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Summary: We linked the temporal precision of neural encoding to the implementation of

cognitive functions through predictive sequence learning.

The hippocampus of rodents receives sequences of sensory inputs from the cor-

tex during exploration and then encodes the sequences with millisecond pre-

cision despite inter-regional transmission delays. Our study linked such tem-

poral precision to the cognitive functions of hippocampus in a self-supervised

recurrent neural network that was trained to predict its next input. The model

exhibited localized place cells and experimentally observed features such as

one-shot learning, replay and phase precession. We tested and confirmed the

assumption that area CA3 is a predictive recurrent autoencoder by analyzing

the spike coupling between simultaneously recorded neurons in hippocampal

subregions. These results imply that the place field activity of neurons in area

CA1 report temporal prediction error, which decays with familiarity.
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Introduction

The spatiotemporal patterns of spikes in cortical structures is used for both representing and

processing information (1, 2). During locomotion, the timing of spikes precesses relative to the

phase of the traveling wave of activity in the hippocampus (3). Spike timing is also precisely

regulated at the millisecond level for spike-timing dependent plasticity (STDP) (4, 5). This

regulation must take into account time delays for both conduction of spikes between neurons

and transmission delays at synapses. We will focus here on the functional implications of this

precision for how temporal sequences of spikes are shaped by neural circuits. We model the

hippocampal formation to demonstrate how the temporal precision of spike timing coupled with

anatomical wiring could support cognitive functions.

The hippocampal circuit encodes a cognitive and predictive map, with place cells in rodents

responding not only to locomotion signals (6) but also to other sensory stimuli, such as re-

ward (7), auditory tones (8), odors and time (9). These stimuli are high-dimensional and highly

redundant, yet only a few hippocampal neurons are reliably and repetitively activated in a short

time interval, forming a low-dimensional dynamical trajectory in activity space (10). The hip-

pocampus therefore learns how to encode high-dimensional sensory and motor signals at the

apex of cortical hierarchies into low-dimensional, latent, non-redundant, sequential represen-

tations that ultimately support abstract representational learning. After learning sequences of

events, the hippocampus then replays them during sleep and immobility when external inputs

to the cerebral cortex are suppressed (11).

Existing computational frameworks (12–15) have successfully modeled cognitive functions

of the hippocampus and reproduced the statistics of place cell under various task conditions.

However, these models do not provide a mechanistic implementation of these cognitive func-

tions or account for the distinct encoding and firing properties of neurons in subregions CA3,
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CA1, and the dentate gyrus (DG) (16–20). For example, CA1 neurons respond more than

neurons in other regions to unexpected signals (21–23) and their activity decays in familiar en-

vironments (Fig.S1). In contrast, the recurrent CA3 subregion stores an internal representation

of sequences, generating replay (24) and preplay (25) and neural representations of space are

generally more stable in CA3 than in CA1 (17, 19).

Predictive coding of visual inputs efficiently encodes features in lower cortical layers, al-

lowing higher layers to encode more abstract representations (26, 27). In this study, we extend

predictive coding to the temporal domain to model the interactions between subregions in the

hippocampal formation. We show that this framework accurately captures the functional com-

putational hierarchy in these subregions, which is not perfectly aligned with anatomical connec-

tivity. Using our proposed model, we are able to simulate qualitative place cell statistics across

various cognitive tasks and make quantitative predictions that match neural recordings. We also

propose a novel loss function for recurrent neural networks and demonstrate its universality for

learning and generating sequences.

Temporal Prediction Hypothesis

Figure 1A summarizes the major connectivity in the hippocampal formation. The entorhinal

cortex (EC) is the major cortical input to and output from the hippocampus, which contains

subregions DG, CA3 and CA1. Among them, recurrently connected CA3 is ideal for storing

internal states in the form of attractor dynamics (28). Interestingly, there are two pathways

projecting from the EC to CA1: an indirect pathway via DG and CA3 and a direct pathway

from the EC. Moreover, the two pathways are delayed to different extents because there are

more synaptic delays in the indirect path through CA3 (29). Assuming a synaptic transmission

delay τ > 0, signals transmitted through the indirect pathway to CA1 are delayed by 3τ while

those going through the direct pathway are only delayed by τ . The function of this seemingly
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redundant and asynchronous transmission suggests that CA3 may be making predictions about

future inputs, which can then compared at CA1 with the less delayed teacher signal from the

direct pathway. From the viewpoint of CA1, the prediction made by CA3 can be compared

with future inputs from the direct pathway. This comparison is similar to a Bayes filter (30)

where future predictions based on currently available information are compared with future

observations to update the model. Prediction errors are computed at CA1 and used to refine the

internal model stored at CA3. In this way, interactions between the cortex and the hippocampus

form a self-supervised loop, which enables the circuit motif to learn and remember the latent

variables represented in CA3 as sequences.

