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Abstract
In this paper we describe the properties of independent

components of optical 
ow of moving objects. Video

sequences of objects seen by an observer moving at var-

ious angles, directions and distances are used to pro-

duce optical 
ow maps. These maps are then processed

using independent component analysis, which yields �l-

ters that resemble the receptive �elds of dorsal medial

superior temporal cells of the primate brain. Contrac-

tion, expansion, rotation and translation receptive �elds

have been identi�ed. Our results support Barlow's sen-

sory coding theory and are in-line with other work on

independent components of image and video intensi-

ties.

1. Introduction

About fourty years ago, Barlow proposed that the brain
could represent sensory information using factorial
code [1]. More recently researchers have reported the
emergence of independent components from natural im-
ages [2] and video sequences [3] when entropy maxi-
mization techniques are used on their intensities. The
independent components of natural images have prop-
erties similar to the localized edge receptive �elds of
simple cells in the primary visual cortex of mammals.
The independent components of video sequences resem-
ble localized spatiotemporal receptive �elds { moving
edge �lters [4].

It is known that complex visual motion processing
is performed by the middle temporal (MT) and me-
dial superior temporal (MST) areas in the brain of pri-
mates. In particular, the dorsal region of MST (MSTd)
has attracted a great deal of neurophysiological interest
because of its role in processing complex visual motion
patterns. Cells in this area have large receptive �elds

and respond selectively to the expansion, rotation, and
spiral motion stimuli that are generated when the ob-
server moves.

Area MSTd receives its primary input from the MT
area. MT cells produce highly selective responses to
directional motion and speed in relatively small regions
of the visual �eld. Hence it is considered that their
role is representing optical 
ow information, though
representation aspects are not well understood. MT
cells also respond to motion disparity.

If we extend the factorial representation/coding hy-
pothesis to MT and MST, the question is, what would
be the independent components of complex motions
and how well would they �t to the properties of the
receptive �elds of MSTd cells?

Zemel and Sejnowski [5] hypothesized that complex
optical 
ows produced by the combination of observer
motion with other independently moving objects. Ac-
cording to this hypothesis the optical 
ow is composed
of multiple regular patterns, to which MSTd cells had
been found to be selectively tuned. The authors sug-
gested that what the functional role for the MST area:
to encode the ensemble of motion causes that generates
the complex 
ow �eld. They proposed an MST model
based upon an auto-encoder neural network. An auto-
encoder is a neural network trained using supervised
learning techniques to duplicate, at its outputs, the
same patterns applied to its inputs. The input-output
mapping of an auto-encoder network is constrained by
a non-linear transformation through the middle layers
of the neural network. The distance measure between
the target output and the actual output can be the
cross-entropy measure. After training, the �lters (re-
ceptive �elds of neurons) of the hidden layer of the
auto-encoder were found to selectively tuned to spe-
ci�c motion like rotation, contraction and translation.
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Figure 1. The linear mixing/unmixing model.

In this paper, we describe simulation experiments
aimed at exploring the properties of independent com-
ponents extracted from optical 
ow of complex object
motion. We have used a ray tracing system to generate
video sequences of objects seen by an observer moving
at various distances, angles and directions. The optical

ow of the sequences was computed and independent
components were extracted using an independent com-
ponent analysis algorithm. Our hypothesis was that
�lters produced using the analysis would have similari-
ties with the receptive �elds of MSTd cells. An analysis
of the independent components revealed this similarity
and �lters tuned to contraction, rotation, and transla-
tion were present. Our results support the theory of
sensory coding proposed by Barlow and elaborated by
others [6, 7]

In Section 2 we review independent component anal-
ysis, associated learning algorithms, and its applica-
tions in signal separation and feature extraction. In
Section 3 we review optical 
ow computation and de-
scribe brie
y the algorith we have used in our experi-
ments. Section 4 describes our experiments and presents
our results. Finally in Section 5 we discuss our results
and presents directions for future work.

