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Regulating Cortical Oscillations
in an Inhibition-Stabilized
Network
This paper describes mathematical models that explain how neuronal networks

produce oscillations observed in the brain’s electrical activity and discusses the

hypothesis that these oscillations are potentially important for coding and routing

of information.

By Monika P. Jadi and Terrence J. Sejnowski, Fellow IEEE

ABSTRACT | Understanding the anatomical and functional

architecture of the brain is essential for designing neurally

inspired intelligent systems. Theoretical and empirical studies

suggest a role for narrowband oscillations in shaping the

functional architecture of the brain through their role in coding

and communication of information. Such oscillations are

ubiquitous signals in the electrical activity recorded from the

brain. In the cortex, oscillations detected in the gamma range

(30–80 Hz) are modulated by behavioral states and sensory

features in complex ways. How is this regulation achieved?

Although several underlying principles for the genesis of these

oscillations have been proposed, a unifying account for their

regulation has remained elusive. In a network of excitatory and

inhibitory neurons operating in an inhibition-stabilized regime,

we show that strongly superlinear responses of inhibitory

neurons facilitate bidirectional regulation of oscillation fre-

quency and power. In such a network, the balance of drives to

the excitatory and inhibitory populations determines how the

power and frequency of oscillations are modulated. The model

accounts for the puzzling increase in their frequency with the

salience of visual stimuli, and a decrease with their size.

Oscillations in our model grow stronger as the mean firing level

is reduced, accounting for the size dependence of visually

evoked gamma rhythms, and suggesting a role for oscillations

in improving the signal-to-noise ratio (SNR) of signals in the

brain. Empirically testing such predictions is still challenging,

and implementing the proposed coding and communication

strategies in neuromorphic systems could assist in our

understanding of the biological system.

KEYWORDS | Brain rhythms; coherence; communication; elec-

troencephalogram (EEG); gamma; Hopf bifurcation; inhibition-

stabilized network (ISN); inhibitory neuron–network–gamma

(ING); limit cycle; nonlinear system; oscillations; phase code;

pyramidal neuron–inhibitory neuron–network–gamma (PING);

synchrony; vision

I . INTRODUCTION

Neuromorphic engineering aims to design intelligent systems

that are inspired by the nervous system, and can perform

valuable functions such as vision, audition, motor control,

and decision making. More specifically, the field aims to

understand the key aspects of the anatomical and functional

architecture of the brain that support functions such as

information representation, learning, memory storage, and

retrieval in an adaptive and redundant hardware. In order to
implement solutions based on the biological system,

understanding the principles behind encoding and communi-
cation of information in the brain is as important as

understanding the physical connectivity motifs that it uses.

A neuron in the central nervous system communicates

mainly through fast all-or-none events called action

potentials or spikes in its membrane electric potential. The

earliest theories of neural coding proposed firing rates or the
number of spikes generated in a neuron as the information

code used to communicate with other neurons. More recent

models of learning, memory formation, and retrieval in the
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brain also propose information coding in the relative firing
times of the spikes in a neuronal population [1], [2].

Empirically observed oscillations within populations of

neurons, and synchronization between oscillating popula-

tions have been suggested as signals used by the brain to

encode and decode information in relative spike times.

Since oscillatory brain activity is observed during many

cognitive functions, it is hypothesized to shape the

functional architecture of the brain during cognitive
processing. In this paper, we propose a novel mechanism

for regulating such oscillations and thereby their func-

tional role in an intelligent system such as the human

brain. While excellent reviews of the extensive empirical

and theoretical literature exist elsewhere (e.g., [3]–[5]),

we begin by briefly summarizing the empirical evidence on

oscillations during behavior and the related theoretical

ideas about their functional role.

II . OSCILLATIONS IN THE
BRAIN: EXPERIMENTS

Empirical evidence in humans and other mammals shows

that when the subject is performing sensory processing and

cognitive tasks, neural activity in the cerebral cortex is

accompanied by narrowband fluctuations in firing rates,
local field potentials (LFPs), and electroencephalograms

(EEGs) (summarized in [6] and [7]). During slow wave

sleep, oscillations in delta (2–4 Hz) range are prominent

[8]. In rodents, oscillations in the 4–7-Hz or theta range

accompany exploration and the formation as well as

retrieval of a spatial map of its environment [9].

Oscillations in the 30–80-Hz or gamma frequency range

are associated with arousal, working memory [10], and
attention [11]. During cognitive tasks in humans, sustained

oscillations in the gamma range [12] are induced in the

prefrontal cortex [13], and their power increases in

proportion to the task load [14]. During sensory proces-

sing, gamma range power in LFPs recorded in the related

sensory area of the cerebral cortex is significantly

enhanced following stimulus onset [Fig. 1(a)] [15], [16].

Abnormal gamma oscillations are a hallmark of cognitive
disorders such as schizophrenia [17], autism [18], and

language-learning impairments [19]; in the frontal cortices

of infants, reduced gamma range power predicts language

and cognition deficits at five years of age [20].

III . OSCILLATIONS IN THE
BRAIN: THEORY

Theoretical work has proposed various functional roles for

neural oscillations [3], [23]–[26], both for coding and

communication, some of which also find empirical evidence.