Neural evidence for transmission delay and prediction

To verify the above hypothesis, we analyzed simultaneously recorded neural activities from

these subregions for evidence of transmission delay and predicting ahead. Assuming that neural

signal propagation strictly follows the anatomical organization of the hippocampal formation

in Fig. 1A, then signals encoded by a region should be correlated with the upstream signal

shifted by an interregional delay. Ideally, if a location-sensitive neuron in EC has a bell-shaped

response curve f(x), where x represents any arbitrary physical variable such as location, its

direct downstream DG neuron should exhibit a response curve of f(x − τ) where τ refers to

the uniform interregional delay (Fig. 2A). Similarly, the response curves of their downstream

neurons in CA3 and CA1 should be f(x − 2τ) and f(x − 3τ), respectively (dashed lines in

Fig. 2A). Alternatively, if, according to our hypothesis, CA3 is predicting future signals to

match the signal arrived from the direct pathway, CA3 and CA1 would have response curves

of f(x) and f(x − τ), respectively (solid lines in Fig. 2A), given similar interregional delays.

Although it is unlikely to record from directly coupled neurons, a cross-correlation type analysis

should reflect interregional spike coupling properties (Fig. 2BCD, upper panel). According
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to our hypothesis, 1) similarity measures should peak at zero for CA1 and DG spike trains,

indicating information synchrony in these two regions and the dominance of signals delayed

by τ in CA1 (Fig. 2B, upper panel); 2) CA3 spike trains should couple tightly with leftward-

shifted DG spike train (Fig. 2C, upper panel), indicating that CA3 firing leads DG. This suggests

that CA3 is predicting ahead since it is anatomically downstream from the DG. For both the

prediction and no-prediction scenarios, CA3 should always leads CA1 by one synaptic delay

(Fig. 2D, upper panel), a measure of interregional delay.

Since the existence of transmission delay is intrinsic to the circuit, independent of the behav-

ior state, we used the visual encoding neuropixel dataset from the Allen Brain Observatory (31).

This dataset contains simultaneous recordings of neural spikes at a sampled at 30 kHz in DG,

CA3 and CA1 from mice performing passive visual perception tasks. The high temporal preci-

sion enabled us to investigate spiking timing accuracy on the time scale of milliseconds.

Following the methods in Siegle et al. (31), we calculated the jitter-corrected cross cor-

relagram (CCG) of spike trains between pairs of subregions over all stimulus conditions and

plotted the distribution of optimal shifts where CCG peaks (Fig. 2BCD) (Methods). To ac-

cess higher-order statistical relationship, we also calculated the mutual information between the

shifted spike trains since we are interested in the amount of delay in the information transmitted

by the spike trains. In Fig. 2B, we compared the unshifted CA1 spike train with shifted DG

spike trains. From cross-correlogram analysis (Fig. 2B, middle row), the distribution of opti-

mal shifts was bimodal, indicating that there may exist two heterogeneous neural populations

in CA1 receiving inputs from two pathways. However, from the mutual information analysis,

the distribution of optimal shifts is approximately a normal distribution with median value of

zero. This means that neurons in CA1, despite some randomness, are synchronized with those

in DG assessed by mutual information. They were both delayed by one synapse with respect to

EC. Similar comparisons were made in Fig. 2C between shifted DG activity and unshifted CA3
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activity. We found that both similarity measures peaked when DG shifted significantly towards

the left for a median of 2 millisecond. Both observations supported the hypothesis. Finally,

when we used shifted CA3 spike trains to predict unshifted CA1 spike train in Fig. 2D, they

coupled most strongly when CA1 was shifted to the right. Thus, unsurprisingly, CA3 was ahead

of CA1 activity by 2 millisecond, which matched the previously reported synaptic delay (29).

Taken together, neural encoding in CA3 is ahead of DG while CA1 is synchronized with DG,

confirming the hypothesis that CA3 is predicting ahead.

Learning sequences explains place cell response properties

We next constructed a model of the hippocampal circuit that could replicate a wide range of

experimental observations across tasks based on a predictive recurrent autoencoder (PredRAE)

that learned to match its output (o) to its input (x) (Fig. 1B, Eq. 1). The input and recurrent

layer models EC and CA3. The CA1 response is computed as the difference between output

prediction from CA3 and actual input signal (ReLU(x − o)). Predicting ahead was incorpo-

rated through a predictive loss function (Fig. 1C): the mean square error (MSE) between future

predictions (ot+1|t) and future teacher signals (xt+1). To find a network with the desired func-

tionality, we trained the parameters W , U , V and b in Eq. 1 using Back Propagation Though

Time (BPTT) (32, 33).

ht = tanh(Wht−1 + Uxt + b)

ht+1 = tanh(Wht + b)

ot+1|t = Sigmoid(V ht+1)

L =
∑
t

Lt = ||ot+1|t − xt+1||2

(1)

We first simulated a rat running along a circular track with constant velocity (where time
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and location are equivalent). All neurons in the recurrent layer (CA3) receive location specific

bell-shaped input activity (Uxt in Eq. 1) representing their place fields (Fig. 3A, upper panel).