2. Independent Componen t Analysis

Independent component analysis (ICA) is an informa-
tion maximization method for extracting the causes or
sources from multidimensional observations. ICA has
been applied to blind source separation and feature ex-
traction problems.

Blind separation techniques can be used in any do-
main where an array of N sensors receive linear mix-
tures of N source signals. Examples of such blind
separation of such mixtures include speech separation
(`cocktail party problem'), processing of arrays of radar
or sonar signals and processing of arrays of multi-sensor
biomedical recordings. The term blind indicates that
both the source signals and the mixing process of the
signals are unknown. Figure 1 shows the basic network
for the blind signal separation in the case when two

sources are mixed by an unknown mixing matrix A.
The objective of the ICA algorithm is the following:
given a set of observation vectors, where each vector
x represents one observation, �nd the vector of under-
lying sources s. That is, �nd the unmixing matrix W
which is the inverse matrix of the mixing matrix A.
The assumption is that the underlying sources are sta-
tistically independent from each other.

Parallel to blind source separation studies, unsuper-
vised learning rules based on information theory were
proposed by Linsker [8]. Here the goal is to maximize
the mutual information between the inputs and outputs
of a neural network. This approach is related to the
principle of redundancy reduction suggested by Bar-
low [1] as a coding strategy by neurons in the brain.
According to this strategy, each neuron would encode
features that are as statistically independent as possible
from other neurons over a natural ensemble of inputs.

2.1. Derivation of Learning Rule

In the linear mixing model the observation vector can
be written as

x = As (1)

where the independent sources, s, the components of
an observation vector x are no longer independent and
their mutual information is de�ned as

I(x) =

Z
p(x) log

p(x)QN

i=1 pi(xi)
dx (2)

The mutual information is always positive and is zero
if and only if the components are independent [9]. The
goal of the ICA algorithm is to �nd the linear transfor-
mation W of the dependent observations that makes
the output u as independent as possible.

u =Wx (3)

Nadal and Parga showed that in the low-noise case,
the maximum of the mutual information between the
inputs x and outputs y of a neural network implied that
the output distributions were factorial where y was the
nonlinearly transformed version of the u: y = f(u)
[10]. In other words, maximizing the information trans-
fer in a nonlinear neural network minimizes the mutual
information among the outputs when optimization is
done over both the synaptic weights and the nonlinear
transfer function.

Bell and Sejnowski proposed a simple learning rule
for a feedforward neural network that blindly separates
linear mixtures x of independent sources s using infor-
mation maximi zation. They showed that maximizing
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the joint entropy H(y) of the output of a neural net-
work can approximately minimi ze the mutual informa-
tion among the output components. The joint entropy
at the outputs of a neural network is

H(y) = H(y1) + � � �+H(yN )� I(y) (4)

where H(yi) are the marginal entropies of the outputs
and I(y1; : : : yN ) is their mutual information. Each
marginal entropy can be written as

H(yi) = �E[logp(yi)]: (5)

The probability density of the output yi can be de-
scribed using the probability density of the estimated
independent sources, ui.

p(yi) =
p(ui)

j @yi
@ui

j
(6)

Then the Eq. 4 can be written as

H(y) = �E[log
p(u1)

j @y1
@u1

j
]+ � � ��E[log

p(u1)

j @y1
@u1

j
]� I(y) (7)

If we know the probability distribution of the u
which is the estimation of the underlying source, s, we
can eliminate all the marginal en tropy terms to zero by
setting @yi

@ui
= p(ui), which gives

H(y) = �I(y): (8)

Now the direct maximization of the joint entropy
between output components implies the minim ization
of the mutual informationwhich makes the output com-
ponents independents. To maximize the joint entropy,
an iterative gradient ascent algorithm is used by calcu-
lating,

@H(y)

@W
= (WT )�1 +

 
p(u)
@u

p(u)

!
xT (9)

A complete derivation of the algorithm can be found
in [11]. Amari suggested the natural gradient learning
rule to speed up the convergence which rescales the
entropy gradient [12]:

�W /
@H(y)

@W
WTW =

"
I+

 
p(u)
@u

p(u)

!
uT

#
W (10)

If we de�ne the score function �(�) as

�(u) = �
p(u)
@u

p(u)
; (11)

Eq. 10 leads to

...
... Σ

ia
is

ju

jw

Figure 2. Linear image synthesis model.