A. Oscillations Enable Phase Coding
Oscillations have been suggested to facilitate phase

coding, whereby the magnitude of total input to a neuron

is converted to the position of its output spikes relative to

the ongoing oscillation [24], [25], [27]. In both the

hippocampus and neocortex of the brain, empirical data

indicate that strongly excited neurons fire earlier in an

oscillation cycle with a higher probability than those

excited less strongly [28]–[31]. In the hippocampus, a
phenomenon called phase precession has provided some of

the best evidence for the functional role of theta

oscillations in phase coding: the phase of a cell firing

relative to the ongoing theta oscillations has been shown to

advance systematically as the moving animal passes

through the cell’s preferred location in space [28]. This

mechanism enhances spatial coding and assists in the

formation of assemblies of cells to represent movement
trajectories.

B. Oscillations Synchronize Neural Assemblies
Oscillations in a neural ensemble synchronize the

firing of participating neurons, which, in turn, could

subserve important coding and communication roles such

as feature binding and efficient communication.

1) Oscillatory Synchronization Facilitates Feature Binding:
It has been hypothesized that neuronal spikes become

synchronous if they participate in the encoding of related

information [4]. This temporal binding has been suggested

to underlie feature binding at higher levels of the visual

processing hierarchy. Experiments in the visual cortex of

multiple species show that adjacent neurons synchronize

their action potentials in the gamma band such that either

Fig. 1. Oscillations are detected as narrowband increase in the

power spectrum of electrical activity in the brain. (a) Power spectral

density of LFPs recorded with a penetration electrode from the visual

cortex of a macaque in response to visual stimulation (green).

Dashed black curve shows the power spectrum of LFP recorded before

visual stimulation. The trace and schematic in the inset shows 1 s of

LFP time series (green) in response to visual stimulation. Data

adapted from [21]. (b) and (c) Alternative models for local network

mechanisms of oscillations [22]. (b) A schematic for inhibitory (I)

neuronal network model for oscillations, also known as ING.

(c) A schematic for excitatory (E)-inhibitory (I) neuronal network

model for oscillations.
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individual neurons or the population exhibit oscillatory
behavior when optimally stimulated [15], [32]–[35].

2) Oscillatory Synchronization Enables Dynamic Routing of
Information: Oscillations could also facilitate dynamic

coupling between brain areas [24], [25]: Appropriate

modulation of phase coupling between a pair of oscillating

areas can enhance the functional connectivity between the

two. This is also termed as communication through
coherence. While this functional role for brain oscillations

is not well established empirically, recent studies provide

some evidence. Simultaneous recording of neural activity

from two brain areasVfrontal eye field (FEF) and visual

area V4Vshows that oscillatory coupling between them is

strengthened at gamma frequencies, when the subject is

paying attention [36]. It is thought that strong coupling

with phase shifts comparable to the communication delays
between areas could ensure that spikes from one area

arrive at the peak phase of neuronal membrane potential in

the target area to be maximally effective in their influence.

More recently, it has been hypothesized that neural

oscillation-based multiplexing mechanisms, similar to

those used in telecommunication systems between a

receiver and multiple transmitters, implement selective

neural communication [26].
The proposed functions for brain oscillations are still

under investigation [7], [37] as establishing their causality

requires manipulating the oscillations independent of the

stimulus or behavioral state. In a parallel effort, compu-

tational studies have explored models for the neural

mechanisms underlying the observed oscillations (sum-

marized recently in [7]). These models can provide

insights into studying brain oscillations empirically, and
guide their implementation in artificial systems. These

models could also be used to theoretically explore ways in

which oscillations can be regulated from within and

outside the neural population in which they emerge.

Equally importantly, the gained insights could shed further

light on novel roles or interpretations of oscillatory brain

states.

IV. MODELS OF NEURAL OSCILLATIONS

Empirical and theoretical studies have shown that

oscillations in the cortex are mediated by inhibitory

neurons [22], [27], [38], [39]. Inhibitory neurons act to

reduce the electrical excitability of their target neurons,

either by reducing the input resistance of their neuronal

membrane or by making their membrane voltage more
negative. Gamma-range oscillations in the cortex are

thought to be mediated by inhibitory neurons that target

the soma (cell body) of the electrically compartmentalized

pyramidal neurons [40], [41]. These oscillations typically

occur with irregular firing of single neurons, with each

individual neuron skipping multiple oscillation cycles [37],

[42]. Such oscillations are hence thought to emerge not

through oscillatory spiking of individual neurons, but from
the coordinated interaction of neurons. These interactions

can cause oscillations in a neuronal network in a couple of

ways that are broadly referred to as inhibitory neuron–

network–gamma (ING) or pyramidal neuron–inhibitory

neuron–network–gamma (PING) [22] (Fig. 1). Empirical

evidence from gamma range oscillations in response to

visual stimulation suggests that they are of the PING type

[37], [43], [44]. Oscillations within PING architecture
depend on strong excitatory–inhibitory feedback, but can

emerge either due to communication delays (e.g., conduc-

tion delays along axons) [45] or due to positive feedback
(recurrent excitation) [46]. Noisy versions of such models

produce irregular firing of individual neurons and

oscillations with noisy phase [42], [45], [47]. Other

models for how narrowband activity emerges in the cortex

suggest that the detected signal is the bandpass-filtered
output of the local cortical network whose input resembles

broadband noise [48] or that the oscillations result from

quasi-cycles or population-level resonant oscillations

caused by noise-induced excursion of damped oscillations

in a nonlinear network [47], [49].