A new environment was modeled as a random shuffle of place fields (Fig. 3A, lower panel).

The network was trained on the first environment using the loss function in Eq. 1 PredRAE

successfully remembered the sequence of inputs from the first environment. It was then trained

on a second environment, a different sequence. At the beginning of training, the responses of

CA1 error-encoding neurons were high, but gradually became weaker as the training continued

since the CA1 activity represented sequence prediction error. The gradual decay of the response

(Fig. 3B, upper) resembled neural recordings from CA1 neurons extending over one month

(Fig. 3B, lower) (34). A separate analysis also showed that recorded CA1 unit activity decreased

with familiarity of the environment (Fig. S1). The rapid neural response upon exposure to a

novel environment, pointed by the red arrow in Fig. 3B, Modifying synaptic weights abruptly

(35) might be dangerous for maintaining system stability if loosely regulated. In this study, we

offer an alternative explanation for apparent one-shot learning: neural activity was immediately

high in a new environment because CA1 reflects one-shot error, not one-shot learning.

After being trained to remember the two environments (Fig.3A), PredRAE exhibited replay

and prediction, a consequence of attractor dynamics (Fig. 3C). Replay refers to the re-activation

of place cells in the same order as they would during active exploring. Typically, this occurs

when the animal is in a state of sleep or immobility, meaning that the simulated agent is not

receiving any external sensory inputs. When low magnitude random noise was used to drive the

trained network, it randomly reproduced one of the learned sequences (Fig. 3C, upper). Place

cells also show predictive activities: cells that code for possible future locations are activated

before making turns (36). This is a consequence of pattern completion by the recurrent network

model. To demonstrate this, we gave the network partial input, then it completed the remaining

sequences (3C, lower).
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These two experiments are strong evidence for attractor dynamics in the network: state-

space analysis shows that the system state converges robustly to a fixed sequential pattern,

determined by network topology (37). We reordered the learned recurrent weight matrix based

on the activation order of the hidden units (3D, upper). The reordered matrix has a Toeplitz

form, which enables a convolution operation after matrix multiplication in the recurrent layer.

The approximate kernel (3D, lower) resembles a Mexican hat, with positive values in the middle

and negative values padding both sides.

The weights in the trained network are also precise enough to produce phase precession:

the timing of place cell firing with respect to the phase of the oscillatory population activity be-

comes progressively earlier when traversing a place field (1). To generate biologically relevant

action potentials, we transferred the learned recurrent weight to a network of leaky-integrate-

fire (LIF) neurons following the procedure described in (38) and recorded the emitted spikes

(Fig. 3E). Oscillatory activity was artificially enforced by injecting 8 Hz inhibitory currents,

mimicking oscillatory inputs onto inhibitory neurons originating in the septal nucleus. Spike

phases were calculated and plotted against their relative location to place field centers. We

observed precession of the spike timing (Fig. 3F) similar to that in in vivo recordings (Fig. 1

in (1)).

We next simulated a rat in a random foraging task consisting of straight trajectories and

random turns in a square arena (Fig. 4A). Input was handcrafted as a nonlinear mixture of body

direction, world direction, path integrated distance and distance to the closest wall (Methods)

(39). The selection of these input dimensions was based on the existence of head direction cells,

path-integration properties and border cells in EC. Any one of these inputs alone is not able to

determine the agent’s current location, as evidenced by the low mutual information per second

(MI) between input unit activity and location (Fig. 4 C). To enforce a sparse representation in

the hidden layer, we added a regularization penalty of unit activity to the MSE loss function
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(Methods).

After training using the predictive loss function (Eq. 1), the latent variables learned by Pre-

dRAE (i.e. hidden unit activity) were spatially localized representations similar to place fields.

(Fig. 4B). In comparison to networks trained with the current loss function control, hidden

units in networks trained with the predictive loss function displayed significantly higher MI

(Fig. 4C). Both networks contributed to the extraction of locations as hidden units have much

higher MI compared to the original input signal. This indicates predicting ahead is beneficial to

extracting location information from upstream inputs. The same results were found when the

regularization strength was varied (Fig. S4), suggesting that a temporal predictive loss function

consistently aids in forming a localized representation.

Computation advantages of learning future sequences

To explore whether the predictive loss function could achieve representational learning, sup-

porting downstream processing such as classification, memorization or prediction (40), we used

inputs from MNIST handwritten digits, action sequences of images and rotated images.

We first trained PredRAE to recall sequences of increasing MNIST digits (Fig. 5). Multiple

batches of randomly sampled images were temporally ordered based on their labels. We ex-

tracted the first 68 principal components of the images, which account for 86% variance, as the

input to keep the minimal network structure. Image reconstruction was based on the network

output and inverse transformation of PCA. After training, PredRAE output generic MNIST dig-

its (Fig. 5A, middle) since the different realizations of hand-written digits between batches are

difficult to predict. After training, PredRAE continued to complete the sequences when the

input was stopped after digit 3 (Fig. 5A, bottom). This predictive completion was not observed

in a control models trained with the current loss function (Fig. S2).

