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Abstract. When a spike is initiated near the soma o f a  cortical pyramidal neuron, it may 
back-propagate up dendrites toward distal synapses, where strong depolarization can 
trigger spike-timing dependent Hebbian plasticity at recently activated synapses. We 
show that (a) these mechanisms can implement a temporal-difference algorithm for 
sequence learning, and (b) a population of recurrently connected neurons with this 
form of synaptic plasticity can learn t o  predict spatiotemporal input patterns. Using 
biophysical simulations, we demonstrate that a network of cortical neurons can develop 
direction selectivity similar to  that observed in complex cells in alert monkey visual cortex 
as a consequence of learning to predict moving stimuli. 
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Neocortical circuits are dominated by massive excitatory feedback: more than 80% 
of the synapses made by excitatory cortical neurons are onto other excitatory 
cortical neurons (Douglas et a1 1795, Braitenberg & Schiiz 1991). Why is there 
such massive recurrent excitation in the neocortex and what is its role in cortical 
computation? Previous modelling studies have suggested a role for excitatory 
feedback in amplifying feedforward inputs (Douglas et a1 1995, Suarez et a1 1995, 
Mineiro & Zipser 1998, Ben-Yishai et a1 1995, Somers et a1 1995, Chance et a1 
1997). Recently, it has been shown that recurrent excitatory connections between 
cortical neurons are modified according to a spike-timing dependent Hebbian 
learning rule: synapses that are activated slightly before the cell fires are 
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strengthened whereas those that are activated slightly after are weakened 
(Markram et a1 97) (see also Levy & Steward 1983, Zhang et a1 1998, Bi & Poo 
1998, Abbott & Blum 1996, Gerstner et a1 1996, Senn 1997). Information 
regarding the postsynaptic activity of the cell is conveyed back to the dendritic 
locations of synapses by backpropagating action potentials from the soma (Stuart 
& Sakmann 1994). 

Because these recurrent feedback connections can adapt in a temporally specific 
manner, they may subserve a more general function than amplification, such as the 
prediction and generation of temporal sequences (Abbott & Blum 1996, Minai & 
Levy 1993, Montague & Sejnowski 1994, Schultz et a1 1997, Softky 1996, Koch 
1999, Rao & Ballard 1997). The observation that recurrence can generate 
sequences has its roots in dynamical systems theory (Scheinerman 1995) and 
forms the basis of numerous -engineering (Kalman 1960) and neural network 
(Minai & Levy 1993, Rao & Ballard 1997, Jordan 1986, Elman 1990) models for 
predicting and traclting input sequences. Consider the network of excitatory 
neurons shown in Fig. 1A. By appropriately learning its recurrent connections, 
the network can generate sequences of outputs in anticipation of its inputs as 
depicted in Fig. 1B. The initial activation of a subset of input neurons causes the 
corresponding set of excitatory neurons to be activated, which in turn activate a 
different set of excitatory neurons and so on, such that each set of active neurons a t  a 

given time step represents the anticipated input at that time step (active neurons are 
represented as shaded circles in Fig. 1B). The predicted outputs occur just in time 
to inhibit the input neurons if the external input is excitatory, or excite them if the 
external input is inhibitory, thereby implementing a stable negative feedback loop 
and allowing only the unpredicted part of the input to be conveyed to the 
prediction neurons. Such a model is consistent with some recent ideas regarding 
cortico-cortical feedback loops (Rao & Ballard 1997, Mumford 1994), predictive 
coding (Rao & Ballard 1999, Barlow 1998, Daugman & Downing 1995) and visual 
receptive field development from natural images (Rao 8( Ballard 1997, Olshausen 
& Field 1997). In these models, feedback connections from a higher to a lower 
order cortical area are posited to carry predictions of lower level neural activity, 
while the feedforward connections are assumed to convey the residual errors in 
prediction. These errors are used to correct the neural representation at the 
higher level before generating a subsequent prediction (for example, see Rao 8: 
Ballard 1997). Note that for clarity, Pig. 1B shows two different sets of excitatory 
neurons firing at the two successive time steps, but the model allou~s arbitrary 
overlapping subsets of neurons to fire in order to represent temporal sequences 
with possible overlapping inputs, resulting in sustained firing in  some neurons 
and transient firing in others due to learned recurrent connections. 

