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SUMMARY
The hippocampus receives sequences of sensory inputs from the cortex during exploration and encodes the
sequences with millisecond precision. We developed a predictive autoencoder model of the hippocampus
including the trisynaptic and monosynaptic circuits from the entorhinal cortex (EC). CA3 was trained as a
self-supervised recurrent neural network to predict its next input. We confirmed that CA3 is predicting ahead
by analyzing the spike coupling between simultaneously recorded neurons in the dentate gyrus, CA3, and
CA1 of the mouse hippocampus. In the model, CA1 neurons signal prediction errors by comparing CA3 pre-
dictions to the next direct EC input. The model exhibits the rapid appearance and slow fading of CA1 place
cells and displays replay and phase precession from CA3. The model could be learned in a biologically plau-
sible way with error-encoding neurons. Similarities between the hippocampal and thalamocortical circuits
suggest that such computation motif could also underlie self-supervised sequence learning in the cortex.
INTRODUCTION

The representation of sensory information in cortical structures is

encoded in the spatiotemporal patterns of spikes in populations

of neurons. During locomotion, the spike timing of neurons in

area CA1 of the hippocampus precesses relative to the local

phase of the theta wave.1–4 Spike timing is also precisely regu-

lated at the millisecond level to engage spike-timing-dependent

plasticity (STDP).5–7 This regulation must take into account time

delays for both the conduction of spikes between neurons and

transmission delays at synapses. We focus here on the func-

tional implications of this precision for how temporal sequences

of spikes are shaped by neural circuits. We show how the tem-

poral precision of spike timing coupled with anatomical wiring

could support the learning and replay of temporal sequences

in the hippocampal formation.

Cognitive maps are created in the hippocampus, with place

cells in rodents responding not only to locomotion signals8 but

also to other sensory stimuli, such as reward,9 auditory tones,10

odors,11 and time.12–15 These stimuli are high dimensional and

highly redundant, yet only a few hippocampal neurons are reli-

ably and repetitively activated in a short time interval, forming a

relatively low-dimensional dynamical trajectory in activity

space.16 The hippocampus therefore learns how to encode

high-dimensional sensory and motor signals at the apex of

cortical hierarchies into low-dimensional, latent, non-redundant,

sequential representations that ultimately support abstract
All rights are reserved, including those
representational learning. After learning sequences of events,

the hippocampus then replays them during sleep and immobility

when external inputs to the cerebral cortex are suppressed.17,18

Existing computational frameworks19–22 have successfully

modeled cognitive functions of the hippocampus and repro-

duced the statistics of place cell under various task conditions.

However, these models do not provide implementation of these

cognitive functions based on neural mechanisms or account for

the distinct encoding and firing properties of neurons in CA3,

CA1, and the dentate gyrus (DG).23–26 For example, CA1 neurons

aremore responsive to unexpected signals than neurons in other

hippocampal areas,27–29 and their activity decays over a time-

scale of weeks in familiar environments, faster than neurons in

other subregions (Figure S1). In contrast, recurrent circuits in

CA3 store an internal representation of sequences that are re-

generating during replay17,18 and preplay.30 Neural place fields

emerge faster in CA1 but are generally more stable in CA3

upon remapping.24,26 Schapiro et al.31 proposed a complemen-

tary learning system for CA1 and CA3 that reconciled statistical

learning with episodic memory. We exploit these functional dif-

ferences for a temporal predictive learning theory of sequences

in the hippocampus.

Predictive coding efficiently encodes visual features in lower

cortical layers, enabling higher layers to represent more abstract

features.32,33 This study builds upon these findings by extending

predictive coding into the temporal domain tomodel interactions

among hippocampal subregions. We confirmed the temporal
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Figure 1. The circuit within the hippocampal formation

Anatomical wiring and interregional delays. External sensory stimuli start from

different cortical layers in EC and reach CA1 through two pathways, forming a

self-supervised structure. Assume that spikes are delayed by t after one

synaptic transmission, they will be delayed by 3t and t at CA1 through the

indirect and direct pathways, respectively. We hypothesize that CA3 predicts

the future (�2h) to compensate for the accumulated transmission time dif-

ference (+2t).
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prediction hypothesis by analyzing neural recordings. We were

unable to replicate experimental findings with a recurrent

network model of CA3 that simply learned sequences. However,

when we trained a network to make temporal predictions, we

were able to successfully replicate the observed statistics of

neural activity, the qualitatively distinct dynamics in CA1 and

CA3 place cells, and representational learning to generate

replay. We further demonstrated a biologically plausible predic-

tive learning rule.

RESULTS

Temporal prediction hypothesis
Figure 1 summarizes the major connectivity in the hippocampal

formation. The entorhinal cortex (EC) is themajor cortical input to

the hippocampus and is the major recipient of its output. Among

hippocampal subregions, recurrently connected CA3 is ideal for

storing internal states in the form of attractor dynamics.34 Area

CA1 receives inputs from two pathways projecting from the EC

to CA1: an indirect pathway via DG and CA3 and a direct

pathway from the EC. Moreover, the two pathways are delayed

to different extents because there are more synaptic delays in

the indirect path through CA3.35 Assuming a synaptic transmis-

sion delay t > 0, signals transmitted through the indirect pathway

to CA1 are delayed by 3t, while those going through the direct

pathway are only delayed by t. An in vitro electrophysiology

study36 measured a 2.5-ms delay from EC to CA1 through the

direct pathway and a 9- to 17-ms delay through the trisynaptic

indirect pathway. The delay from EC to DG was 1.7 ms.

The function of this seemingly redundant and asynchronous

transmission from EC to CA1 suggests that CA3 may be making

predictions about future inputs, which can then be compared at

CA1 with the less delayed teacher signal from the direct

pathway. This comparison is similar to a Bayesian filter37 where

future predictions based on currently available information are

compared with future observations to update the model. There-

fore, we hypothesize that prediction errors are computed at CA1

and can be used to refine the internal model stored in CA3. In this
2 Neuron 112, 1–14, August 7, 2024
way, interactions between the cortex and the hippocampus form

a self-supervised loop, which enables the circuit motif to learn

and remember the latent variables of a predictive autoencoder

represented in CA3 as sequences.