Interestingly, PredRAE not only constructed a generative model to predict sequences but
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also automatically clustered the digits according to their labels. In Fig. 5D, we plotted the

independent components (IC) of the hidden unit activity for each digit and colored the digits

according to their labels. For the top 10 ICs (sorted by the contribution of demixing matrix),

approximately each component represents one group of digits. This interpretable representation

was achieved without explicitly defined labels. The sequential activation of ICs along the time

axis (Fig. 5D, bottom panel) reflects the attractor dynamics in the linear transformed space,

which can separated downstream by a single layer of weights.

PredRAE can also learn to classify action sequences (Fig.6), a cognitive function of the

hippocampus. In this task the goal is to cluster similar memories together and then name the

group with a shorter “codename”. For example, if someone receives a message “biking”, he

might recall memories of biking in the mountain, on the road, etc rather than swimming. We

used the sprites dataset (41), which contains 1,000 different characters performing nine actions

(Fig. 6A). We equipped PredRAE with one convolutional layer before the RNN input and one

deconvolutional layer after the RNN output, a limited form of visual image processing. It was

then trained on 9,000 sequences (Methods) to reproduce the next image in each sequence. We

found that sequences performing the same actions clustered together in the IC space of hid-

den unit activity (Fig. 6B). To quantify clustering performance, we calculated the action group

variability within the three top ICs (Fig. 6C). A lower variability means a tighter clustering be-

havior. Within group variability is significantly lower in networks trained using predictive loss

compared to those of current loss function controls (Fig. 6D). This task is a form of hash coding

and the predictive loss function is effective at hashing memories.

PredRAE can also learn to perform geometric operations on images (Fig. 7). PredRAE

was trained to reconstruct a sequence of MNIST digits rotating 30 degree counterclockwise on

each time step (Fig. 7A). As before, it was able to rotate the given image after the input was

stopped (Fig. 7B). Moreover, it generalized the rotation operation to test images although the

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2022.05.19.492731doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.19.492731
http://creativecommons.org/licenses/by-nc-nd/4.0/


reconstruction performance was not as good because PredRAE was never trained to reconstruct

the test images (Fig. 7C). The rotation dynamics could be recovered in the first three principal

components (PC) of the hidden unit activity (Fig.7D). This was not possible in control models

with the current loss function (Fig.S3).

Predictive Autoencoders in the Cortex

The superficial and deep layers of the six-layered neocortex can be identified with areas CA3

and CA1 of the hippocampus, respectively. This is illustrated in Fig. 8, which shows parallels

between the indirect pathway through the DG in the hippocampus projecting to CA3 corre-

sponding with the thalamic inputs to layer 4 of of the neocortex projecting to layers 2/3, and

direct pathway from the cortex to area CA1 in the hippocampus corresponding in the cortex to

direct inputs from the thalamus to layer 5.

We propose that in the cortex, the recurrent network in layers 2/3 is trained as a predictive

autoencoder to remember sequences of inputs arising from the thalamus. The EC in Fig. 8 is at

the top of a hierarchy of cortical areas, each recapitulating the same architecture, forming a stack

of predictive autoencoders. There are also feedforward projections from layers 2/3 to layer 4

in the cortical hierarchy. The latent sequences from the upstream cortical areas are further

compressed in the downstream areas, becoming more abstract while ascending the hierarchy.

This generalization of our hippocampal model could be tested by recording simultaneously

from the thalamus, layers 2/3 and layer 5 and analyzing the spikes the same way we analyzed

recordings from the corresponding areas of the hippocampus, DG, CA3 and CA1.

Discussion

The temporal predictive coding framework proposed here to account for sequence memory and

representation learning was inspired by the anatomy of the hippocampus, validated by neural
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recordings and successfully replicated a variety of experimental observations. We also found

that multiple sequences could be stored in the same recurrent network in a sparse Toeplitz form.

This kernel underlies the moving-bump line attractor dynamics in recurrent neural networks

that has been used to model compass cells in rodents (42) and similar attractor dynamics in

other neural systems (43, 44). Connectomic analysis of the rodent area CA3 could confirm the

predicted Toeplitz connectivity.

Previous studies have also explored the anatomy and firing properties of hippocampal neu-

rons (45, 46), based on a wide range of theoretical and computation principles (12–14, 39).

Stachenfeld et al. (12) modeled the activities of place cells as the successor representation in

reinforcement learning; Whittington et al. (13) proposed that the hippocampus is a statistical

machine for inferring structural properties from observations. These studies are complemen-

tary to ours. Our approach to how the hippocampus functions is more mechanistic, based on

the encoding and statistical properties from neural recordings in hippocampal subregions. The

simplicity and minimal realization of our model could also serve as critical building blocks to

achieve successor learning and statistical inference.

