [5,18,6,7]. We expect this to be the
case of the present application.
 Some aspects of Tarragon are similar to those of the Charm++ run time
system[40,27]. Like Charm, work is “overdecomposed” onto processing nodes, that
is, tasks are assigned many-to-one to processing modules. However, there are some
important differences. Charm++ supports shared objects, and asynchronous remote
method invocation on general C++ objects. Tarragon exposes a different API to the
programmer. There are no shared objects, and methods may be invoked only locally.
Data must be moved explicitly and before a method may be applied to it. The
Tarragon philosophy is to expose communication, which is assumed to be an
expensive operation. DMCS [15] has some similarities to Tarragon. It supports
single sided communication and active messages.

5. DISCUSSION AND CONCLUSIONS
An experimentation environment has been described for coupling large-scale
numerical simulations of neural microphysiology to living neurons in-vitro. The
environment is coordinated asynchronously using a run time library called Tarragon.
Tarragon supports data driven execution. It masks communication latency and
balances workloads automatically. Tarragon makes two contributions: (1)
parameterized scheduling, which includes performance meta data used to guide
scheduling decisions, and (2) a uniform model for expressing asynchronous
parallelism involving a mixture of physical devices on a “wet lab” work bench and
hierarchically organized computational resources coupled over local area networks.
Tarragon separates the concerns surrounding policy from decisions affecting
performance, i.e. scheduling, from the expression of a correct algorithm. It therefore
supports the implementation of highly scalable cell physiology simulators that offer
performance and coding advantages compared with simulators implemented under
bulk synchronous parallelism, thereby enabling new capabilities for making
scientific discovery.

ACKNOWLEDGMENTS
Greg Balls and Scott Baden are supported by NSF contract ACI-0326013 and by the
National Partnership for Advanced Computational Infrastructure (NPACI) under
NSF contract ACI9619020. Tom Bartol and Terry Sejnowski are supported by NSF
NPACI ACI9619020, NSF IBN-9985964, and the Howard Hughes Medical

 SIMULATION-DRIVEN DYNAMIC CLAMPING OF NEURONS
 9

Institute. The MCell-K website is accessible via the world wide web at the following
URL: http://www-cse.ucsd.edu/groups/hpcl/scg/.

REFERENCES
1. Arvimd, Executing a program on the mit tagged-token dataflow architecture, IEEE Trans. Computers.,

39(1990), 300-318
2. L. Anglister, J. R. Stiles, and M. M. Salpeter. Acetylcholinesterase density and turnover number at

frog neuromuscular junctions, with modelling of their role in synaptic function. Neuron,
1(1994),783–94

3. R. G. Babb, Parallel processing with large-grain data flow technique. Computer, 17(1984), 55–61
4. S. B. Baden. Programming abstractions for dynamically partitioning and coordinating localized

scientific calculations running on multiprocessors. SIAM J. Scientific and Statistical Computing.,
12(1991):145–157

5. S. B. Baden and S. J. Fink. Communication overlap in multi-tier parallel algorithms, Proc. SC ’98,
 (1998).
6. S. B. Baden and S. J. Fink. A programming methodology for dual-tier multicomputers. IEEE Trans.

Software Engineering, 26(2000), 212–26
7. S. B. Baden and D. Shalit. Performance tradeoffs in multi-tier formulation of a finite difference

method. Proc. 2001 International Conf. on Computational Science, (2001).
8. G. T. Balls, S. B. Baden, T. Kispersky, T. M. Bartol, and T. J. Sejnowski. A large scale monte carlo

simulator for cellular microphysiology.Proc.18th Intl. Parallel Distributed Proessing. Symp., (2004).
9. O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric allocation of

Independent tasks on heterogeneous platforms. Proc. 16th Intl. Parallel Distributed. Processing
Symp., (2002)

10. M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J.
Computational Physics., 82(1989), 64–84

11. M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J.
Computational Physics, 53(1984), 484–512

12. F. Berman. High-performance schedulers. In I. Foster and C. Kesselman (Eds.) The Grid: Blueprint
for a New Computing Infrastructure. Morgan-Kaufmann, 1998.

13. R. Chandra, A. Gupta, and J. L. Hennessy. Data locality and load balancing in cool. ACM SIGPLAN
 1993 Symp. on Principles and Practice of Parallel Programming. (1993), 249-259.
14. M. K. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of parallel
 computations. Communcations ACM, 24(1981), 198–206
15. N. Chrisochoides, K. Barker, J. Dobbelaere, D. Nave, and K. Pingali. Data movement and control

substrate for parallel adaptive applications. Concurrency Practice and Experience, 14(2002), 77-101
16. J. Dennis. Data flow supercomputers. IEEE Computer, 13(1980), 48-56.
17. K. Devine, J. Flaherty, R. Loy, and S. Wheat. Parallel partitioning strategies for the adaptive solution

of conservation laws. In I. Babuška et al. (Eds.), Modeling, Mesh Generation, and Adaptive
Numerical Methods for Partial Differential Equations, Springer-Verlag, Berlin, 75(1995), 215-242

18. S. J. Fink. Hierarchical Programming for Block-Structured Scientific Calculations. PhD thesis,
Department of Computer Science and Engineering, University of California, San Diego (1998)

19. S. J. Fink, S. B. Baden, and S. R. Kohn. Efficient run-time support for irregular block-structured
applications. J. Parallel Distributed. Computing., 50(1998), 61-82

20. J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D. Teresco, and L. H.
Ziantz, Parallel structures and dynamic load balancing for adaptive finite element computation,
Appied. Numerical Math.., 26(1998, 241-263

21. R. Fujimoto. Parallel and Distributed Simulation Systems. Wiley, (2000)
22 A. S. Grimshaw, J. B. Weissman, and W. T. Strayer. Portable run-time support for dynamic object-
 oriented parallel processing. ACM Transactions on Computer Systems, 14(1996),139-170
23. M. L. Hines and N. T. Carnevale. The NEURON simulation environment. Neural Computation

9(1997),1179-1209
24. R. Jagannathan. Coarse-grain dataflow programming of conventional parallel computers, in L. Bic,

J.-L. Gaudiot, and G. Gao (Eds.), Advanced Topics in Dataflow Computing and Multithreading,
IEEE Computer Society Press, 1995, 113-129.