�W /
�
I� �(u)uT

�
W (12)

The maximumlikelihood estimation approach to in-
dependent component analysis, which assumes the fac-
torial code of output neurons, gives the same learning
rule as the information maximi zation approach.

2.2. ICA and F eature Extraction

In feature extraction studies using sparse coding [13]
or ICA [14], the observation vectors like natural images
are assumed to be linear mixture of several underlying
basis vectors, ai which constitute the columns of a ma-
trix A corresponding to the mixing matrix of the blind
signal separation problem. The amount of contribution
each basis vector makes to compose an observation is
represented by the vector s. Each element of vector s
has its own associated basis function, and represents
an underlying \causes" of the image or any observa-
tion vector. Hence the linear image synthesis model is
described by:

x =
X
i

siai

= As (13)

where x is an observation vector. Figure 2 shows the
linear image synthesis model and the basis functions
extracted using the ICA on natural images.

The underlying causes can be extracted by corre-
sponding independent component �lterswi which con-
stitutes the rows of W.

ui = wi � x (14)

where � operation denotes the inner product and ui is
an element of the recovered underlying cause u, which
responds to a speci�c feature of observation x captured
by the related �lter wi.
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The problem is to �nd W, if it exists, with the
assumption that underlying causes are statistically in-
dependent. This can be done by ICA algorithms. In
the simulations we report below, we have used the ICA
learning rule, which maximizes the entropy of output y,
the nonlinear transformed version of u as reported by
Bell and Sejnowski [2]. ICA on natural images resulted
in the �lters shown in �gure 2 { localized edge �lters
{ and similar work on the video sequences yielded the
spatiotemporal edge �lters that are sequences of edge
�lters shown in �gure 2 but moving in temporal do-
main.

3. Optical Flow

Optical 
ow is an approximation to the 2-d motion �eld
of spatiotemporal patterns of image in tensity [15] { a
projection of the 3-d velocities of surface points onto
the imaging surface. Sequences of time-ordered images
allow the estimation of two-dimensional image motion
as either instantaneous image velocities or discrete im-
age displacements. In other words each element in an
optical 
ow map represents the instantaneous velocity
of the object or the point in that element location. For-
mally if I(x; t) is the image intensity function, then

I(x; t) � I(x + �x; t+ �t) (15)

where �x is the displacement of the local image region
at (x; t) after time �t. Expanding the left-hand side of
this equation in a Taylor series yields

I(x; t) = I(x; t) +rI � �x+ �tIt +O2 (16)

where rI = (Ix; Iy) and It are the 1st order partial
derivatives of I(x; t) and O2, the 2nd and higher or-
der terms which are assumed negligible. Subtracting
I(x; t) and dividing by �t reduces Eq. 16 to the follow-
ing optical 
ow constraint equation,

rI � v + It = 0 (17)

where x = (u; v) is the image velocity. Because there is
only one constraint to solve two unknown parameters,
�nding exact solution of the Eq. 17 is ill-posed problem
and only at the image locations where there is su�cient
intensity structure can the motion be fully estimated
with the use of the optical 
ow constraint equation.

There have been many studies on optical 
ow com-
putation, which suggest auxiliary constraints to the
optical 
ow equations including di�erential methods,
frequency-based methods, correlation-based methods,
multiplemotionmethods and temporal re�nemen t meth-
ods. Beauchemin and Barron reviewed several methods
and compared their performances [16, 15].