Neural evidence for transmission delay and
predicting ahead
To verify the above hypothesis, we analyzed simultaneously re-

corded neural activities from these subregions for evidence of

transmission delay and predicting ahead. Assuming that neural

signal propagation strictly follows the anatomical organization

of the hippocampal formation in Figure 1, signals encoded by a

region should be correlated with the upstream signal shifted by

an interregional time delay. Ideally, if a location-sensitive neuron

in EC has a bell-shaped response curve fðxÞ, where x represents

any arbitrary physical variable such as location, its direct down-

stream DG neuron should exhibit a response fðx � tÞ, where t

refers to the default interregional delay (Figure 2A). Similarly,

the response curves of their downstream neurons in CA3 and

CA1 should be fðx � 2tÞ and fðx � 3tÞ, respectively (dashed

lines in Figure 2A).

Alternatively, if according to our hypothesis, CA3 is predicting

future signals to match the signal arrived from the direct

pathway, CA3 and CA1 would have response curves of fðxÞ
and fðx � tÞ, respectively (solid lines in Figure 2A), given similar

interregional delays. Although the recordings are unlikely to be

from directly connected neurons, evaluating the similarity mea-

sures between distributions of temporally shifted neural

activities should reveal interregional spike coupling properties

(Figures 2B–2D, upper).

According to our hypothesis, CA3 spike trains should couple

tightly with leftward-shifted DG spike train (Figure 2C, upper),

indicating that CA3 firing leads DG. This suggests that CA3 is

predicting ahead since it is anatomically downstream of the

DG. For both the prediction and non-prediction scenarios, CA1

activity should always follow CA3 by one synaptic delay (Fig-

ure 2B, upper). Moreover, despite the challenges associated

with measuring CA1-DG coupling due to their lack of direct

connection, similarity measures for CA1 and DG spike trains

for the prediction scenario are expected to reach a maximum

at approximately zero delay, since both these areas are one syn-

apse away from the EC. A peak at zero signifies information syn-

chrony between these two regions and would highlight the pre-

dominance of signals delayed by t in CA1 (see Figure 2D, upper).

We used the visual encoding neuropixel dataset from the Allen

Brain Observatory.38 This dataset contains simultaneous record-

ings of neural spikes sampled at 30 kHz in DG, CA3, and CA1

from mice performing passive visual perception of natural

movies, i.e., sequences of natural images (STAR Methods).

The high temporal precision enabled us to investigate spiking

timing accuracy on a millisecond timescale.

Following the methods in Siegle et al.,38 we calculated the

jitter-corrected cross-correlogram (CCG) of spike trains between

pairs of subregions over all stimulus conditions and plotted the

distribution of optimal shifts where CCG peaks (Figures 2B–2D)

(STAR Methods). To access higher-order statistical relation-

ships, we also calculated the mutual information (MI) between

the shifted spike trains, since we are interested in the amount
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Figure 2. Neural evidence of transmission delay and predicting ahead

(A) Schematics of delayed neural response and hypothesized predicting effect. Assume a rat running with constant velocity (time = location), one representative

location-sensitive neuron in EC exhibits bell-shaped response curve peaked at t = 0. Given there’s no prediction, its direct downstream DG and CA3 neuron will

peak at t = t and t = 2t, respectively. Meanwhile, CA1 would receive mixed signals, delayed by t and 3t, from dual pathways. If there is prediction ahead, CA3

would instead peak at t = 0, and CA1 would only respond to signals peaked at t = t.

(B) Spike coupling fromCA3 to CA1. Top: schematics of spike train similarity with respect to CA3 neural activity shifts. Positive shift means shifting CA3 spike train

toward the right and then computing its similarity with the unshifted CA1 spike train. Middle (bottom left): traces of corrected cross correlogram (mutual infor-

mation) from an example session. Each gray trace represents the prediction from a population of CA3 neurons to one CA1 neuron. The solid black trace is the

average across all CA1 neurons in the session. Middle (bottom right): histogram of optimal shift, where similarity measure peaks, pooled across 12 recording

sessions. (p value: t test of population mean equals to zero).

(C) Spike coupling from DG to CA3.

(D) Spike coupling from DG to CA1. DG is synchronized with CA1, while CA3 leads DG by 2 ms. This confirms the hypothesis that CA3 is predicting ahead.

See also Figure S2.
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of delay in the information transmitted by the spike trains. When

we used shifted CA3 spike trains to predict unshifted CA1 spike

train in Figure 2B, they coupled most strongly when CA1 was

shifted to the right. Thus, unsurprisingly, CA3 was ahead of

CA1 activity by 2 ms, which matched the previously reported

synaptic delay,35,36 validating our approaches to calculate syn-

aptic coupling at the precision of milliseconds.

In Figure 2C, we compared the unshifted CA3 spike train with

shifted DG spike trains. We found that both similarity measures
peaked when DG shifted significantly toward the left by amedian

of 2ms. This directly supports the CA3 predictive-ahead hypoth-

esis as explained above. In Figure 2D, we compared the un-

shifted CA1 spike train with shifted DG spike trains. From the

MI analysis, the distribution of optimal shifts is approximately a

normal distribution with median value of zero. This means that

neurons in CA1, despite some randomness, are synchronized

with those in DG assessed by MI. They were both delayed by

one synapse with respect to EC. The identification of a leftward
Neuron 112, 1–14, August 7, 2024 3



peak (CA1 preceding DG) in the cross-correlation analysis and a

synchronized peak in the MI analysis strongly supports the pre-

dictive-ahead hypothesis.

The distribution of optimal shifts between CA1 and DG from

cross-correlogram analysis was bimodal (Figure 2D). We

acknowledge that comparing the correlated activity in CA1 and

DG may be problematic, considering their lack of a direct

connection and the inherent difficulty in recovering coupling at

the millisecond level. However, the leftward peak could only

appear with the predictive component in the circuit, otherwise

CA1 response from the indirect pathway is always going to lag

behind DG response. The presence of a rightward peak in the

cross-correlation analysis could be a consequence of fast oscil-

lations in the 100–200 Hz range in local field potential (LFP) re-

cordings in CA1. Fast oscillations were not observed in DG on

the same probe (see Figure S2). An oscillation could induce the

bimodal peaks observed in Figure 2D. The MI analysis, which

is more robust to firing rate fluctuations, was not bimodal,

partially supporting this hypothesis.