Predictive loss functions are routinely used in state-space models, such as model-based

control and Bayesian filtering. By predicting the future observations, generative models are

continually updated to make more accurate predictions (47). This approach has recently been

incorporated in several model-based artificial intelligence systems (48,49). The performance of

these systems is more robust and has superior generalizability when there is an internal model

of the system. Our model-based approach to the hippocampus has similar advantages and is

supported by evidence from neural recordings.

Researchers who routinely decode the location of freely moving animals from CA1 place

cell activities may find it counterintuitive that CA1 neurons encode prediction error. The decay

of neural activity in place cells shown in Fig. 3B occurred over a month, which is not apparent
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in most studies that follow the same neurons for only a few days when substantial location in-

formation may still be present in residual prediction errors. Our hypothesis is a computational

explanation for the observed decay of place fields. Neural encoding is more coherent and place

fields are longer lasting in CA3 than in CA1 (18). This suggests that once a sequence is ac-

curately predicted by CA3, and error signals are no longer found in CA1, the memory of the

sequence continues to be retained in CA3 for replay.

Not all neurons with place fields in CA1 decay and neurons with new place fields are formed

over many weeks (34). This slow tunover of place fields could be explained by nonstationarity

in sensory input from multiple modalities, which is highly probabilistic and differs from trial

to trial. For example, auditory or olfactory input could vary over time even as a rat continues

to explore the same environment. The continual learning of new cues could both slow down

the decay of place fields in CA1 and create new ones. Another sign of variability among CA1

neurons was found in the heterogeneity of the peaks in the cross-correlogram analysis of neuron

populations in CA1 in Fig. 2B.

Representing prediction errors in some CA1 neurons could not only help improve the inter-

nal model stored in the recurrent CA3 network, but could also regulate the release of dopamine

in novelty-dependent firing of cells in ventral tegmental area (VTA) through subiculum, accum-

bens, and ventral pallidum (50). This could explain why novelty detection is essential in the

hippocampus.

Although we used back-propagation through time as a way to construct networks that learn

sequences, it can be potentially replaced by local learning rules (27) because prediction error

is local in both time and space. It might nonetheless be difficult to accumulate gradients over

a long sequence. In this scenario, CA3 would behavior like a reservoir (51), generating a wide

range of time varying signals and the prediction error signal could be used to select inputs

and weight them to reduce the prediction error. There are also increasing efforts to develop
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online training algorithms for recurrent neural networks through the approximation of target

gradients (52, 53).

The above circuit, featured by dual pathways and predicting ahead, is not unique to hip-

pocampus. In cortical layers, we could observe similar structure (Fig. 8). Inputs from thalamus

propagate to the recurrent layers 2/3, via sparsely firing layer 4 granule neurons, for prediction;

Predicted output is being compared in layer 5 with the direct input it receives from thalamus.

This conserved circuit and predictive computation is very likely to underlie the robustness and

flexibility of human intelligence.

Self-supervised models, such as variational autoencoders (54), unsupervised Boltzmann

Machines (55, 56) and their many variants, have avoided labor-intensive supervised input la-

beling. The recent success of transformers like GPT were trained by predicting the next word

in a sentence (57). These sophisticated models implicitly learn semantic representations. In the

same way, PredRAE achieves representation learning of sequences without needing sophisti-

cated statistical priors or explicitly defined representation modules. Its minimal model structure

will facilitate mechanistic investigation and interpretation. Future work could focus on scaling

up the network or adding preprocessing modules to handle more realistic problems such as the

semantic segmentation of video clips.

Temporal prediction error has already been established for learning sequences of actions

in the basal ganglia to obtain future rewards (58). If temporal predictive coding principles for

learning sequences are also found in the hippocampus and the cortex, as suggested in Fig. 8,

then predicting the next input in every cortical area may be as important a design principle for

human cortical function as predicting the next word in a sentence is for the transformers in large

language models (57). Inspired by brains, PredRAE has potential for further improvements in

robustly disentangling representations in artificial intelligence and approaching human levels of

