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Abstract

We have constructed a recurrent network that stabilizes images of a moving
object on the retina of a simulated eye. The structure of the network
was motivated by the organization of the primate visual target tracking
system. The basic components of a complete target tracking system were
simulated, including visual processing, sensory-motor interface, and motor
control. Our model is simpler in structure, function and performance than
the primate system, but many of the complexities inherent in a complete
system are present.

380



Recurrent Eye Tracking Network Using a Distributed Representation of Image Motion

. . : Target

Retinot Estimate of
“Maps Retinal Eye.
Velocity Velocity
Visual v Motor v Motor v Eve
Processing ™ Interface [ > Control y
Images —>

Figure 1: The overall structure of the visual tracking model.

1 Introduction

The fovea of the primate eye has a high density of photoreceptors. Images that fall
within the fovea are perceived with high resolution. Perception of moving objects
poses a particular problem for the visual system. If the eyes are fixed a moving
image will be blurred. When the image moves out the of the fovea, resolution
decreases. By moving their eyes to foveate and stabilize targets, primates ensure
maximum perceptual resolution. In addition, active target tracking simplifies other
tasks, such as spatial localization and spatial coordinate transformations (Ballard,

1991).

Visual tracking is a feedback process, in which the eyes are moved to stabilize and
foveate the image of a target. Good visual tracking performance depends on accu-
rate estimates of target velocity and a stable feedback controller. Although many
visual tracking systems have been designed by engineers, the primate visual tracking
system has yet to be matched in its ability to perform in complicated environments,
with unrestricted targets, and over a wide variety of target trajectories. The study
of the primate oculomotor system is an important step toward building a system
that can attain primate levels of performance. The model presented here can accu-
rately and stably track a variety of targets over a wide range of trajectories and is
a first step toward achieving this goal.

Our model has four primary components: a model eye, a visual processing net-
work, a motor interface network, and a motor control network (see Figure 1). The
model eye receives a sequence of images from a changing visual world, synthetically
rendered, and generates a time-varying output signal. The retinal signal is sent to
the visual processing network which is similar in function to the motion processing
areas of the visual cortex. The visual processing network constructs a distributed
representation of image velocity. This representation is then used to estimate the
velocity of the target on the retina. The retinal velocity of the target forms the in-
put to the motor control network that drives the eye. The eye responds by rotating,
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Figure 2: The structure of a motion energy unit. Each space-time separable unit
has a receptive field that covers 16 pixels in space and 16 steps in time (for a total
of 256 inputs). The shaded triangles denote complete projections.

which in turn affects incoming retinal signals.

If these networks function perfectly, eye velocity will match target velocity. Our
model generates smooth eye motions to stabilize smoothly moving targets. It makes
no attempt to foveate the image of a target. In primates, eye motions that foveate
targets are called saccades. Saccadic mechanisms are largely separate from the
smooth eye motion system (Lisberger et. al. 1987). We do not address them here.

In contrast with most engineered systems, our model is adaptive. The networks
used in the model were trained using gradient descent!. This training process
circumvented the need for a separate calibration of the visual tracking system.

2 Visual Processing

!Network simulations were carried out with the SN2 neural network simulator.
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The middle temporal cortex (area MT) contains cells that are selective for the
direction of visual motion. The neurons in MT are organized into a retinotopic
map and small lesions in this area lead to selective impairment of visual tracking
in the corresponding regions of the visual field (Newsome and Pare, 1988). The
visual processing networks in our model contain directionally-selective processing
units that are arranged in a retinotopic map. The spatio-temporal motion energy
filter of Adelson and Bergen (Adelson and Bergen, 1985) has many of the proper-
ties of directionally-selective cortical neurons; it is used as the basis for our visual
processing network. We constructed a four layer time-delay neural network that
implements a motion energy calculation.