Explaining observed spike coupling with a predictive
recurrent neural network
We developed a predictive recurrent autoencoder model of the

hippocampus to compare the time delays in the model with

those observed between CA3 and DG. In Figure 3A, we illus-

trated the temporal relationships identified in the preceding sec-

tion. Notably, the recurrent units in CA3 encode information at

t + 2 due to the predict-ahead training. Dashed lines represent

delay operations, while solid lines signify network computations

governed by the equations in Equation 1. The input signal x orig-

inates from the EC and DG, with DG serving solely as a delay

operator in our model. The recurrent signal h models CA3 activ-

ities, and the CA1 response is computed as a concatenation of

prediction errors and predictions (o). The dynamics of CA3 and

CA1 activities will be explored in subsequent sessions.

To train the model for predicting its next-step input x, we

adjusted the recurrent weightW using backpropagation through

time (BPTT)39–41 over a predictive loss function (Equation 1).

(Since we don’t have a physical time scale in this model, we

A

CB

Figure 3. A predictive RNN explains observed statistics

(A) Summary of the temporal relationship observed in Figure 2. The time stamps are labeled from the perspective of CA3 input. Dashed and solid lines indicate the

delay operation and weighted computation, separately. We believe prediction happened through the recurrent weightW, forming a conventional recurrent neural

network as described by the equations. EC/DG, CA3, and CA3 function as the input and recurrent and output layer, separately. To enforce the recurrent units to

predict ahead, we adopted a predictive loss function.

(B) Rate coupling from DG to CA3, equivalently, cross-correlation analysis between xt and ht for non-predictive networks (first row) and predictive networks

(second row). In a predictive network, recurrent units correspond better with xt+1.

(C) Mutual information analysis of spikes from DG to CA3. Spikes are generated through a Poisson process with the rate given by the trained networks and Dt =

0:02 s.
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Figure 4. CA1 error-encoding neurons facilitate the learning of internal model and explain distinct CA1 and CA3 place field dynamics during

remapping

(A) Input matrices (xt ) used during remapping. With the equivalence of time and location, each row represents a bell-shaped location-specific input current. Env,

environment. A second environment was modeled as the complete shuffling of the first familiar environment.

(B) Replay: given low-magnitude random input simulating spontaneous activities, a predictive recurrent autoencoder outputs its previously remembered pattern.

Prediction: given input of the first 10 time steps, the network performed pattern completion.

(legend continued on next page)
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assumed one unit of time for the number of temporal delays from

EC to CA3.) For comparison, we also trained the network using a

non-predictive loss function. In the later section, we show that

the error signal leads to comparable learning performance with

biologically plausible learning rules.

Network Dynamics : ht = sðWht +UxtÞ;ot = sðVhtÞ
Predictive loss : L =

X
t

kot � xt+1k2

Non-predictive loss : L =
X
t

kot � xtk2

(Equation 1)

where inputs xt project to the hidden units ht with weights U. The

hidden units are connected with recurrent weightsW and project

to the outputs ot through weights V. We tasked both networks

with learning a bell-shaped pulse spanning 100 time steps,

centered at t = 50, and subsequently calculated the cross-corre-

lation of x and h, as illustrated in Figure 3B. In the network trained

using a predictive loss function, the recurrent units exhibited a

notable leftward shift, compared with the input (bottom panels).

This shift was not observed in the control network trained using

the non-predictive loss function. We then used the firing rates

derived from the artificial networks to generate Poisson spikes

and performed cross-MI analysis on the simulated spike trains.

The same results were found in the spiking network model as

those obtained in the rate-based model (Figure 3C).
Facilitating learning of internal models through
sequence prediction
Our first test of the predictive recurrent network model was to

explain place cell dynamics. We first simulated a rat running

along a circular track with constant velocity (where time and

location are equivalent). All neurons in the recurrent layer (CA3)

received location-specific bell-shaped input activity (xt) repre-

senting their respective place fields on the track (Figure 4A,

left). A new environment was modeled as a random shuffle of

place fields (Figure 4A, right). The network was trained on Env1

and Env2, using the predictive loss function.

The trained models successfully reproduced the input se-

quences and exhibited replay and prediction (Figure 4B). Replay

refers to the re-activation of place cells in the same order as they

would during active exploring. Typically, this occurs when the

animal is in a state of sleep or immobility, meaning that the simu-

lated agent is not receiving any external sensory inputs. When

low-magnitude random noise was used to drive the trained

network, it randomly reproduced one of the learned sequences

(Figures 4B, left, and S3).
(C) Upper: the trained recurrent weight matrix sorted by the activation order of E

matrix diagonals offset by the index shown on the horizontal axis. The approximat

dynamics.

(D) During remapping, different ensembles of neurons are activated in both CA

neurons in familiar (F) or novel (N) environment, sorted by activation order. (Data

(E) Histogram of CA1 (first row) and CA3 (second row) place field onset laps in F (bl

but only CA1 neurons responded instantaneously in N. (Data reproduced from D

(F) Correlation of CA1 and CA3 place fields between F environment and its noisy/

about the network and training. (Data reproduced from Shin et al.,24 Figure 5.)

See also Figures S3 and S4.
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Place cells in the model also showed predictive activities that

have been reported for cells that are activated before making

turns and code for possible future locations.42,43 This could be

a consequence of pattern completion by the recurrent network

model. To demonstrate this, following a partial input sequence

to the network, it completed the remaining sequences (Figure 4B,

right).

This is strong evidence for line attractor dynamics44 in the

network. We reordered the learned recurrent weight matrix

based on the activation order of the hidden units in either Env1

or Env2 (Figure 4C, upper). The reordered matrix has an approx-

imately symmetric Toeplitz form resembling a one-dimensional

chain of neurons, each connected to its nearest neighbors with

positive values and more distant neurons with negative values

(Figure 4C, lower). The mathematical significance of Toeplitz

connectivity is elaborated in the discussion.

The trained network also exhibited phase precession, which

occurs in recordings where the timing of place cell firing with

respect to the phase of the oscillatory population activity be-

comes progressively earlier when traversing a place field.1 To

generate biologically relevant action potentials, we transferred

the weights from a trained recurrent weight to a network of

leaky-integrate-fire (LIF) neurons, following the procedure

described in Kim et al.,45 and recorded the emitted spikes (Fig-

ure S4A). Oscillatory activity was artificially enforced by injecting

8 Hz inhibitory currents, mimicking oscillatory inputs onto inhib-

itory neurons originating in the septal nucleus. Spike phases

were calculated and plotted against their relative location to

place field centers. Analysis of the LIF neurons during simulated

running on the track exhibited precession of the spike timing

(Figure S4B) similar to phase precession recorded from neurons

in vivo (see Figure 1 in Tsodyks et al.46).