performance.
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Figure 1: The circuit within the hippocampal formation. (A) Anatomical wiring and interre-
gional delays. External sensory stimuli start from different cortical layers in EC and reach CA1
through two pathways, forming a self-supervised structure. Assume that spikes are delayed by
τ after one synaptic transmission, they will be delayed by 3τ and τ at CA1 through the indi-
rect and direction pathway, respectively. We hypothesize that CA3 predicts the future (-2µ) to
compensate for the accumulated transmission time difference (+2τ ). (B) Network model and
its correspondence to the neural circuit. The input layer (EC) supplies the same input and target
signal (x). The output (o) of the recurrent layer (CA3) was trained to resemble the input signal.
CA1 neural response was modeled as output signal suppressed by target signal (i.e. prediction
error). (C) Left: the computation graph of a conventional recurrent neural network whose loss
function is Mean Square Error (MSE) between output and teacher signal at current time; Right:
the computation graph of a predictive loss - MSE between future prediction and future teacher
signal. ot+1|t means the prediction of time step t + 1 given information at time step t. EC:
Entorhinal cortex; DG: Dentate Gyrus
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Figure 2: Neural evidence of transmission delay and predicting ahead (A) Schematics of
delayed neural response and hypothesized predicting effect. Assume a rat running with constant
velocity (time=location), one representative location sensitive neuron in EC exhibits bell-shaped
response curve peaked at t = 0. Given there’s no prediction, its direct downstream DG and
CA3 neuron will peak at t = τ and t = 2τ , respectively. Meanwhile, CA1 would receive
mixed signals, delayed by τ and 3τ , from dual pathways. If there is prediction ahead, CA3
would instead peak at t = 0 and CA1 would only respond to signals peaked at t = τ . (B)
Spike coupling from DG to CA1. Top: schematics of spike train similarity with respect to DG
neural activity shifts. Positive shift means shifting DG spike train towards the right and then
computing its similarity with the unshifted CA1 spike train. Middle (Bottom): Left: Traces of
corrected cross correlogram (Mutual information) from an example session. Each gray trace
represents the prediction from a population of DG neurons to one CA1 neuron. The solid
black trace is the average across all CA1 neurons in the session. Right: Histogram of optimal
shift, where similarity measure peaks, pooled across 12 recording sessions. (p-value: t-test of
population mean equals to zero) (C)(D) Spike coupling from DG (CA3) to CA3 (CA1). DG
is synchronized with CA1 while CA3 leads DG by 2ms. This matches the hypothesis of CA3
predicting ahead.
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Figure 3: PredRAE matches key place cell features, including one-shot plasticity, replay, pre-
diction and phase precession. (A) Input matrices (x) simulating different environments. With the
equivalence of time and location, each row represents a bell-shaped location specific input current. Env:
environment. (B) Long term CA1 dynamics from the model (upper) and experimental recordings (34)
(lower). Red arrow marks the initial exposure to a second environment. The plotted neural response was
sorted by their activation order. Ep: epochs; (C) Replay: Given low magnitude random input simulating
spontaneous activities, PredRAE output its previously remembered pattern as CA1 neuron response. Pre-
diction: given input of the first 10 time steps, PredRAE performed pattern completion. (D) Upper: The
trained recurrent weight matrix sorted by the activation order of Env1 or Env2. Note similar entries on
the diagonals; Lower: Average value of the matrix diagonals offset by the index shown on the horizontal
axis. The approximate kernel here looks like a Mexican hat, pointing to the existence of line attractor
dynamics. (E) Spike train recorded from a network of LIF neurons. Red vertical lines mark the trough
of 8Hz population activity (i.e. phase=180 degree) (F) Spike phases (relative to 8Hz population activity)
of all CA3 neurons plotted against their relative location in a place field.
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Input:
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Figure 4: Predictive networks led to more localized representation in a random foraging
task. (A) Left: Simulated rat trajectory in an open arena; Right: network input defined as
a random nonlinear mixture of body direction, world direction, path integrated distance and
distance to the wall. (B) Place fields of the recurrent units (CA3 neurons) after training. Extent
of localization was quantified by mutual information (MI) rate per second between firing rate
and location. (C) MI of the input units and recurrent units in 10 networks trained by either the
current loss function as a control or the predictive loss function. Recurrent units trained by the
predictive loss function showed significantly higher MI (t-test, p< 0.001).
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Time

Stop input Time

D: Hidden unit activitiesA: Input

C: Prediction

B: Output after training

Time

Figure 5: Interpretable latent representation using a predictive loss function (A) Top: Input
organized as repetitive sequences of MNIST images from 0 to 9. (B) Trained network could re-
construct the given input with generic digits. (C) It could continue to predict the sequence even
when the input was stopped after digit 3. Input digits were plotted before the red vertical line
while predictions were plotted afterwards. (D) Top: Independent components (IC) of hidden
unit activity. Most ICs represent one class (color-coded); Bottom: Reordered IC activities over
time. Note the sequential activation in 10 time steps (one cycle).
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Figure 6: PredRAE could classify action sequences. (A) Given the initial frame in the colored
square, reconstruction of future frames. (B) Independent components of hidden unit activities
colored according to different action groups. Each point is one (out of one thousand) character
performing one action. (C) Within action group variability as the increase of IC numbers. Each
solid line is one converged network using different loss functions. The original input space
was not clustered in its IC space (dashed red line). After training, the hidden unit activity of
the networks trained using predictive loss function is more clustered in their IC space (blue
solid lines v.s. orange solid lines). (D) Within action group variability of the top three ICs for
hidden unit activities in 100 repetitive networks trained using current control or predictive loss
functions (***: t-test, p<0.001).
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C: Generalization