In this study, we have modelled spike-timing dependent Hebbian synaptic 
plasticity as a form of 'temporal-difference' learning (Montague & Sejnowski 
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FIG. 1. Prediction using recurrent excitation. (A) An example of a model network of 
recurrently connected excitatory neurons receiving inputs from a set of input neurons (bottom 
row). (B) The activation of a subset of input neurons (shaded circles) causes a subset of 
excitatory neurons to fire which in turn cause a different subset of excitatory neurons to fire 
due to recurrent excitatory connections. If these recurrent connections are appropriately 
learned, the second subset of neurons will fire slightly before the expected activation of their 
corresponding input neurons, allowing inhibition of the inputs and forming a stable negative 
feedback loop. For clarity, the example shows two different sets of excitatory neurons firing at 
the two successive time steps, but the learning algorithm allows arbitrary overlapping subsets 
of  neurons to  fire in order to represent sequences with possible overlapping inputs, resulting in 
sustained firing in some neurons and transient firing in others due to the learned recurrent 
connections. 

1994, Schultz et a1 1997, Sutton 1988). We have simulated recurrent networks of 
excitatory and inhibitory cortical neurons possessing this form of synaptic 
plasticity and have investigated the ability of such networks to learn predictive 
models of input sequences, focusing in particular on moving stimuli. Detailed 
compartmental models take into account the temporal dynamics of signal 
processing in dendrites and the relative timing of spikes in neural populations. 
Both of these properties were found to be essential in explaining the genesis of 
complex cell-like direction selectivity in model neocortical neurons. 
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Results 

Spike- timing dependent He b bianplasticit_y as temporal-diference learning 

T o  accurately predict input sequences, the recurrent excitatory connections 
between a given set of neurons need to be adjusted such that the appropriate set 
of neurons are activated at each time step. This can be achieved by using a 
'temporal-difference' learning rule (Montague & Sejnowski 1994, Schultz et a1 
1997, Sutton 1988). In this paradigm of synaptic plasticity, an activated synapse 
is strengthened or weakened based on whether the difference between two 
temporally separated predictions is positive or negative. This minimizes the 
errors in prediction by ensuring that the prediction generated by the neuron after 
synaptic modification is closer to the desired value than before (see Methods for 
more details). 

In order to ascertain whether spike-timing dependent I-llebbian learning in 
cortical neurons can be interpreted as a form of temporal-difference learning, we 
used a two-compartment model of a cortical neuron consisting of a dendrite and a 
soma-axon compartment. The compartmental model was based on a previous 
study that demonstrated the ability of such a model to reproduce a range of 
cortical response properties (Mainen & Sejnowslti 1996). Figures 2A and 2B 
illustrate the responses of the model neuron to constant current pulse injection 
into the soma and random excitatory and inhibitory Poisson-distributed synaptic 
inputs to the dendrite respectively (see Methods). The presence of voltage- 
activated sodium channels in the dendrite allowed backpropagation of action 
potentials from the soma into the dendrite as shown in Fig. 2C. 

T o  study synaptic plasticity in the model, excitatory postsynaptic potentials 
(EPSPs) were elicited at different time delays with respect to postsynaptic spiking 
by presynaptic activation of a single excitatory synapse located on the dendrite. 
Synaptic currents were calculated using a kinetic model of synaptic transmission 
(Destexhe et a1 1997) with model parameters fitted to whole-cell recorded AMPA 
(a-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid) currents (see Methods 
for more details). Other inputs representing background activity were modelled as 
sub-threshold excitatory and inhibitory Poisson processes with a mean firing rate of 
3 Hz. Synaptic plasticity was simulated by incretnenting or decrementing the value 
for maximal synaptic conductance by an amount proportional to the temporal- 
difference in the postsynaptic membrane potential at time instants t + A t  and t-At 
for presynaptic activation at time t (see Methods). The delay parameter At was set to 
5 ms for these simulations; similar results were obtained for otl~er values in the 
5-1 5 tns range. Presynaptic input to the model neuron was paired with postsynaptic 
spiking by injecting a depolarizing current pulse (10 ms, 200 pA) into the sotna. 
Changes in synaptic eKicacy were monitored by applying a test stimulus before 
and after pairing, and recording the EPSP evoked by the test stimulus. 
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FIG. 2. Model neuron response properties. (A) Response of a model neuron to a 70 pA current 
pulse injection into the soma for 900 ms. (B) Response of the same model neuron to Poisson 
distributed excitatory and inhibitory synaptic inputs at random locations on the dendrite. (C) 
Example of a backpropagating action potential in the dendrite of the model neuron as 
compared to the corresponding action potential in the soma (enlarged from the initial portion 
of the trace in [B]). 