A single motion-energy unit can be constructed from four intermediate units hav-
ing separable spatial and temporal filters. Adelson and Bergen demonstrate that
two spatial filters (of even and odd symmetry) and two temporal filters (temporal
derivatives for fast and slow speeds) are sufficient to detect motion. The filters
are combined to construct 4 intermediate units which project to a single motion
energy unit. Because the spatial and iemporal properties of the receptive field are
separable, they can be computed separately and convolved together to produce the
final output. The temporal response is therefore the same throughout the extent of
the spatial receptive field.

In our model, motion energy units are implemented as backpropagation networks.
These units have a receptive field 16 pixels wide over a 16 time step window. Because
the input weights are shared, only 32 parameters were needed for each space-time
separable unit. Four space-time separable units project through a 16 unit combi-
nation layer to the output unit (see Figure 2). The entire network can be trained
to approximate a variety of motion-energy filters.

We trained the motion energy network in two different ways: as a single multilayered
network and in stages. Staged training proceded first by training intermediate units,
then, with the intermediate units fixed, by training the three layer network that
combines the intermediate units to produce a single motion energy output. The
output unit is active when a pattern in the appropriate range of spatial frequencies
moves through the receptive field with appropriate velocity. Many such units are
required for a range of velocities, spatial frequencies, and spatial locations. We
use six different types of motion energy units — each tuned to a different temporal
frequency — at each of the central 48 positions of a 64 pixel linear retina. The 6
populations form a distributed, velocity-tuned representation of image motion for
a total of 288 motion energy units.

In addition to the motion energy filters, static spatial frequency filters are also
computed and used in the interface network, one for each band and each position
for a total of 288 units.

We chose an adaptive network rather than a direct motion energy calculation be-
cause it allows us to model the dynamic nature of the visual signal with greater
flexibility. However, this raises complications regarding the set of training images.
Assuming 5 bits of information at each retinal position, there are well over 10 to
the 100th possible input patterns. We explored sine waves, random spots and a
variety of spatial pre-filters, and found low-pass filtered images of moving random
spots worked best. Typically we began the training process from a plausible set of
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weights, rather than from random values, to prevent the network from settling into
an initial local minima. Training proceeded for days until good performance was
obtained on a testing set.

Krauzlis and Lisberger (1989) have predicted that the visual stimulus to the visual
tracking system in the brain contains information about the acceleration and im-
pulse of the target as well as the velocity. Our motion energy networks are sensitive
to target acceleration, producing transients for accelerating stimuli.

3 The Interface Network

The function of the interface is to take the distributed representation of the image
motion and extract a single velocity estimate for the moving object. We use a
relatively simple method that was adequate for tracking single objects without other
moving distractors. The activity level of a single motion energy unit is ambiguous.
First, it is necessary for the object to have a feature that is matched to the spatial
frequency bandpass of the motion energy unit. Second, there is an array of units
for each spatial frequency and the object will stimulate only a few of these at any
given time. For instance, a large white object will have no features in its interior; a
unit with its receptive field located in the interior can detect no motion. Conversely,
detectors with receptive fields on the border between the object and the background
will be strongly stimulated.

We use two stages of processing to extract a velocity. In the first stage, the motion
energy in each spatial frequency band is estimated by summing the outputs of the
motion energy filters across the retina weighted by the spatial frequency filter at
each location. The six populations of spatial frequency units each yield one value.
Next, a 6-6-1 feedforward network, trained using backpropagation, predicts target
velocity from these values.

4 The Motor Control Network

In comparison with the visual processing network, the motor control network is quite
small (see Figure 3). The goal of the network is to move the eye to stabilize the
image of the object. The visual processing and interface networks convert images
of the moving target into an estimate for the retinal velocity of the target. This
retinal velocity can be considered a motor error. One approach to reducing this
error is a simple proportional feedback controller, which drives the eye at a velocity
proportional to the error. There is a large, 50-100 ms delay that occurs during
visual processing in the primate visual system. In the presence of a large delay a
proportional controller will either be inaccurate or unstable. For this reason simple
proportional feedback is not sufficient to control tracking in the primate. Tracking
can be made stable and accurate by including an internal positive feedback pathway
to prevent instability while preserving accuracy (Robinson, 1971).