CA1 error-encoding neurons explain distinct CA1 and
CA3 place field dynamics
Although differences in the encoding properties of place cells in

CA3 and CA1 are well known,47 they have been overlooked in

most hippocampal models. In our model, CA3 stores an internal

model of the world, while CA1 not only inherits CA3 output but

also simultaneously encodes prediction error. Supporting evi-

dence for error-encoding neurons involves earlier experimental

observations that CA1 neurons respond more than neurons in

other regions to unexpected signals27–29 and that CA1 place

fields decay slowly in familiar environments (Figure S1). At the

same time, acute silencing of CA3 drastically reduces CA1

response,48 suggesting that CA3 is the predominant driver of

CA1 place cells under normal conditions. (We want to note the

debate regarding the primary pathway driving CA1, as noted in
nv1 or Env2. Note similar entries on the diagonals; lower: average value of the

e kernel here looks like a Mexican hat, pointing to the existence of line attractor

1 and CA3 populations. Place fields of CA1 (first row) and CA3 (second row)

reproduced from Dong et al.,23 Figure 2A.)

ue) or N (red) environments. Both regions showed instant onset place fields in F,

ong et al.,23 Figure 2D.)

foggy version. See the table in the STAR Methods, network training, for details
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the studies by Brun et al.49,50 and Nakashiba et al.51 This

discrepancy may stem from the methodological differences in

lesion studies, specifically whether the lesions were induced

acutely or over a prolonged period.) In a later section, we present

a biologically plausible predictive learning algorithm for CA3

based on local prediction error.

To model remapping from a familiar environment (F) to a novel

environment (N), we instructed a network that had already

memorized Env1 to optimize toward Env2. Neural responses in

CA3 and CA1 were recorded as described above and sorted

based on experimental observations (Figure 4D). For both CA1

and CA3 neurons, distinct ensembles of place cells were acti-

vated in the two environments, consistent with previous experi-

mental data.23 Importantly, in Figure 4E (right), upon the switch to

the novel environment, CA1 place cells emergedmore rapidly, as

error information initially reflected the structure of the novel envi-

ronment. Over time, CA1 place cells transitioned to representing

CA3 output. In contrast, CA3 place cells emerged more slowly,

suggesting that the internal representation might require multiple

traversals to learn. The rapid neural response upon exposure to a

novel environment aligns with the well-established place cell

property called one-shot learning,52 the mechanism of which is

still debated. We propose here that this may be attributed to

the coding of error signals rather than to an abrupt increase in

weights. Abruptly modifying synaptic weights to a large popula-

tion of neurons53 could pose risks to system stability if not tightly

regulated. In this study, we present an alternative explanation for

apparent one-shot learning: neural activity immediately in-

creases in a new environment because CA1 reflects one-shot er-

ror, not one-shot learning.

Next, we modeled place cell remapping back to a familiar envi-

ronment by optimizing toward a noisy version of Env1 (Figure 4E,

left). Consistent with experimental data,23 both regions exhibited

instant place fields, as the internal representation stored in the

network matched the familiar environment. We also examined

the relationship between the correlation of neural activities and

the noise level in the Env1 environment (i.e., fog level in the data

panel); noise decorrelated the representation in both CA3 and

CA1,butCA3wasmore robust to thepresenceofnoise (Figure4F).

Learning future sequences promotes interpretable
latent representation
We next simulated a rat in a random foraging task consisting of

straight trajectories and random turns in a square arena (Fig-

ure 5A). Input was handcrafted as a nonlinear mixture of body di-

rection, world direction, path-integrated distance, and distance

to the closest wall, following the approach described in Benna

and Fusi54 (STAR Methods). The selection of these input dimen-

sions was based on the existence of head direction cells, path-

integration signals, and border cells in EC. Any one of these in-

puts alone is not able to determine the agent’s current location,

as evidenced by the lowMI per second between input unit activ-

ity and location (Figure 5C). To enforce a sparse representation in

the hidden layer, we added a regularization penalty of unit activ-

ity to the loss function (STAR Methods).

After training using the predictive loss function, hidden units

showed spatially localized representations similar to place fields

(Figure 5B). In comparison to networks trained with the non-pre-
dictive loss function, hidden units in networks trained with the

predictive loss function displayed significantly higher MI (Fig-

ure 5C). Both networks contributed to the extraction of locations

as hidden units have much higher MI, compared with the original

input signal. This indicates predicting ahead is beneficial for ex-

tracting location information from upstream inputs. The same re-

sults were found when the regularization strength was varied

(Figure S6), suggesting that a temporal predictive loss function

consistently aids in forming a localized representation.

To investigate the potential of the predictive loss function for

achieving representational learning—specifically, forming

sequential representations from high-dimensional sensory in-

puts—we organized image sequences using an increasing order

of MNIST (Modified National Institute of Standards and

Technology Database) handwritten digits (Figure S5). We first

extracted the first 68 components of the images through prin-

cipal-component analysis (PCA), which account for 86% vari-

ance, as the input to keep the minimal network structure. Image

reconstruction was based on the network output and inverse

transformation of PCA. After training, the network continued to

complete the sequences when the input was stopped after digit

3 (Figure 6C). Predictive completion was not observed in control

models trained with the non-predictive loss function (Figure S5).

Interestingly, the trained network not only constructed a

generative model to predict sequences but also automatically

clustered the digits according to their labels. In Figure 6D, we

plotted the independent components (ICs) of the hidden unit ac-

tivity for each digit and colored the digits according to their

labels. For the top 10 ICs (sorted by the contribution of

demixing matrix), each component represents one group of

digits, approximately.

This interpretable representation was achieved without explic-

itly defined labels. The sequential activation of ICs along the time

axis (Figure 6D, bottom) mimics the sequential activation of

place cells in the linear transformed space. Imagine a rat running

on tiles of MNIST patterns: Figure 6 shows how the interaction

between cortex and hippocampus transforms the complicated

sensory input into sequential activation of hippocampus neurons

as reported in numerous experimental studies.