V. REGULATION OF GAMMA
OSCILLATIONS

Many of the computational models of oscillations have a

frequency range of oscillations that is constrained by

biophysical ‘‘constants’’ such as conductance delays or the

decay of inhibitory postsynaptic currents (IPSCs) [38],

[45], [50]. Others offer dynamic regulation of the peak

oscillation frequency with the intensity of input to the

network: stronger the input, faster the oscillations.
Empirical observations suggest that brain oscillations are

dynamic in their frequency as well as amplitude: They can

be modulated by brain states, stimulus properties, or

attention.

A. Oscillations Reflect the Balance of Excitation and
Inhibition in the Network

LFP oscillations in the gamma range have been
proposed to reflect the strength of synchrony in neuronal

populations, and find empirical support in several cortical

areas [51], [52]. In the primary visual cortex (V1), the

attentive states as well as several stimulus properties

regulate the mean firing rates and oscillations in a highly

correlated manner. The peak frequency of these oscilla-

tions increases with contrast which also increases the

mean firing rates [37], but decreases with the stimulus size
which decreases the mean firing rates [44]. When the

contrast of visual stimulus is varied in space, the peak

gamma frequency correspondingly varies between nearby

cortical sites (about 400 �m apart) [37]. When the contrast

is slowly varied in time, the peak frequency rapidly

changes to match the contrast [37]. Spatial attention,

which increases the mean firing rates in the local cortical
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network, increases the peak frequency of gamma [37],
while reducing their power [43]. Since mean firing rates

reflect the balance of excitation and inhibition experienced

by the local network, the empirical data from V1 suggest

that both the power and frequency of gamma range

oscillations reflect this balance.

B. Regulation of Oscillations in an Inhibition-
Stabilized Network

Local networks of excitatory ðEÞ and inhibitory ðIÞ
neurons in the cortex are thought to operate in an inhibition-

stabilized network (ISN) regime [53], which is characterized

by strong self-excitation within the E population stabilized

by feedback inhibition from the I population. This regime

explains the paradoxical withdrawal of local inhibition
during the phenomenon of surround suppression in V1

neurons [54]. We have recently proposed a mechanism for

the regulation of oscillations in an inhibition-stabilized E–I
network that captures the changes in gamma as observed

in V1 [55]. In a PING network of stochastically firing

neurons with strong excitatory–inhibitory feedback and

recurrent excitation, our model demonstrates oscillations

whose power and frequency reflect the balance of input to
the local excitatory and inhibitory neurons (Fig. 2). Such

networks can exhibit narrowband oscillations that are

noisy versions of the underlying deterministic limit cycle

phenomenon in a firing rate model [47]. Nonlinear

bifurcation analysis of limit cycle phenomenon in the

firing rate model suggests several regimes of their

amplitude/power regulation [56], [57]. In the following

sections, we use a combination of approximate analysis and
confirmatory simulations of a firing rate model to propose a

novel constraint on the model that allows it to operate in a

regime that captures the empirical observations for both

power and frequency regulation. The constraint allows it to

regulate limit cycle oscillations by balancing the input to

the excitatory and inhibitory neurons, suggesting that it

underlies the observations in our stochastic model.

C. Firing Rate Model
The simplified firing rate model

�E
drE

dt
¼ � rE þ GEðWEE � rE �WEI � rI þ iEÞ (1)

�I
drI

dt
¼ � rI þ GIðWIE � rE �WII � rI þ iIÞ (2)

describes the coevolution of excitatory ðrEÞ and inhibitory
ðrIÞ population firing rates in time as a function of external

input (iE and iI) to both E and I populations. �E and �I

indicate the rate at which the populations approach their

steady-state firing rates. GE and GI are response functions:

they map the firing rates of the two neural populations as a

function of their net inputs [46], [54]. The steady-state

firing rate of each population is determined by the

weighted sum of individual activities and the external

input. Weights WEE, WEI, WIE, and WII are positive numbers

representing strength of connections between E–E, E–I, and
I–I populations, respectively. For example, WEE represents

the product of the average number of recurrent excitatory

contacts per cell and the average postsynaptic current arising

from one presynaptic action potential. The steady-state

network behavior is determined by the intersection of the

drE=dt ¼ 0 and drI=dt ¼ 0 curves in the rErI-plane [red and

blue curves in Fig. 3(a), third panel].

D. Oscillations in the Firing Rate Model of an ISN
When sufficient stimulation pushes the ISN out of a

stable equilibrium, it can result in stable oscillations in the

E and I firing rates [46]. Previous theoretical work has

shown that in a network of spiking neurons such

oscillations are present purely at a population level, and
can be weak or absent at the level of a single neuron [45]–

[47]. It has been previously observed that the frequency of

these limit cycle oscillations is regulated by stimulus

intensity in a monotonic fashion: it increases with

increasing input to the excitatory population [46].