The motor control network was based on a model of the primate visual tracking
motor control system by Lisberger and Sejnowski (1992). This recurrent artificial
neural network includes both the smooth visual tracking system and the vestibulo-
ocular system, which is important for compensating head movements. We use a
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Figure 3: The structure of the recurrent network. Each circle is a unit. Units within
a box are not interconnected and all units between boxes were fully interconnected
as indicated by the arrows.

simpler version of that model that does not have vestibular inputs. The network is
constructed from units with continuous smooth temporal responses. The state of a
unit is a function of previous inputs and previous state:

8j(t + at) = (1 — Tat)s;(t) + ITat

where s;(t) is the state of unit j at time ¢, 7 is a time constant and I is the
sigmoided sum of the weighted pre-synaptic activities. The resulting network is
capable of smooth responses to inputs.

The motor control network has 12 units, each with a time constant of 5 ms (except
for a few units with longer delay). There is a time delay of 50 ms between the
interface network and control network. (see Figure 3). The input to the network
is retinal target velocity, the output is eye velocity. The motor control network is
trained to track a target in the presence of the visual delay.

The motor control network contains a positive feedback loop that is necessary to
maintain accurate tracking even when the error signal falls to zero. The overall
control network also contains a negative feedback loop since the output of the net-
work affects subsequent inputs. The gradient descent optimization procedure uses
the relationship between the output and the input during training—this relation-
ship can be considered a model of the plant. It should be possible to use the same
approach with more complex plants.

The control network was trained with the visual processing network frozen. A
training example consists of an object trajectory and the goal trajectory for the
eye. A standard recurrent network training paradigm is used to adjust the weights
to minimize the error between actual outputs and desired outputs for step changes
in target velocity.
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Figure 4: Response of the eye to a step in target velocity of 30 degrees per second.
The solid line is target velocity, the dashed line is eye velocity. This experiment
was performed with a target that did not appear in the training set.

5 Performance

After training the network on a set of trajectories for a single target, the tracking
performance was equally good on new targets. Tracking is accurate and stable -
with little tendency to ring (see Figure 4). This good performance is surprising in
the presence of a 50 millisecond delay in the visual feedback signal?. Stable tracking
is not possible without the positive internal feedback loop in the model (eye velocity
signal to the flocculus in Figure 3).

6 Limitations

The system that we have designed is a relatively small one having a one-dimensional
retina only 64 pixels wide. The eye and the target can only move in one dimension—
along the length of the retina. The visual analysis that is performed is not, however,
limited to one dimension. Motion energy filters are easily generalized to a two-
dimensional retina. Our approach should be extendable to the two-dimensional
tracking problem.

The backgrounds of images that we used for tracking were featureless. The cur-
rent system cannot distinguish target features from background features. Also, the
interface network was designed to track a single object in the absence of moving
distractors. The next step is to expand this interface to model the attentional
phenomena observed in primate tracking, especially the process of initial target

2We selected time constants, delays, and sampling rates throughout the model to
roughly approximate the time course of the primate visual tracking response. The model
runs on a workstation taking approximately thirty times real-time to complete a processing
step.
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acquisition.

7 Conclusion

In simulations, our eye tracking model performed well. Many additional difficulties
must be addressed, but we feel this system can perform well under real-world real-
time constraints. Previous work by Lisberger and Sejnowski (1992) demonstrates
that this visual tracking model can be integrated with inertial eye stabilization—the
vestibulo-ocular reflex. Ultimately, it should be possible to build a physical system
using these design principles.

Every component of the system was designed using network learning techniques.
The visual processing, for example, had a variety of components that were trained
separately and in combinations. The architecture of the networks were based on
the anatomy and physiology of the visual and oculomotor systems. This approach
to reverse engineering is based on the existing knowledge of the flow of information
through the relevant brain pathways.

It should also be possible to use the model to develop and test theories about the
nature of biological visual tracking. This is just a first step toward developing a
realistic model of the primate oculomotor system, but it has already provided useful
predictions for the possible sites of plasticity during gain changes of the vestibulo-
ocular reflex (Lisberger and Sejnowski, 1992).
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