D: Hidden unit activity

digit 0digit 1
digit 2

A: Input

B: Prediction

Time

Stop input Time

Stop input Time

Figure 7: PredRAE could generalize rotational dynamics. (A) Input as a sequence of MNIST
digits rotating 30 degree counterclockwise. (B) PredRAE learnt the rotation operation and kept
rotating the digits after the input stops at the red vertical line. (C) Such operation worked
well on novel digits (7 and 8 in this case). The entire class of 7 and 8 has never been shown
to the network before. The reconstruction was not ideal because PredRAE has never learnt
to reconstruct 7 or 8. It could also rotate the given image more than one cycle (two cycle
shown here). (D) Left: Cycled dynamics of hidden unit activity shown in PC space. Right: the
Euclidean distance matrix between different time steps averaged over all trained digits/batches.
The +-1 off-diagonal stripe means cycled dynamics in the full space. The +- 6 off-diagonal
stripe appeared because some digits are symmetric (like 0,1 and 8), therefore rotating 180 degree
is the same as rotation 360 degree.
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Figure 8: Universality of the circuit in the brain. Left: cortical layers; Right: hippocampus.
Signals from thalamus reach cortex L5 through two different pathways - the blue direct pathway
(59) and the red indirect pathway via Layer 4, recurrent Layer 2/3 (60). This cortical circuit
resembles what we described in hippocampus: recurrent Layer 2/3 makes prediction; small
stellate cells in Layer 4 may achieve the same function as DG granule cells for pre-processing;
Layer 5 computes the prediction error and then propagates back to the upper structure.
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Supplementary Materials

Methods

Tables 1 to 2

Figs. S1 to S4

A Methods

A.1 Neural evidence of transmission delay and predicting ahead

We used the publicly accessible visual encoding NeuroPixel dataset (31) from the Allen Brain

Observatory. Neuropixels were used to simultaneously record the spiking activity of thousands

of neurons in mice passively perceiving standard visual stimuli such as drifting gratings, natural

scenes, natural movies and et al. We pre-selected recording sessions that involves recordings

from DG, CA3 and CA1 in “Functional Connectivity” in WT mice. Very few neurons were

recorded from EC. Number of of units being used was summarized in Table A.1. For mutual

information calculation, only recordings from the natural movie viewing sessions (30 seconds

× 80 repeats) were used while for cross correlation, recordings from all stimuli sessions were

concatenated to increase signal-to-noise ratio.

The processed spike train was binned at 2 millisecond (ms). To compute cross-correlogram

(CCG) between N neurons in region A and M neurons in region B, we first calculated jitter-

corrected correlograms (31) between N ×M neuron pairs using a jittering window of 20 mil-

lisecond. Jitter-correction was performed by randomly shuffling the spike train within the cho-

sen time window, calculating the jitter-CCG repeatedly for 100 times, and then subtracting its

average from the original CCG. Corrected-CCG was further normalized by the geometic firing

rate of the neuron pair. In this way, slower time scale correlations, such as the strong theta
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Session CA1 CA3 DG
766640955 170 17 62
771160300 282 48 32
767871931 104 20 32
768515987 102 27 25
771990200 70 6 31
778240327 251 24 42
778998620 133 45 16
779839471 142 25 49
781842082 114 19 28
793224716 159 31 29
821695405 56 17 40
847657808 189 6 70

Table 1: Number of simultaneously recorded neurons from DG, CA1 and CA3 in each session

oscillation in hippocampus or nonstationary trend could be removed and then we could focus

on fast time scale neural coupling. To increase signal-to-noise ratio for prediction of one neu-

ron in region A, we used the CCG average of all M neurons in region B. Time shifting was

performed in region B neurons. For a spike train denoted by f(t), a positive τ shift would lead

to a rightward shifted spike train of f(t− τ). The optimal time shift is defined as the time shift

that maximizes the M -to-1 averaged cross correlation. We focused on time shifts from -20ms

to 20ms as any shifted coupling above this range would be scrambled by jittering.

We compute the mutual information between the spike train of one neuron from region A

and the shifted spike trains of 10 neurons from region B. The one-dimensional spike train from

region A was treated as a random variable A. The latter high-dimensional spike train is treated

as a random vector B which has 210 states being sampled at different time steps. The mutual

information is then calculated as I(A;B) = H(B) − H(B|A). For each neuron in A, we

compute the information between that neuron and 10 neurons in B and repeat 100 times for

different randomly sampled subsets of 10 recorded neurons from B. To show the results for one

neuron in A, for each subset of 10 neurons from B, information over time shift is normalized
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by its maximal value. Then the average of the 100 normalized information curves is taken to

reveal the effect of time shift on the mutual information. The optimal time shift is defined as

the time shift that maximizes mutual information.

A.2 Analysis of CA1 activity with respect to environment familiarity

Datasets were obtained from http://crcns.org/data-sets/hc/hc-3, contributed by the Buzsáki labo-

ratory at New York University (61) (62). See http://crcns.org/files/data/hc3/crcns-hc3-processing-

flowchart.pdf for more details about experiments, recording and data pre-processing. For rats

exploring a 180 × 180-cm box, all sessions that have more than 50 simultaneously recorded

CA1 neurons were included for analysis. We excluded neurons that are marked as inhibitory or

not identified. For each session, we compute spike rate of the neurons during the last two-thirds

of the sessions for stability of the responses.