Analytical treatment also suggests model regimes in which

either increasing or decreasing input to the inhibitory

Fig. 2. Regulation of narrowband oscillations with the balance of

inputs to the excitatory ðEÞ and inhibitory ðIÞ neurons. (a) Schematic of

the E–I network model with 800 E and 200 I neurons. Panel on the

right shows spike times for a fixed level of constant input to the E and I

neurons for 200 ms. Dots in each row represent spike times in one

neuron, both E (red dots) and I (blue dots). The overlaid trace (green)

shows fluctuations in mean spikes/second of the population calculated

in 5-ms bins. (b) Power spectral density estimate of 1-s duration

of spikes per second shown in (a). Dashed lines mark the peak

power and peak frequency of the narrowband increase in power.

(c) Normalized peak power and peak frequency plotted as a function of

the ratio of inputs to the I and E populations. (d) Normalized peak

power and peak frequency plotted as a function of mean spikes per

second of the population. Data adapted from [52].
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population increases the power in oscillations [57], [58].

However, it is not known if and how the model network can

operate in a regime where the power, frequency, and mean

firing rate regulation match empirical observations as seen

in V1. To analyze these properties, we used the simplified

rate model [46], [53], [59] described in (1) and (2).

Result 1VIncreased Input to I Population Can Reduce
Oscillations Frequency and Increase Their Power: Simulations

of the ISN model with sigmoid response function

(Appendix A) showed that there was an input regime in

which increasing input to the I population not only

reduced the mean E and I firing rates as expected, but also

caused stable oscillations [Fig. 3(a)]. Characteristic of an

ISN [53], [54], the mean local E and I population firing

rates covaried when we independently modulated the
input to each population [Fig. 3(b)]. The input to the E
population increased the mean firing rates of both popula-

tions, while the input to the I population decreased it. There

was a subspace of inputs over which the network showed

sustained oscillations [Fig. 3(c)]. The oscillation power as

well as frequency varied with the inputs in a nonmonotonic

fashion over the entire subspace. The oscillations in the rate

model exhibited a behavioral regime in the input subspace in
which increasing the input to the I population not only

reduced the mean firing rate, but both increased the power

and decreased the frequency of network oscillations.

Result 2VAn I Population With Superlinear Response
Function Causes Oscillations With Lower Frequency and
Higher Power: To investigate why an increased input to the

I population caused slower and stronger oscillations in
only part of the input subspace that caused oscillations, we

revisited the characteristics of the expected bifurcation in

the nonlinear network model when input to the I
population was increased (Appendix B).

a) Modulation of oscillation power by the input to the I
population: Our analysis predicted that the power in the

oscillations depended on the shapes, and hence the slopes,

of both the E and I response functions (Appendix B3). The
predicted relationship between oscillation power and the

estimated slopes of the response functions showed good

correspondence with the simulation data [Fig. 3(d)]. The

qualitative prediction for power varied roughly with the

ratio SlopeE : SlopeI of the response functions of the two

populations. We investigated the relative shapes of E and

I response functions for which the ratio would increase

with increased input to the inhibitory population
(Appendixes B1 and B2), revealing two alternate criteria:

1) a highly superlinear I response function and a

sublinear, linear, or weakly superlinear E response

function;

2) a highly sublinear E response function and a

superlinear, linear, or weakly sublinear I response

function.

When the network oscillated in a range where the response
curves satisfied one of the above criteria, increasing input

to the I population would cause more powerful oscillations

per our qualitative prediction. Analyzing the data from

model simulations with sigmoid response functions con-

firmed that the subspace of the inputs where the first

criterion was satisfied coincided with the region where the

phenomenon was observed (Fig. 4).

Fig. 3. Regulation of limit cycle oscillations as a function of inputs to

the E and I populations. (a) Simulation of the model described by (1)

and (2) as an ISN with sigmoid E and I response functions. iE and

iI are the external excitation to the two populations. Traces in the

middle show time evolution ofE firing rate for a fixed level of iE and two

different levels of iI (low: black trace; high: green trace). Panel on the

far right illustrates coevolution of E and I firing rates in a phase

plot. Red and blue curves are the E and I nullclines, respectively.

(b) Simulation results for E and I firing rates as a function of the two

external inputs. (c) Simulation results for power and frequency of

oscillations as a function of the external inputs. (d) Predicted trends for

the variation of power and frequency of oscillations with external

inputs (see Appendix B). The white contour in panels (b), (c), and

(d) bounds the approximate analytical prediction (� ¼ 0 and !2 > 0

from Appendix B) for oscillatory region (i.e., power > 0). The area

bound by dashed white line marks the subregion where the analysis

predicts the oscillation power to increase and frequency to

decrease with increasing iI.
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b) Modulation of oscillation frequency by the input to
the I population: Our analysis predicted that the frequency

of oscillations also depended on the shapes of both the E
and I response functions, but in a more complex way

(Appendix B4). The predicted slope-based estimate of

frequency was approximate but in close qualitative agreement
with the simulations in the rate model [Fig. 3(d)]. The

predicted frequency varied roughly with the product

SlopeE � SlopeI of the two populations. We investigated the

relative shapes of E and I response functions for which the

product would decrease with increased input to I population

(Appendixes B1 and B2), revealing three alternate criteria:

1) a superlinear response function for both E and I
populations;

2) a highly superlinear response function for the E
population and a weakly nonlinear response

function for the I population;

3) a highly superlinear response function for the I
population and a weakly nonlinear response

function for the E population.