Error neurons facilitate a biologically plausible learning
algorithm
We devised a predictive recirculation learning algorithm for a

predictive autoencoder, consisting of a set of three local learning

rules for the input weights (U), recurrent weights (W), and output

weights (V) (Equation 2). These learning rules approximate the

gradient of a predictive mean square error loss under certain as-

sumptions (see STAR Methods for derivations).

The precise gradient of the output weight (DV in Equation 2)

can be directly assessed as Hebbian learning between error-en-

coding neurons in CA1 (dx) and the recurrent neurons in CA3 (h).

The exact gradients of the input and recurrent weights pose

challenges to achieving locality in both time and space. This tem-

poral dependence was mitigated by truncating the temporal

gradient beyond the current time step. Additionally, to preserve

spatial locality, we avoided backpropagating errors by using re-

circulation. This strategy, inspired by the original recirculation al-

gorithm proposed by Hinton and McClelland55 for a three-layer
Neuron 112, 1–14, August 7, 2024 7



feedforward autoencoder, facilitates local learning for both input

and output weights by feeding back reconstructed inputs to the

encoder (Equation 4). As the authors of the recirculation algo-

rithm noted, the input weights converge approximately to the

transpose of the output weight (U = VT ). We confirmed that dur-

ing learning, the matrix entries in U and VT in our predictive au-

toencoder also converged: predictive recirculation learning

effectively drove the weights from random initialization to

approximate transposition (Figure S7). In the hippocampus, we

propose that this recirculation process could be implemented

through the feedback projections from CA1 to EC (Figure 7A).

In Figure 7, we trained a network using predictive recirculation

algorithm to reproduce and recall a sequence of MNIST hand-

written digits.

Predictive recirculation learning algorithm

Network Dynamics : ht = tanhðWht� 1 +Uxt� 1Þbxt = Vht

Predictive loss function : L =
X
t

Lt =
X
t

kbxt � xtk2

Learning rules : dxt = xt � bxt ; dht = Udx

DWf � diag
�
1 � h2

t

�
dht h

T
t� 1

DVf � dxt h
T
t

DUf � diag
�
1 � h2

t

�
dht x

T
t� 1

(Equation 2)

where diagðyÞ is a diagonal matrix with its diagonal equal to the

vector argument y. A derivation of these learning algorithms is

given in the STAR Methods.

A

C

B

Figure 5. Predictive networks led to more localized representation in a random foraging task

(A) Schematic of foraging task simulation. The agent was running straight in an open arena until it hit a wall and make a random turn. The red and blue straight

arrows indicate two straight trajectories. Network input defined as a random nonlinear mixture of body direction with respect to the norm of the last hit wall (q),

world direction with respect to east (4), and path-integrated distance (d).

(B) Place fields of the recurrent units (CA3 neurons) after training. Extent of localization was quantified by mutual information (MI) rate per second between firing

rate and location.

(C) MI of the input units and recurrent units in 10 networks trained by either the current loss function as a control or the predictive loss function. Recurrent units

trained by the predictive loss function showed significantly higher MI (t test, p < 0:001).

See also Figure S6.
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DISCUSSION

The temporal predictive coding framework proposed here to ac-

count for sequence memory and representation learning was

inspired by the anatomy of the hippocampus, validated by neural

recordings, and successfully replicated a variety of experimental

observations.

This theoretical framework makes several experimental pre-

dictions. First, the ablation of the direct pathway is expected

to suppress the formation of new place fields upon remapping.

This is partially supported by findings from Grienberger and

Magee,56 where the optogenetic inhibition of EC3 input activ-

ity led to a significant reduction in experience-dependent

shaping of CA1 representations. Second, our analysis sug-

gests that the significance of CA3 predictions may grow slowly

during the early stages of sequential learning, requiring multi-

ple epochs of training to achieve accurate prediction. Third,

our model makes detailed predictions that could be tested

with simultaneous long-term recordings from CA1, CA3, and

EC recordings before and after learning a sequential task.

Analysis of time course of coupling between different regions

would reveal the amount of prediction and how it changes

over time.

We found that training on sequences yielded a recurrent

network with a sparse Toeplitz form that can store multiple se-

quences. Toeplitz matrices have a diagonal structure that per-

forms a matrix temporal convolution. Toeplitz matrices also sup-

port traveling waves, which speed up learning of sequential

tasks by two orders of magnitude and over much longer time-

scales.57 The Toeplitz convolutional kernel underlies moving-

bump line attractor dynamics in recurrent neural networks,

including the dynamics of network models for compass cells in

rodents,58 neural integrators, and other neural systems.59,60 A

connectomic analysis of the rodent area CA3 could potentially

confirm the predicted Toeplitz connectivity, providing further

validation for our proposed model.

Predictive loss functions are routinely used in state-space

models, such as model-based control and Bayesian filtering.

A D

C

B

Figure 6. Predictive networks compress visual cues into sequential activation of hippocampal neurons

(A) Top: input organized as repetitive sequences of MNIST images from 0 to 9. Two sequences show individual differences.

(B) Trained network initiated with the first input could reconstruct the subsequent generic digits.

(C) When the input was stopped after digit 3, the network continued to predict the rest of the digits. Input digits were plotted before the red dashed line, while

predictions were plotted afterward.

(D) Top: independent components (ICs) of hidden unit activity. Most ICs represent one class (color-coded); bottom: reordered IC activities over time. Note the

sequential activation in 10 time steps (one cycle). ICA does not extract a unique sign, so diagonal entries can have both large positive and negative values.

See also Figure S5.
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Figure 7. Predictive recurrent network that

can learn and playback sequences of im-

ages using biologically plausible local

learning rules

(A) During training, inputs xt project to the hidden

units ht in the recurrent network. Three local

learning algorithms update the weights U from the

inputs to the hidden units, the weights V that

feedback to the inputs, and the weights W be-

tween the hidden units in the recurrent network

(STAR Methods). All three weight updates can be

computed by prediction error dx and its recircu-

lated error dh = Udx through the feedback

pathway from CA1 to EC.

(B) During recall, an initial input x0 generates a

sequence of outputs from the hidden layer.

(C) Example of a network trained by local learning

algorithms on an MNIST sequence of handwritten

digits (target). The output following the 0 input without further input replays the sequence in the trained order (recalled). See the table in the STAR Methods,

network training, for details about the network and training hyperparameters.

See also Figure S7.
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By predicting the future observations, generative models are

continually updated to make more accurate predictions.61

This approach has recently been incorporated in several

model-based artificial intelligence systems.62,63 The perfor-

mance of these systems is more robust and has superior

generalizability when there is an internal model of the system.