(a) video frame

(b) optical 
ows

Figure 3. Extract of an example video sequence and its
associated optical 
ow

While deriving the optical 
o w constraint equations,
the smooth changes of intensity over both spatial and
temporal axis are assumed, but the occlusions of the
objects obviously violate this assumption. In order
to deal with object occlusions, Nagel proposed second-
order derivatives to measure optical 
ow and suggested
oriented-smoothness constraints where smoothness is
not imposed across steep intensity gradients (edges).
This prevents smoothing over intensity discontinuities [17,
15] most likely to represent object boundaries. Since
our video sequences have many occlusions, and because
occlusions represent important information for motion
segmentation, we have computed the optical 
ow in our
experiments using the Nagel algorithm.

In contrast to image intensities, each pixel in an
optical 
ow map has two components (called x and y

here) and thus a coding scheme is needed to apply in-
dependent component analysis. The representation we
have used is the simplest. For each optical 
ow observa-
tion, we concatenated all x components followed by all
y components to form a single optical 
ow observation.

4. Experime nts

4.1. Methods

All video sequences used in our simulations were syn-
thetic scenes created by a computer program (Persis-
tence of Vision Ray Tracer, which is publicly available
at http://www.povray.org). This program allows sim-
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ulation of dynamic scenes including various stationary
or moving objects, backgrounds, and observer motions.
A scene contains up to three objects from a choice of
seven types of objects { ball, cup, table, chair, cube,
vase and table lamp { and various backgrounds (tex-
tures) which can be composed of planes of 5 di�erent
patterns. Figure 3 shows a snapshot of video sequence
and the computed optical 
ow.

For each video sequence, a virtual space with a
background was de�ned and the number of objects was
set, together with an initial and �nal positions of an
observer. Each object was placed in space at random.
The sequence was generated as follows:

1. The �eld of view was set to 60� 60 deg.

2. The observer was stationary with a probability
of 1/3; the observer moved in the x-direction or
the z direction with probabilities of 1/3 and 2/3
respectively; the observer could rotate to track a
point or an object.

3. An object could move in all directions indepen-
dently with a probability 1/5 in each of the x, y
and z directions. Hence about half of the objects
were in motion and any (complete or partial) oc-
clusion of objects was allowed. In addition to
translation, an object could rotate independently
in the x-y plane.

For each sequence, the generation parameters were
determined and a script was produced to generate a
video sequence. A total of 30 frames was produced
by specifying 3-D positions of the camera, and each
object in the image and then updating the position
of the camera and each object, based on the motion
parameters. The script contained the description of the
content of an image and made use of a set of graphics
programs supplied in the ray-tracing package to render
each image. The script also used a library contained
in the package that included descriptions of the seven
object shapes and backgrounds.

A total of 15,000 movies were created. From these,
45,000 optical 
ow maps were extracted for training.
To produce an optical 
ow map, 15 frames were used
for Gaussian smoothing. The size of each frame was
64� 64 which corresponds to a 60� 60 deg visual �eld
and due to the spatial smoothing and a 2-to-1 sub-
sampling, the size of the resulting optical 
ow map was
16 � 16. Hence, the training data consisted of 45,000
vectors of length 512 (optical 
ow map is 16� 16, and
each element has 2 dimensions). These vectors were
zero-meaned and sphered (whitened by multiplying the
square root matrix of the covariance matrix of the input
vectors) before being processed by the ICA algorithm.

This preprocessing removes the �rst and second order
statistics of input vectors and therefore enhance the
speed of the convergence.

Our experiments made use of the Matlab ICA tool-
box developed by Makeig and his colleagues, which im-
plements the information maxim ization algorithm of
Bell and Sejnowski with the natural gradient feature of
Amari, Cichocki and Yang [18, 2, 12].