When the network oscillated in a range where response
functions satisfied one of the above criteria, increasing

input to the I population would cause lower frequency

oscillations per our qualitative prediction. Analyzing the

data from model simulations with sigmoid response

functions confirmed that the subspace of the inputs where

the third criterion was satisfied coincided with the region

where the phenomenon was observed (Fig. 4).

Combining the independent qualitative criteria on
response function slopes for the power and frequency

modulation of interest, our analysis predicted that when an

oscillating ISN was constrained to operate with strongly

superlinear I response function and a weakly nonlinear E
response function, the oscillations power would in-

crease and frequency decrease with increased input to the

I population. To illustrate this with the simplest scenario,

we simulated the nonlinear rate model with piecewise
and bounded power-law I response function and linear E
response function (Appendix A). The simulation data

confirmed the predictions from the analysis of the

linearized system over a large portion of the input range

in which the network showed oscillations [Fig. 5(b)].

Result 3VIncreased Input to the E Population Increases
the Frequency but Decreases the Power in Oscillations:
Properties of ISN predicted that independently increasing

the input to the excitatory population would increase both

E and I firing rates (Appendix B1). Constrained by the

relative E=I response function shapes developed in Result 2,

the analysis (Appendixes B3 and B4) predicted that

independently increasing input to the excitatory population

would decrease the power of network oscillations and

increase their frequency. Simulations in the nonlinear firing
rate model confirmed the predictions [Fig. 5(b)].

Result 4VThe Balance of Input to Both E and I Populations
Determines the Frequency and Power of Oscillations: The

analysis for the ISN with strongly superlinear inhibition

predicted the following outcomes for the co-modulation of

the two drives (Appendices B1–B4).

1) Higher frequency lower power oscillations accom-
panied by increased output firing rates: The

oscillations would be faster and less powerful

when the co-modulation of inputs increased the

output firing rate for both populations.

2) Lower frequency higher power oscillations ac-

companied by decreased output firing rates: The

oscillations would be slower and more powerful

when the co-modulation of inputs suppressed the
firing rates of both populations.

In addition, the analysis predicted that the changes in

population firing rates (and, hence, the response slopes)

were not limited to covariation. When both inputs were

changed, firing rates of E and I populations could vary in

different directions, and by different amounts, depending

on the balance of change of the inputs to the two

Fig. 4. Inhibitory neuronal ðIÞ population with a strong superlinearity

facilitates regulation of oscillations similar to empirical observations.

(a) Schematic on the top depicts the shape of E response function

and its slope at different levels of input. Estimated response

function slopes (middle panel) and superlinearity (bottom panel) of

E population as a function of inputs to the E and I populations.

The superlinearity measure was computed as second derivative of

the response function. Solid white contour in the panels bounds

the approximate analytical prediction for oscillatory region

(i.e., power > 0). The area bound by dashed white line marks the

subregions where oscillation power increased and frequency

decreased with increasing iI, as described for Fig. 3. (b) Same as in (a),

but for inhibitory population.
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populations [Appendix B1, Fig. 3(c)]. Thus, the qualitative
predictions for power and frequency changes not only

depended on the absolute strength of the individual inputs,

but also the effectiveness of their balance in changing the

response slope of the two populations; a sufficient change

in the slope was necessary for causing change in the power

or frequency of oscillations. For differential sensitivity of

power and frequency to the balance of the inputs, our

analysis predicted two more scenarios:
3) power-only modulation of oscillations;

4) frequency-only modulation of oscillations.

Simulations in the nonlinear rate model demonstrated

all four scenarios, including the frequency-only and power-

only changes in network oscillations [Fig. 5(c)]. When we

estimated the slope of I response function from the

simulation data during frequency-only and power-only

modulation, we confirmed that the co-modulation was not
along the most effective direction for changing the slope of

I response function. In summary, when the inputs to the E
and I populations were co-modulated, the direction of

change (increase/decrease) of their balance as well as the

change in their absolute strengths determined their overall

effect on the oscillations in the network.

VI. DISCUSSION

In the brain, electrical activity that is triggered by sensory

processing, cognitive tasks, and changes in internal states

shows narrowband oscillations in spike rates, LFPs, and

EEGs. Extensive theoretical work and some empirical evi-

dence suggest a functional role for such oscillations in coding

and routing of information in the brain. Oscillations in the

cortex are modulated both by internal states and external
sensory stimuli. Although interactions between populations

of excitatory and inhibitory neurons underlie these oscilla-

tions, how they are dynamically regulated is not well

understood. In this study, we investigated a simplified and

well-known model E–I network that parsimoniously captures

the paradoxical behavior of gamma range oscillations

observed in recent recordings from visual cortical neurons

[37], [44], and is based on the connectivity regime of the local
cortical network [53], [54]. Powerful oscillations emerge

when inputs to the E and I populations result in a reduction

of local activity. Oscillations grow faster when the inputs to

the E and I populations result in an increase of local activity.