Our predictive model-based approach to the hippocampus

has similar advantages and is supported by evidence from

neural recordings.

Recanatesi et al.62 also explored predictive network models

with both state and action as inputs to predict the state on the

next time step. They demonstrated that representation

compression, including localized representation, could be

achieved through the addition of action signals. However,

the evidence for action signal encoding in the EC, the main

input to the hippocampus, is minimal. Without the action input,

we also observed compression of redundant representation in

Figures 5 and 6 as long as the input signal is redundant, indi-

cating that this is a robust computational advantage inherent

in having a predictive loss function. Our predictive model

without action aligns closely to a one-step successor repre-

sentation.64 Building on the extensive exploration of hippo-

campal neuron firing properties and their theoretical underpin-

nings,19–21,54,65,66 our model contributes a more mechanistic

perspective, grounded in the analysis of neural recordings

from hippocampal subregions. The simplicity and minimal

realization of our model could also serve as a critical building

block for most statistical inference models proposed for

hippocampus.

Representing prediction errors in someCA1 neurons could not

only facilitate the learning of the internal model stored in the

recurrent CA3 network, but it could also regulate the release of

dopamine in novelty-dependent firing of cells in ventral

tegmental area (VTA) through subiculum, accumbens, and

ventral pallidum.67 This could explain why novelty detection is

an essential function of the hippocampus. Temporal prediction

error has already been established for learning sequences of ac-

tions in the basal ganglia to obtain future rewards.68 If temporal
10 Neuron 112, 1–14, August 7, 2024
predictive coding principles for learning sequences are also

found in the cortex, as suggested in Figure 8, then predicting

the next input in every cortical area may be an important design

principle for human cortical function.

Self-supervised models, such as variational autoencoders,72

and unsupervised Boltzmann machines73,74 and their many var-

iants have avoided labor-intensive supervised input labeling.

The recent success of self-supervised transformers like GPT

were trained by predicting the next word in a sentence.75,76

These sophisticated models implicitly learn semantic represen-

tations. In the same way, our predictive network achieves rep-

resentation learning of sequences without needing sophisti-

cated statistical priors or explicitly defined representation

modules. Its minimal model structure facilitates detailed inves-

tigation and interpretation. Future work could focus on scaling

up the network or adding preprocessing modules to handle

more realistic problems such as the semantic segmentation

of video clips.

There is an analogy between the superficial and deep layers

of the six-layered neocortex with areas CA3 and CA1 of the

hippocampus, respectively. This is illustrated in Figure 8.

Upon comparison with Figure 1, parallels emerge between

the indirect pathway through the DG in the hippocampus, pro-

jecting to CA3, and the thalamic inputs to layer 4 of the

neocortex, projecting to layers 2/3. Similarly, the direct

pathway from the EC to area CA1 in the hippocampus corre-

sponds in the cortex to direct inputs from the thalamus to layer

5. As in the DG, layer 4 neurons are small and numerous,

creating input representation that separates similar patterns;

neurons in layers 2/3 form a highly recurrent network, similar

to that in CA3; neurons in layer 5 are output neurons, like

CA1 neurons. This similarity has been noted by others (D. Feld-

man, personal communication). We go further and suggest that

all cortical areas, as well as the hippocampus, may be predic-

tive autoencoders.

In this cortical model, the recurrent network in layers 2/3 is

trained as a predictive autoencoder to remember sequences

of inputs arising from the thalamus, which, like the EC in the



Thalamus L4 L2/3

L5

Figure 8. Universality of the circuit for computing temporal predic-

tion error in the cortex

Signals from thalamus reach cortex layer 5 through two different pathways: the

direct pathway69 and the indirect pathway via layer 4 and recurrent layers

2/3.70 This cortical circuit resembles the pathways in the hippocampus (Fig-

ure 1): the small stellate cells in layer 4 may have the same preprocessing

function as DG granule cells; recurrent layers 2/3 learns sequences by making

temporal predictions; pyramidal neurons in layer 5 compute the temporal

prediction error between these direct and indirect pathways and propagated

globally to subcortical structures and through layer 6 to the reticular nucleus of

the thalamus. A hierarchy of sequences learned by temporal predictionmay be

computed in the neocortex,71 since the canonical circuit is similar throughout.
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hippocampal model, serves as the input and output of the au-

toencoder. The latent sequences are further compressed

in the downstream areas, becoming more abstract while

ascending the hierarchy. The EC in Figure 8 is at the

top of converging hierarchies of cortical areas, each recapitu-

lating the same architecture, forming stacks of predictive

autoencoders.

This generalization of our hippocampal model could be tested

by recording simultaneously from the thalamus, layer 4, layers

2/3, and layer 5 and analyzing the spikes the same way we

analyzed recordings from the corresponding areas of the hippo-

campus, DG, CA3, and CA1.

If temporal predictive coding principles for learning se-

quences are found in the hippocampus and the cortex, as

suggested in Figure 8, then predicting the next input in every

cortical area may be an important design principle for

human cortical function. Predictive learning using conserved

circuits could underlie the robustness and flexibility of human

intelligence. Transformers in large language models achieve

remarkable performance with predictive self-supervised

learning. Inspired by brains, our model has potential for further

improvements in robustly disentangling representations in

artificial intelligence and approaching human levels of

performance.

Although we used BPTT as a way to construct networks

that learn sequences, we showed that it could potentially

be replaced by local learning rules by combining multiple

biologically plausible learning algorithms that we call predictive

recirculation. Our local learning rule computes a temporally trun-

cated version of the gradient computed by BPTT. It might none-

theless be difficult to accumulate gradients for long sequences.

It is possible that the pathway from the EC to CA3might facilitate

the learning of longer sequences. The addition of grid cells from

EC might also make it easier to learn long sequences.77 CA3

may also behave like a reservoir,78 generating a wide range of

time varying signals, and the prediction error signal could

be used to select inputs and weight them to reduce the predic-

tion error. We will pursue these possibilities in a subse-

quent study.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for data and code should be directed to and will be fulfilled by the lead contact Terrence Sejnowski

(terry@salk.edu).