A.3 PredRAE training

The network was implemented in PyTorch (v1.11.0) and training was performed through stochas-

tic gradient descent of samples split into mini batches. Gradients were calculated as back-

propagation through time (BPTT). The recurrent network has 200 units while the number in-

put/output units depends on tasks. We used ’sigmoid’ and ’tanh’ nonlinearity for the activation

of output and recurrent units, respectively. We stopped training the network when the pro-

cess reached the maximum number (50,000) of epochs or the loss function didn’t change more

than 0.001% in 10 consecutive iterations. Network structure and related hyper-parameters were

summarized in Table A.3.

A.4 Localization

The open arena was simulated as a 2m × 2m environment. Exploratory trajectory was generated

as straight lines of 0.1m step size until hitting a border. Then a random turnaround angle will
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Task Sample size (S) Input unit (N ) Sequence Length (T ) Hidden unit (H) Loss
Fig. 3 1 or 2 200 100 200 MSE
Fig. 4 50 200 100 500 MSE + regularized ht

Fig. 5 5 68 100 200 MSE
Fig. 6 9,000 62× 62 7 500 MSE

Table 2: Details of network input and hyper-parameters used for simulation

be generated to continue exploration. Altogether 5,000 time steps split into 50 samples were

used to train the network. Following (39) (Supplementary Eq. 1), the location information

(path integrated distance, distance to the closest border, world direction and head direction)

was randomly and nonlinearly expanded into higher dimensions (N = 200) as input and target

signal. We switched to ’ReLU’ nonlinearity for hidden unit activation as we would like to

avoid negative responses in terms of place field calculation. To enable a sparse representation,

a penalty of hidden unit firing was added to the loss function (Eq.2)

L =
∑
t

Lt =
∑
t

(||ot+1|t − xt+1||2 + λ||ht||2) (2)

Mutual information of a hidden unit place field was calculated following (63) as the mutual

information between firing rate and the arena location discretized into 25 × 25 grids. Specifi-

cally, It was calculated as MI =
∑

i λi log(λi)pi in bits/second where i represents location grid,

λi is the neuron’s firing rate at location grid i and pi is the occupancy probability in grid i.

A.5 Learning MNIST sequences

Input was constructed as the top 68 principle components (PC) of the entire MNIST dataset,

which explain 87% variance. Input was organized as sequences consisting of 100 time steps,

which repeats from digit 0 to digit 9 for 10 times. Five randomly sampled batches of digit

images were used for training to predict the next time step PC vector. Independent component

analysis (ICA) was performed to reduce the dimension of hidden unit activation from the num-

ber of hidden units to the number of chosen ICs (i.e. 10). We manually ordered the ICs by the
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contribution (column L2 norm) of the converged demixing matrix. For the rotational dynamics,

input was organized as 30 batches of sequences consisting of 12 time step rotating 30 degree at

each time step. The 68 principle components were re-calculated using the rotated samples.

A.6 Learning Sprites action sequences

We obtained the Sprite dataset prepared by (41). This dataset has become a popular dataset in

the field of representation learning. 1000 characters performing 9 actions (i.e. 9,000 sequences)

consisting of 7 time steps were used for training. We only used the first color channel. To

include more visual details, at each time step we added one time-invariant convolution layer

before the input layer and another time-invariant de-convolution layer after the output layer.

We used default settings in the pytorch built-in function Conv2d (kernel=3, pad=0, dilation=1,

stride=1). Objective is to reconstruct the (next) input image. After training, ICA was performed

to reduce the dimension of H × T to the number of chosen ICs. The ICs were ordered by the

contribution (column L2 norm) of the converged demixing matrix.

B Supplementary figures
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Figure S1: Activities of CA1 neurons decay as the increase of familiarity from CRCNS dataset
(Methods).

Time

TimeStop input

C: Hidden unit activitiesA: Input

B: Prediction

Figure S2: Control using current loss function. Similar to Fig. 5ABD except that the network
was trained using current loss function as a control.
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C: Generalization

D: Hidden unit activityA: Input

B: Prediction

Time

Stop input
Time

Stop input
Time

Figure S3: Learning rotating sequences in RAE. (A) Input as a sequence of MNIST digits
rotating 30 degree counterclockwise. (B) RAE failed to continue the rotation operation when
the input was stopped. (C) RAE failed to generalize the operation to unseen digits. (D) The
Euclidean distance matrix of hidden unit activities between different time steps under the pre-
diction scenario.
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λ = 0λ = 2λ = 5

Figure S4: Mutual information of recurrent units trained using different regularization strength
(λ). P value in the title refers to the comparison (t-test) between units from current network
controls and predictive networks. For λ = 5, we trained 10 repetitive networks while for the
other two, only one representative network was trained.
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