Our analyses and simulations show that the inhibitory po-

pulation constrained to operate with a strongly superlinear

response curve is crucial to this demonstrated behavior. The

deduced constrains find support in the empirically deter-
mined response characteristics of the excitatory ðEÞ and in-

hibitory ðIÞ neural populations involved in these oscillations.

A. Empirical Support for the Constraint on
Response Nonlinearity

Our model predicts that the inhibitory neurons

involved in the gamma-generating E–I network operate

Fig. 5. Simulations in the rate model. (a) Response functions

used for the E and I populations. (b) Power and frequency of

oscillations with independent modulation of input to the I population

(left panels) and the E population (right panels). The numbers next to

the curves show the fixed levels of iE (left panel) and iI (right panel)

at which the simulations were performed. (c) Contour plots of

variation of peak power (green) and peak frequency (orange) as a

function of input to the E and I populations. The figure shows most of

the region where the network shows stable oscillations and both E and

I populations have nonzero firing rates. (d) Estimated slope of the I

response function for the range of external inputs shown in (c).

The direction guide (bidirectional arrows) indicates the directions

for most (black) to least (white) effective directions of input

co-modulation for changing the slope of I response function.

Overlaid on top are example iso-power (green circles) and

iso-frequency (orange squares) modulation of network oscillations

from (c).
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in the superlinear portion of their response characteristics,
consistent with measurements of cortical neurons operat-

ing in the superlinear range of their rate versus membrane

potential ðF� VmÞ characteristics under stimulus-driven

conditions [60], [61]. When constrained by the experi-

mental observations on gamma oscillations, the model also

predicts that such inhibitory neurons operate in a strongly

superlinear (compared to the excitatory population)

portion of their response characteristics. A basis for this
difference may lie in the higher firing rates and lower

adaptation of fast-spiking inhibitory neurons [62], which

are thought to be crucial to gamma range oscillations in the

cortex [40], [41]. Additionally, recent empirical data from

cerebral cortex have reported evidence for a stronger

superlinearity of inhibitory neurons than excitatory neurons

[63]. Even in the absence of such evidence, our qualitative

analysis shows that relative strength of connections within
and between populations can differentially constrain the

operating range of each population during network oscilla-

tions (Appendix B4). Other nonlinear mechanisms that we

have not considered here and merit further consideration,

such as synaptic facilitation/depression, could also come into

play in shaping the response functions of the two

populations. The response functions in our model are the

response of a neuronal population to a linearly increasing
input; the actual transformation of the input quantity such

as stimulus properties or focus of attention into synaptic

currents can be nonlinear and provide yet another

mechanism to differentiate the response properties of the

excitatory and inhibitory populations.

B. Implications of the Analysis

1) Connectivity Regimes Can Achieve Functional Speciali-
zation: When gamma power in our constrained model

increases with increasing input to the inhibitory population,

consistent with experimental evidence [40], it is also

accompanied by suppression of the local E=I firing rates.

This is supported by visual cortical data showing that when a

strong gamma signal is recorded at a site, it co-occurs with

reduction of multiunit firing rates [44], and that the
reduction applies to both excitatory and inhibitory popula-

tions [54]. The model thus predicts that cortical inhibitory

neurons that have strong reciprocal connections with local

excitatory neurons in an ISN-type overall connectivity

participate in stimulus-induced gamma. Thus, firing rates of

inhibitory neurons responsible for gamma oscillations would

co-vary with the excitatory activity. On the other hand, the

firing rates of inhibitory neurons not responsible for gamma
generation would anti-vary with the excitatory activity in the

network. Given the recent empirical characterization of the

properties of different types of inhibitory neurons [64] in

the cortex, this suggests that although many inhibitory

neurons have essentially similar local action at a neuronal

membrane, the cortical architecture ensures functional

specialization of inhibitory neurons at the network level.

2) Oscillations May Improve Signal-to-Noise Ratio (SNR):
Empirical evidence in the cortex [16], [44], [65] and our

modeling shows that strong gamma co-occurs with

reduced firing rates [55]. Reduced firing rates of neurons

can degrade the SNR for their downstream neurons.

However, the signal degradation experienced by a

downstream neuron pooling from neurons with reduced

firing rates could be compensated for by improved spike

synchrony (as a population). Although this is theoretically
possible and there is some empirical evidence [51], it is not

known if this strategy is indeed exploited for reliable

communication by the neural machinery.

3) The Regulation Mechanism Is Not Specific to Gamma
Range Oscillations: In addition to the regulatory mechanism

we propose here, the frequency of oscillations in the model

also depends on the connection strengths in the network
[(12) and (13)]. Changes in the strengths of inhibitory

feedback (E-to-I and I-to-E) are predicted to shift the range

of narrowband oscillations in the model accordingly. Thus,

although the regulatory mechanism discussed here pri-

marily explains empirical data on gamma range oscilla-

tions, it is applicable to oscillations in any other frequency

band with a similar underlying oscillatory mechanism: an

ISN–PING.