Materials availability
No material was generated in this study.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table. The Allen NeuroPixel and CRCNS (hc-6) datasets used in the analysis is publicly available through their website. All data

reported in this paper will be shared by the lead contact upon request.

d All neural data analysis scripts and simulation scripts are available in https://github.com/yschen13/HCPrediction with the

release version https://doi.org/10.5281/zenodo.10989139.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Neural evidence of transmission delay and predicting ahead
We used the publicly accessible visual encoding NeuroPixel dataset38 from the Allen Brain Observatory. Neuropixels were used to

simultaneously record the spiking activity of thousands of neurons inmice passively perceiving standard visual stimuli such as drifting

gratings, natural scenes, natural movies, etc. We pre-selected recording sessions that involves recordings from DG, CA3 and CA1 in

‘‘Functional Connectivity’’ in WTmice. Very few neurons were recorded from EC. Number of units being used was summarized in the

table below.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

CRCNS, hc-6 https://doi.org/10.6080/K0NK3BZJ https://crcns.org/data-sets/hc/hc-6/about-hc-5

(Retrieved April 2024)

Allen Visual Coding Dataset Allen Institute https://portal.brain-map.org/circuits-behavior/

visual-coding-neuropixels (Retrieved April 2024)

Software and algorithms

Python version 3.6.7 Python https://www.python.org

MATLAB MATLAB https://matlab.mathworks.com

PyTorch 1.4.0 PyTorch https://pytorch.org

Analysis scripts v1.0.0 Contributed by Y.C. https://github.com/yschen13/HCPrediction;

DOI: https://doi.org/10.5281/zenodo.10989139

Session CA1 CA3 DG

766640955 170 17 62

771160300 282 48 32

767871931 104 20 32

768515987 102 27 25

771990200 70 6 31

778240327 251 24 42

(Continued on next page)

ll
Article

Neuron 112, 1–14.e1–e4, August 7, 2024 e1

Please cite this article in press as: Chen et al., Predictive sequence learning in the hippocampal formation, Neuron (2024), https://doi.org/10.1016/
j.neuron.2024.05.024

mailto:terry@salk.edu
https://github.com/yschen13/HCPrediction
https://doi.org/10.5281/zenodo.10989139
https://doi.org/10.6080/K0NK3BZJ
https://crcns.org/data-sets/hc/hc-6/about-hc-5
https://portal.brain-map.org/circuits-behavior/visual-coding-neuropixels
https://portal.brain-map.org/circuits-behavior/visual-coding-neuropixels
https://www.python.org
https://matlab.mathworks.com
https://pytorch.org
https://github.com/yschen13/HCPrediction
https://doi.org/10.5281/zenodo.10989139


For mutual information calculation, only recordings from the natural movie viewing sessions (30 s3 80 repeats) were usedwhile for

cross correlation, recordings from all stimuli sessions were concatenated to increase signal-to-noise ratio.

The processed spike train was binned at 2 ms. To compute cross-correlogram (CCG) between N neurons in region A and M neu-

rons in region B, we first calculated jitter-corrected correlograms38between N3M neuron pairs using a jittering window of 20 ms.

Jitter-correction was performed by randomly shuffling the spike train within the chosen time window, calculating the jitter-CCG

repeatedly for 100 times, and then subtracting its average from the original CCG. Corrected-CCGwas further normalized by the geo-

metric firing rate of the neuron pair. In this way, slower time scale correlations, such as the strong theta oscillation in hippocampus or

nonstationary trend could be removed and then we could focus on fast time scale neural coupling. To increase signal-to-noise ratio

for prediction of one neuron in region A, we used the CCG average of allM neurons in region B. Time shifting was performed in region

B neurons. For a spike train denoted by fðtÞ, a positive t shift would lead to a rightward shifted spike train of fðt � tÞ. The optimal time

shift is defined as the time shift thatmaximizes theM-to-1 averaged cross correlation.We focused on time shifts from -20ms to 20ms

as any shifted coupling above this range would be scrambled by jittering.

We compute the mutual information between the spike train of one neuron from region A and the shifted spike trains of 10 neurons

from region B. The one-dimensional spike train from region A was treated as a random variable A. The latter high-dimensional spike

train is treated as a random vectorBwhich has 210 states being sampled at different time steps. Themutual information is then calcu-

lated as IðA;BÞ = HðBÞ � HðBjAÞ. For each neuron in A, we compute the information between that neuron and 10 neurons in B and

repeat 100 times for different randomly sampled subsets of 10 recorded neurons from B. To show the results for one neuron in A, for

each subset of 10 neurons from B, information over time shift is normalized by its maximal value. Then the average of the 100 normal-

ized information curves is taken to reveal the effect of time shift on themutual information. The optimal time shift is defined as the time

shift that maximizes mutual information.

Analysis of CA1 activity with respect to environment familiarity
Datasets were obtained from http://crcns.org/data-sets/hc/hc-3, contributed by the Buzsáki laboratory at New York University.79,80

See http://crcns.org/files/data/hc3/crcns-hc3-processing-flowchart.pdf for more details about experiments, recording and data

pre-processing. For rats exploring a 180 3 180-cm box, all sessions that have more than 50 simultaneously recorded CA1 neurons

were included for analysis. We excluded neurons that are marked as inhibitory or not identified. For each session, we compute spike

rate of the neurons during the last two-thirds of the sessions for stability of the responses.

Network training
The network was implemented in PyTorch (v1.11.0) and training was performed through stochastic gradient descent of samples split

into mini batches with a fixed learning rate, as shown in the below table. Gradients were calculated with backpropagation through

time (BPTT). We used ‘sigmoid’ and ‘tanh’ nonlinearities for the activation of output and recurrent units, unless otherwise mentioned.

We stopped training when the process reached themaximum number of epochs or the loss function reached less than 1%of its initial

value and did not change more than 0.001% in 10 consecutive iterations. Network structure and related hyperparameters are sum-

marized in the table below, where S = sample/batch size; N = number of input units; T = sequence length; H = number of hidden

units; L = loss function; h = learning rate.