10 S. B. BADEN ET AL.

25. C. Johnson, S. Parker, and D. Weinstein. Large-scale computational science applications using the
scirun problem solving environment. Proc. Supercomputing 2000 (2000).

26. J.R. Gurd, et al. The Manchester prototype dataflow computer. Communications ACM, 28(1985), 34-
52

27. L. V. Kalé. The virtualization model of parallel programming, Runtime optimizations and the state of
art. LACSI (2002).

28. H. Kasahara and A. Yoshida. A data-localization compilation scheme using partial-static task
assignment for fortran coarse-grain parallel processing. Parallel Computing, 24(1998), 579-596

29. P. Kelly, O. Beckmann, A. Field, and S. Baden. Themis, Component dependence metadata in
adaptive parallel applications. Parallel Processing Letters, 11(2001), 455-470

30. S. R. Kohn and S. B. Baden. A parallel software infrastructure for structured adaptive mesh methods.
Proc. Supercomputing 1995, (1995).

31. Z. Lan, V. E. Taylor, and G. Bryan. Dynamic load balancing of samr applications on distributed
systems, Proc. SC '01 (2001).

32. C. Leiserson, K. Randall, and Y. Zhou. Cilk, An efficient multithreaded runtime system. Proc. Fifth
ACM SIGPLAN Symp.Principles and Practice of Parallel Programming (1995). 207-216

33. B.-H. Lim, P. Heidelberger, P. Pattnaik, and M. Snir. Message proxies for efficient, protected
communication on smp clusters. Proc. Third International. Symp. on High-Performance Computer
Architecture, (1997), 116-27

34. B. D. Lubachevsky. Efficient parallel simulations of asynchronous cellular arrays. Complex Systems
1(1987), 1099-1123

35. E. P. Markatos and T. LeBlanc. Load balancing versus locality management in shared-memory
multiprocessors. Proc. Int'l. Conf. on Parallel Processing (1992)

36. J. McCorquodale, D. de St. Germain, S. Parker, and C. Johnson. The untah parallelism
infrastructure, A performance evaluation. High Performance Computing, Seattle WA (2001)

37. C.-W. Ou and S. Ranka. Parallel incremental graph partitioning. IEEE Trans. Parallel Distributed
Systems, 8(1997), 884-896

38. M. Parashar and J. C. Browne. Systems engineering issues in the implementation of an infrastructure
for parallel structured adaptive meshes. In S. B. Baden, N. Chrisochoides, M. Norman, and D.
Gannon (Eds.) Proc. Workshop on Structured Adaptive Mesh Refinement Grid Methods, Springer-
Verlag, Berlin, 1998.

39. M. Parashar and I. Yotov. An environment for parallel multi-block, multi-resolution reservoir
simulations. Proc. 11th Intl. Conf. Parallel and Distributed Computing Systems,. (1998), 230-235

40. J. C. Phillips, G. Zheng, S. Kumar, and L. V. V. Kalé. NAMD, Biomolecular simulation on
thousands of processors. Proc SC 2002(2002)

41. J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured workloads with
spacefilling curves. IEEE Transactions Parallel and Distributed Systems, 7(1996), 288-300

42. J. R. Stiles, T. M. Bartol, E. E. Salpeter, and M. M. Salpeter. Monte Carlo simulation of
neurotransmitter release using MCell, a general simulator of cellular physiological processes. In J. M.
Bower (Ed.), Computational Neuroscience, (1998), 279-284

43. J. R. Stiles, T. M. Bartol, M. M. Salpeter, E. E. Salpeter, and T. J. Sejnowski. Synaptic variability,
new insights from reconstructions and Monte Carlo simulations with MCell. In W. Cowan, T.
Sudhof, and C. Stevens (Eds) Synapses. Johns Hopkins University Press, 2001

44. J. R. Stiles, I. V. Kovyazina, E. E. Salpeter, and M. M. Salpeter. The temperature sensitivity of
miniature endplate currents is mostly governed by channel gating, evidence from optimized
recordings and Monte Carlo simulations. Biophys. J., 77 (1999). 1177-1187

45. J. R. Stiles, D. van Helden, T. M. Bartol, Jr., E. E. Salpeter, and M. M. Salpeter. Miniature endplate
current rise times less than 100 microseconds from improved dual recordings can be modeled with
passive acetylcholine diffusion from a synaptic vesicle. Proc Natl Academy Sciences USA, 93(1996),
5747-5752

46. J. D. Teresco, M. W. Beall, J. E. Flaherty, and M. S. Shephard. A hierarchical partition model for
adaptive finite element computation. Computational. Methods. Applied. Mechanical. Engeering.,
184(2000), 269-285

47. S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S. Shende, R. Oldehoeft, and S.
Smith. Smarts, Exploting temporal locality and parallelism through vertical execution. International
Conference on Supercomputing, (1999).

	INTRODUCTION
	ASYNCHRONOUS SIMULATION
	Simulation methodology
	Requirements
	The Pitfalls of Masking Communication

	RUN TIME SUPPORT ISSUES
	Partitioning
	Scheduling

	TARRAGON
	Theory of operation
	Coupling
	Scheduling
	Implementation

	DISCUSSION AND CONCLUSIONS