C. Relation to Other Computational
Models of Oscillations

1) Regulation of Oscillation Frequency: The regulatory

mechanism discussed here demonstrates a richer modula-

tory effect of external inputs than previously shown in other

models of network oscillations [5]. For example, models
involving I population or ING-type oscillations predict an

increase in frequency [38], [50] when the input to I neurons

is increased. In our model, increasing the input to the

inhibitory neuronal population may increase or decrease or

not change the frequency of oscillations, depending on how

the input to the E population is co-modulated.

2) Role of I–I Coupling in an E–I Model: Although strong
I–I coupling is essential for oscillations in ING models [45],

[50], it has been generally understood to be inconsequen-

tial for oscillations in the PING models [45], [46], [66].

Our analysis, when constrained by experimental data,

reveals a novel role for I–I coupling in the E–I models of

gamma: without sufficient I–I coupling, the network can

oscillate and undergo frequency modulation, but is not

predicted to demonstrate the modulation of power with
changing input to the neuronal populations (Appendix B1).

3) Alternate Mechanisms: In a network of stochastically

spiking neurons, oscillations can emerge as quasi-cycles

with varying amplitude and phase [47]. Bandpass fil-

tering of broadband noise is an alternate model for such

oscillations [48], and frequency and power modulation
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in these models has been used to propose an alternate
interpretation of data in the visual cortex [67]. In the

broader context of brain oscillations, any one model

would most probably explain a subset of the empirical

data on brain oscillations. The local architecture, types

of neurons, and their biophysical properties vary widely

in different brain areas, potentially necessitating other

alternate mechanisms to capture the genesis as well as

regulation of these oscillations.

VII. CONCLUSION

Oscillations in the electrical activity of the brain have been

recorded for close to a century, and the last few decades

have seen extensive theoretical exploration of how they

might influence cognitive function during behavior. We

have recently proposed a regulatory mechanism for such

oscillations in a spiking network model that captures their

observed modulation in empirical data. Here, we explored
the probable underlying mechanism in a simplified model

of interactions between excitatory and inhibitory neural

populations. In the past, empirical challenges in indepen-

dently and precisely manipulating brain oscillations have

hampered progress in testing theoretical ideas. However,

the recent technical advances will hopefully allow some of

these ideas to be tested in alert brains. Nonetheless, the

related theoretical ideas and models could inspire novel
coding and communication strategies in engineered

systems. h

APPENDIX A
RESPONSE FUNCTIONS OF NEURONAL
POPULATIONS

The response function for each subpopulation (GE and

GI) represents the proportions of E=I cells firing for a given

level of input activity x. The different response functions

used for the simulations were

sigmoidal:

GE=IðxÞ ¼
1

1þ e�mE=Iðx��E=IÞ
� 1

1þ emE=I��E=I

piecewise power law:

GIðxÞ ¼
0; for x G �I

mIðx� �IÞ3

1; for GI > 1

8<
:

piecewise linear:

GEðxÞ ¼
0; for x G �E

mEðx� �EÞ; for �E G x G �E þ 1=mE

1; for x > �E þ 1=mE:

8><
>: (3)

In (3), �E=I is the threshold level of net input below

which the value of the response function is 0. The slopes

mE=I reflect the different rates at which E and I population
response changes as a function of the input.

APPENDIX B

LIMIT CYCLE OSCILLATIONS IN A
TWO-POPULATION NETWORK MODEL

By examining eigenvalues of the linearized system and

using other analytical criteria, previous works have

explored the parameter conditions under which such a
network can exhibit nonlinear phenomena such as

hysteresis and stable limit cycles [46]. They predict that

when the network is in the ISN regime, it can exhibit

stable oscillations over a range of inputs (iE and iI). For

sigmoid response functions, such as the logistic function

shown in (3), transition of the model network from stable

nonoscillatory behavior to stable limit cycle oscillations

has been mapped previously [56]–[58]. Here, we restate
the basic results and derive approximate analytical

functions showing the dependence of stable limit cycle

frequency and power on response function shapes and

hence the inputs.

The Jacobian or the linearization matrix of the model

network [described by (1) and (2)] in the ISN regime is

given by [53], [56]

J ¼

WEEsE � 1

�E
�WEIsE

�E

WIEsI

�I
�WIIsI þ 1

�I

666664
777775 (4)

where

sE ¼ G0E and sI ¼ G0I:

The eigenvalues of the Jacobian J are the solution � to the

following equation, known as the characteristic equation:

detðJ � �IÞ ¼ 0: (5)

Solving (4) and (5) gives the eigenvalues � of the ISN
in terms of the network parameters [53] as described in

�1;2¼�� j!

where

�¼ 1

2

WEEsE � 1

�E
�WIIsI þ 1

�I

� �

!¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sEsIWIEWEI

�E�I
� WEEsE�1

�E
þWIIsIþ1

�I

� �2
s

: (6)