Continued

Session CA1 CA3 DG

778998620 133 45 16

779839471 142 25 49

781842082 114 19 28

793224716 159 31 29

821695405 56 17 40

847657808 189 6 70

Task S N T H L h Total epochs

Figure 4 1 or 2 200 100 200 MSE 0.01 50,000

Figure 5 50 200 100 500 MSE + Reg(ht ) 0.01 50,000

Figure 6 5 68 100 200 MSE 0.01 50,000

Figure 7 1 68 6 100 MSE 0.0001 100,000
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Localization
The open arena was simulated as a 2 m3 2 m environment. Exploratory trajectory was generated as straight lines of 0.1 m step size

until hitting a border. Then a random turnaround angle will be generated to continue exploration. Altogether 5,000 time steps split into

50 samples were used to train the network. Following Benna and Fusi54 (Supplementary Equation 1), the location information (path

integrated distance, distance to the closest border, world direction and head direction) was randomly and nonlinearly expanded into

higher dimensions (N = 200) as input and target signal. We switched to ‘ReLU’ nonlinearity for hidden unit activation aswewould like

to avoid negative responses in terms of place field calculation. To enable a sparse representation, a penalty of hidden unit firing was

added to the loss function (Equation 3)

L =
X
t

Lt =
X
t

�kot+1jt � xt+1k2 + lkhtk2
�

(Equation 3)

Mutual information of a hidden unit place fieldwas calculated following Skaggs et al.18 as themutual information between firing rate

and the arena location discretized into 253 25 grids. Specifically, It was calculated as MI =
P
i

li logðliÞpi in bits/second where i rep-

resents location grid, li is the neuron’s firing rate at location grid i and pi is the occupancy probability in grid i.

Learning MNIST sequences
Input was constructed as the top 68 principal components (PC) of the entire MNIST dataset, which explain 87% variance. Input was

organized as sequences consisting of 100 time steps, which repeats from digit 0 to digit 9 for 10 times. Five randomly sampled

batches of digit images were used for training to predict the next time step PC vector. Independent component analysis (ICA)

was performed to reduce the dimension of hidden unit activation from the number of hidden units to the number of chosen ICs

(i.e. 10). We manually ordered the ICs by the contribution (column L2 norm) of the converged demixing matrix. For the local learning

rule, the input was a single sequence consisting of 6 time steps, where the PC’s were normalized to be between 0 and 1.

Predictive recirculation: A biologically plausible learning algorithm
Recirculation

The recirculation learning algorithm74 for a three-layer feedforward autoencoder approximates gradient descent without the need to

backpropagate (BP) errors under certain conditions:

Network dynamics : h = sðUxÞbx = lx + ð1 � lÞVh
~h = lh+ ð1 � lÞsðUbxÞ

Update rules : DVf � ðx � bxÞ hT

DUf � ðh � ~hÞ xT
To approximate BP : U = VT

(Equation 4)

Using this set of learning rules, the symmetry between the input and output weights (up to scaling) is almost guaranteed. A new

predictive recirculation learning is derived here based on Equation 4, and assuming that U = VT .

d Output weights. With the dynamics defined in Equation 2, the exact gradient of the output weight V can be obtained using only

local information, assisted by error-encoding neurons:
DVf � vLðtÞ
vV

= � ½xðtÞ � bxðtÞ� hðtÞT (Equation 5)

d Input weights. The exact gradient of input weight (U) is given by:
vLðtÞ
vUmn =

X
i

vLðtÞ
vhiðtÞ

vhiðtÞ
vUmn

=

"X
i

vLðtÞ
vhiðtÞ

�
1 � h2

i ðtÞ
�
dim

#
xnðt � 1Þ

(Equation 6)

where in our simulations we chose s = tanh, and s0 = 1 � tanh2.
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vLðtÞ
vhðtÞ = WTdiag

�
1 � h2ðt + 1Þ� vLðtÞ

vhðt+1Þ+VTvLðtÞ
vbx

= U ½xðtÞ � bxðtÞ�;
(Equation 7)

where the first term containing the temporal dependency of L with respect toW was truncated and VT = U from the original recircu-

lation algorithm. Combining the above two equations:

DUmnf � �
1 � h2

mðtÞ�
X
k

Umk ½xkðtÞ � bxkðtÞ� xnðt � 1Þ (Equation 8)

which in the vector notation is:

DUf � diag
�
1 � h2ðtÞ�U½xðtÞ � bxðtÞ�xTðt � 1Þ (Equation 9)

This learning algorithm only involves locally available information: x, bx, h and U. Assuming the input to hidden weights are linear, the

term ½h � ~h� in Equation 4 can be replaced with U½xðtÞ � bxðtÞ� in Equation 9, thus making our learning rule for input and output

weights approximate the recirculation learning rule described in Equation 4. As a result, the input and output weights trained from

our learning algorithm is approximately the transpose of each other up to scaling (Figure S7).

d Recurrent weight. The exact gradient of the recurrent weight (W) is:
vLðtÞ
vWmn

=
X
i

vLðtÞ
vhiðtÞ

vhiðtÞ
vWmn

=
X
i

vLðtÞ
vhiðtÞ

h
1 � hiðtÞ2

i
dimhnðt � 1Þ (Equation 10)

Following the same derivation used to approximate vL=vh in Equation 7:

DWf � diag
�
1 � h2ðtÞ�U½xðtÞ � bxðtÞ�hTðt � 1Þ (Equation 11)

This Hebbian rule between the postsynaptic prediction error and the previous presynaptic input from a recurrent unit is a biolog-

ically plausible mechanism for updating the recurrent weights.

The coefficient s0 = diag½1 � h2� modulates the learning rate and is only significant around threshold, acting like a gate that re-

stricts weight change to the currently active neurons. In real neurons, this could correspond to backpropagating action potentials

that gate synaptic plasticity in dendrites.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was defined by alpha pre-set to 0.01. For all panels in Figures 2 and 3, we used one-sample t test with the null

hypothesis that null data comes from a normal distribution with zero mean and unknown but fixed variance. For Figure 2, we used

cross-region pairwise statistics, thus the number of samples used for statistical comparison could be calculated from the table in

neural evidence of transmission delay and predicting ahead. For example, for Figure 2B (CA3 vs. CA1), the number of samples

can be calculated as the cell number in the second column times that in the third column and add up all rows. The exact N number

is 2057, 741 and 2228 for Figures 2B–2D. For Figures 3B and 3C, the exact N number of 200. For Figures 5C and S6, we used two

sample t test with the null hypothesis that the difference between points sampled from two populations are normally distributed with

zeromean and fixed variance.N = 200310whereN stands for the pooling of recurrent units from 10 randomly initialized networks. All

the statistical tests are described in the figure legends and each test was selected based on data distributions using histograms.

Detailed statistical procedures are described in each subsection of method details.
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