Figure 3A shows the results of pairings in which the postsynaptic spike was 
triggered 5 rns after and 5 ms before the onset of the EPSP, respectively. While 
the peak EPSP amplitude was increased 58.5% in the former case, it was 
decreased 49.4-% in the latter case, qualitatively similar to experimental 
observations (Markram et a1 1997). As mentioned above, such changes in 
synaptic efIicacy in the model are determined by the temporal-difference in the 
dendritic tnembrane potential at time instants t + At and t-At for presynaptic 
activation at time k :  the difference is positive when presynaptic activation occurs a 

few tnilliseconds before a backpropagating action potential invades the dendrite 
and negative when it occurs slightly after, causing respectively an increase or 
decrease in synaptic eficacy. The critical window for synaptic modifications in 
the model depends on the parameter At as \veil as the shape o f .  the 
backpropagating action potential. This window of plasticity was examined by 
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Synaptic plasticity in a model neocortical neuron. (A) (Leftpnnel) The response at the 
top ('before') is the EPSP evoked in the model neuron due to a presynaptic spike (S1) at an 
excitatory synapse. Pairing this presynaptic spilce with postsynaptic spiking after a 5 ms delay 
('pairing') induces long-term potentiation as revealed by an enhancelnent in the .peak of the 
EPSP evoked by presynaptic sitmulation alone ('after'). (RQhrpanel) If presynaptic stimulation 
(S2) occurs 5 ms after postsynaptic firing, the synapse is weakened resulting in a decrease in peak 
EPSP amplitude. (B) Critical window for synaptic plasticity obtained by varying the delay 
between prespapt ic  and postsynaptic spiliing. (negative delays refer to  cases where the 
presynaptic spilce occurred before the postsynaptic spike). 

varying the time intcrval between presynaptic st~mulation and postsynaptic 
spiking (with At=5 ms). As shown in Fig. 3B, changes in synaptic efficacy 
exhibited a highly asymmetric dependence on spike timing similar to 
physiological data (Bi 8( Poo 1998). Potentiation was observed for EPSPs that 
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occurred between 1 and 12ms before the postsynaptic spike, with maximal 
potentiation at 6 ms. Maximal depression was observed for EPSPs occurring 
6 ms after the peak of the postsynaptic spike and this depression gradually 
decreased, approaching zero for delays greater than 10 ms. As in rat neocortical 
neurons (Markram et a1 1997), Xenopzrs tectal neurons (Zhang et a1 1998), and 
cultured hippocampal neurons (Bi & Poo 1998), a narrow transition zone 
(roughly 3 ms in the model) separated the potentiation and depression windows. 
Note that the exact duration of the potentiation and depression windows in the 
model can be adapted to match physiological data by appropriately choosing the 
temporal-difference parameter At  and/or varying the distribution of active 
channels in the dendrite the synapse is located on. 

Learning to predict tlsirzg temporal-difference learnitzg 

T o  see how a network of model neurons can learn to predict sequences using the 
learning mechanism described above, consider the simplest case of two excitatory 
neurons N1 and N2 connected to each other, receiving inputs from two separate 
input neurons 11 and I2 (Fig. 4A). Suppose input neuron I1 fires before input 
neuron 12, causing neuron N1 to fire (Fig. 4B). The spilte from N1 results in a 

sub-threshold EPSP in N2 due to the synapse S2. If input arrives from I2 any 
time between 1 and 12 ms after this EPSP and the temporal summation of these 
two EPSPs causes N2 to fire, the synapse S2 will be strengthened. The synapse 
S1, on the other hand, will be weakened because the EPSP due to N2 arrives a 

few milliseconds after N1 has fired. Thus, on a subsequent trial, when input 11 
causes neuron N1 to fire, it in turn causes N2 to fire several milliseconds befire 
input I2 occurs due to the potentiation of the recurrent synapse S2 in previous 
trial(s) (Fig. 4C). Input neuron 12 can thus be inhibited by the predictive 
feedback from N2 just before the occurrence of imminent input activity 
(marked by an asterisk in Fig. 4C). This inhibition prevents input I2 from 
further exciting N2. Similarly, a positive feedback loop between neurons N1 
and N2 is avoided because the synapse S1 was weakened in previous trial(s) 
(see arrows in Figs 4B and 4C). Figure 4D depicts the process of potentiation 
and depression of the two synapses as a function of the number of exposures to 
the 11-12 input sequence. The decrease in latency of the predictive spike elicited 
in N2 with respect to the timing of input 12 is shown in Fig. 4E. Notice that 
before learning, the spike occurs 3.2tns after the occurrence of the input 

whereas after learning, it occurs 7.7 ms before the input. This sitnple example 
helps to illustrate how subsets of neurons may learn to selectively trigger other 
subsets of neurons in anticipation of future inputs while maintaining stability in 