When the ISN is operating in the positive slope region

of E and I nullclines [drE=dt ¼ 0 and drI=dt ¼ 0 curves in

Fig. 3(a)], and WEE is sufficiently large, the real part of

eigenvalues [see (6)] can transition from negative to
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positive values in an input-dependent fashion. This
happens when the response functions GE and GI are

nonlinear, and, hence, their slopes (sE and sI) vary with the

inputs (iE and iI). It can be shown that by meeting

additional criteria [56], [68], the network can transition to

stable oscillations [56], [58]. This transition can occur in

more than one way depending on how the two inputs are

varied. A transition, known as supercritical Andronov–

Hopf bifurcation, occurs when the dynamics of the model
network change from a stable equilibrium to stable

oscillations via a pair of purely imaginary eigenvalues as

described in

� G 0! � ¼ 0! � > 0 and !2 > 0: (7)

The strength of the network inputs at which the

transition occurs ð� ¼ 0Þ is known as the bifurcation

point. For a network with fixed connectivity, the

bifurcation is determined by the slope of the response

function at a given level of input [(6) and (7)]. The

change in the slope of response function with input

depends on how E and I firing rates vary with the network
inputs.

1) Modulation of E and I Activity by the Network Input:
The steady-state activity of the E and I population in our

rate model in the ISN regime can be described as a

function of the input to the two populations [53]

rE ¼
sE

G
ð1þ sIWIIÞ � iE � sIWEI � iI½ �

rI ¼
sI

G
sEWIE � iE � ðsEWEE � 1Þ � iI½ �

where

G ¼ sEsIWIEWEI � ðsEWEE � 1Þð1þ sIWIIÞ: (8)

Equation (8) indicates that, when the inputs to the two

population are co-modulated, the extent of modulation of

E and I population activity is determined by the balance of
inputs. The criteria in (8) for modulation of the E and I
activities can be restated as follows:

DrE /
DiE
DiI
� sIWEI

ð1þ sIWIIÞ

� �

DrI /
DiE
DiI
� ðsEWEE � 1Þ

sEWIE

� �
: (9)

2) Modulation of the Slopes of Response Functions by the
Network Input: In the ISN regime, input to the E
population facilitates/increases both the E and I firing

rates, and input to the I population suppresses/decreases

both firing rates [see (8)]. If the response function G is

nonlinear, then the slope will vary independently with the
inputs to the two populations in the following way:

superlinear portion of GE=I:

sE=I / iE and sE=I /
1

iI

sublinear portion of GE=I:

sE=I /
1

iE
and sE=I / iI: (10)

3) Power of Oscillations: When a nonlinear system such

as the firing rate E–I model goes from steady-state activity

to small amplitude oscillations through supercritical
Andronov–Hopf bifurcation, it can be shown that the

amplitude of oscillations depends on � in (6) and a scaling

term a that depends on the system parameters [68]

amplitude of oscillations ¼
ffiffiffiffiffi
�

jaj

r

or

amplitude /
ffiffiffi
�
p

: (11)

Since the power of an oscillating signal is proportional
to the square of its amplitude, our analysis in the firing rate

model predicted that the power in the population

oscillations depended approximately on � [see (6)] and

hence the slopes of the response functions

power / (amplitude)2 / �

power / 1

2

WEEsE � 1

�E
�WIIsI þ 1

�I

� �
: (12)

4) Frequency of Oscillations: The frequency of the

oscillations that emerge via the set of conditions we

explore here [see (7)] is accurately given by ! [see (6)] at

the threshold level of input (iE or iI) or the bifurcation point

[68]. For other levels of network input, the expression is

corrected with an amplitude-dependent term [68]. Thus,

the oscillation frequency (cycles per second) in our firing

rate model was approximately given by

frequency � !

2�

� 1

4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sEsIWIEWEI

�E�I
� WEEsE�1

�E
þWIIsIþ1

�I

� �2
s

:

(13)

APPENDIX C
SIMULATION OF THE
TWO-POPULATION MODEL

Simulation Parameters: Table 1 shows the parameter

values used for generating the simulation data. Given the

values of time constants, the connection weights were
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chosen such that the frequency of oscillations in the model

was in the gamma range.

Simulation Environment: The network was simulated

using Matlab 2012a (The MathWorks, Natick, MA, USA).

Power Spectrum: Power spectral density of the average

activity signal was estimated nonparametrically by calcu-

lating the discrete-time Fourier transform of the signal.

APPENDIX D
THEORETICAL ESTIMATION OF
OSCILLATION POWER AND FREQUENCY

The estimate of mean firing rates was obtained by

averaging over 200 ms of the simulation data. For sigmoid

response function, the slope of response functions, as

plotted in Fig. 4, was calculated from the mean rates using

the relationship in

sE=I ¼ �rE=Ið1� �rE=IÞ: (14)

The estimate of slope along with the connection

weights in the network was used to calculate the

theoretical estimate of eigenvalues [see (6)] as well as

the trends for frequency and power as per (12) and (13)

[Fig. 1(b)]. For the choice of power law response function

[see (3)], the slope of I response function, as plotted in
Fig. 3(d), was estimated from the mean rates using the

relation in

sI ¼ 3� ðmEÞ
1
3ð�rIÞ

2
3: (15)
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W. Singer, ‘‘The role of oscillations and
synchrony in cortical networks and their
putative relevance for the pathophysiology of
schizophrenia,’’ Schizophr. Bull., vol. 34,
pp. 927–943, Sep. 2008.
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