The hyperbolic tangent function was used as the
nonlinearity between the estimated underlying source,
u and the output y and no additive bias term in the
linear synthesis model was considered. We have used
principal component analysis (PCA) preprocessing for
dimension reduction prior to applying ICA. PCA is typ-
ically used to reduce dimension of input data based on
second order statistics.

4.2. Results

Figure 4 shows some of the �lters extracted by ICA.
We have experimented with both - with and without
PCA as a preprocessing step. In cases where PCA was
performed before ICA, the yielded �lters were mean-
ingful. However without PCA, the �lters had too small
receptive regions and showed no regular patterns. This
means that the number of underlying basis functions to
produce optical 
ow of dynamic scenes was quite small
compared to the dimensions of input data (512 here).
Using PCA, we reduced the dimensions of the input
data to 50, 70, 100 and 200. More than 200 principal
components seemed to be too many and less than 50
to be too few. The number of principal components
between 50 and 150 resulted in qualitatively similar �l-
ters.

The ICA �lters shown in �gure 4 were obtained with
a PCA preprocessing step that reduced the dimensions
down to 100. The �lters in the top row are receptive
�elds that respond to contraction and expansion, the
middle row correspond to rotation and the third row
corresponds to translation.

Although detailed quantitative measure have not
yet been computed for the selectivity of these units,
each �lter can be predicted to be spatially localized
and responds to a speci�c type of motion selectively.

The �lters shown in the bottom row of �gure 4 can
be considered to respond to the combination of more
than two types of movements. This could be similar to
the response of MSTd cells that have been observed in
many studies and that Du�y and Wurtz call double-
and triple-component neurons [19].

To test the response patterns of each �lter, 15,000
optical 
ows were generated from 5,000 video sequences
which were produced using the same procedures as the
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(a) Expansion/Contraction

(b) Rotation

(c) Translation

(d) Combination

Figure 4. Examples of �lters extracted by ICA
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Figure 5. Distribution of output amplitude for test patterns, which shows the sparseness of output activation.

training set. The response pattern of each �lter for
these test data are shown in �gure 5. Figure 5(a) shows
the number of output units (�lters), which give the out-
put activation of each range. Outputs of all units were
linearly normalized to have the same maximum value
over all input data and trivial input stimulus that con-
tains little movement were discarded. This normaliza-
tion was used to prevent redundant input which made
all output units inactive. As shown in the �gure, due
to the learning constraints of ICA and the assumed dis-
tribution of underlying sources, the response patterns
show sparseness of �lters { only a small number of units
respond for the given input pattern.

Figure 5(b) shows the selectivity of the �lters. Since
a �lter responds only to preferred types of input and is
inactive for all others patterns, the ratio between the
maximum activity of an output unit and its mean over
the testing set is quite large.

5. Discussion and Future W ork

In this study, independent component analysis was per-
formed on the optical 
ow of complex motion and the
resulting �lters show characteristics that resemble those
of MSTd cells in visual cortex.

The resulting �lters were tuned to speci�c motion
patterns, moderate in size, and localized in their posi-
tions. Filters selective to translations, rotations, con-
tractions, and expansions have been observed.

However, some important properties of MSTd cells
could not be observed explicitly in our present results.
First, some studies on MSTd reported cells with some
levels of position invariance. The linear �lter model
described in this paper could not show any invariance.
By introducing interactions between these linear �lters,
it is possible that position invariance can be achieved

to some extent [20, 5].

Secondly, more elaborate computational modeling
of MT cells is required. Many units were selective
to vertical or horizontal translational movements and
some were selective to translation at arbitrary angles.
This is probably due to the fact that, in the coordi-
nate system we adopted, any movement could be rep-
resented as linear combination of vertical and horizon-
tal movements. A more elaborate model of MT cells
similar to that of Nowlan and Sejnowski [21] capable
of representing motion components by population cod-
ing of many direction selective units, may be able to
produce translation selective units at various angles.
An alternative is to use a log-Polar coordinate system
similar to that used by Grossberg and colleagues [22].
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