the recurrent network. 
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FIG. 4. Learning to predict using spike-timing dependent Hebbian plasticity. (A) A simple 
network of two model neurons N1 and N2 recurrently connected via excitatory synapses S1 
and S2. Sensory inputs are relayed to the two model neurons by input neurons I1 and 12. 
Feedback from N1 and N2 inhibit the input neurons via inhibitory interneurons (darkened 
circles). (B) Activity in the network elicited by the input sequence I1 followed by 12. Notice 
that N2  fires after its input neuron I2 has fired. (C) Activity in the network elicited by the same 
input sequence after 40 trials of learning. Notice that due to the strengthening of synapse S2, 
neuron N2 now fires several milliseconds before the time of expected input from 12 (dashed 
line), allowing it to  inhibit I2 (asterisk). O n  the other hand, synapse S l  has been weakened, 
thereby preventing re-excitation of N1 (downward arrows show the corresponding decrease in 
EPSP). (D) Potentiation and depression of synapses S1 and S2 respectively during the course of 
learning. Synaptic strength was defined as maximal synaptic conductance in the kinetic model of 
synaptic transmission (see Methods). (E) Latency of the predictive spike in neuron N2 during the 
course of learning measured with respect to the time of input spike in I2 (dotted line). Note that 
the latency is initially positive (N2 fires after 12) but later becomes negative, reaching a value of 
up to 7.7 ms before input I2 i s  a consequence of learning. 

T o  facilitate cotnparison with published neurophpsiological data, we have focused 
specifically on the problem of predicting moving visual stimuli. Previous 
modelling studies have suggested that recurrent excitation may play a crucial role 
in generating direction selectivity in cortical neurons by amplifying their weak 
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feedforward inputs (Douglas et a1 1995, Suarez et a1 1995, Mineiro & Zipser 1998). 
Our  simulations suggest that a network of recurrently connected neurons can 
develop direction selectivity as a consequence of learning to predict moving 
stimuli. We used a network of recurrently connected excitatory neurons as 
shown in Fig. 5A receiving retinotopic sensory input consisting of moving 
pulses of excitation (8 ms pulse of excitation at each neuron) in the rightward and 
leftward directions. The task of the network was to predict the sensory input by 
learning appropriate recurrent connections such that a given neuron in the 
network can fire a few milliseconds before the arrival of its input pulse of 
excitation. The network was comprised of two parallel chains of neurons with 
mutual inhibition (dark arrows) between corresponding pairs of neurons along 
the two chains. The network was initialized such that within a chain, a given 
excitatory neuron received both excitation and inhibition from its predecessors 
and successors. This is shown in Fig. 573 for a neuron labelled '0'. Inhibition at a 

given neuron was mediated by an inhibitory interneuron (dark circle) which 
received excitatory connections from neighbouring excitatory neurons (Fig. 5B, 
lower panel). The interneuron received the same input pulse of excitation as the 
nearest excitatory neuron. Excitatory and inhibitory synaptic currents were 
calculated using kinetic models of synaptic transmission based on properties of 
AMPA and GRBAA (y-aminobutyric acid A) receptors as determined from 
whole-cell recordings (see Methods). Maximum conductances for all synapses 
were initialized to small positive values (dotted lines in Fig. 5C) with a slight 
asymmetry in the recurrent excitatory connections for breaking symmetry 
between the two chains. The initial asymmetry elicited a single spike slightly 
earlier for neurons in one chain than neurons in the other chain for a given 
tnotion direction, allowing activity in the other chain to be inhibited. 

FIG. 5. Emergence of direction selectivity in the model. (A) A model network consisting of 
two chains of recurrently connected neurons receiving retinotopic inputs. A given neuron 
receives recurrent excitation and recurrent inhibition (white-headed arrows) as well as 
inhibition (darkheaded arrows) from its counterpart in the other chain. (B) Recurrent 
connections to  a given neuron (labelled '0') arise from 4 preceding and 4 succeeding neurons in 
its chain. Inhibition at a given neuron is mediated via a GABAergic interneuron (darkened 
circle). (C) Synaptic 'strength of recurrent excitatory (EXC) and inhibitory (INH) connections 
t o  neurons N1 and N2 before (dotted lines) and after learning (solid lines). Synapses were 
adapted during 100 trials of exposure t o  alternating leftward and rightward moving stimuli. 
(D) Responses of neurons N1 and N2 to rightward and leftward moving stimuli. As a result of 
learning, neuron N1 has become selective lor rightward motion (as have other neurons in the 
same chain) while neuron N2 has become selective for leftward motion. In the preferred 
directicn, each neuron starts firing several tnilliseconds before the actual input arrives at its 
soma (marked by an asterisk) due to  recurrent excitation from preceding neurons. The dark 
triangle represents the start of input stitnulation in the network. 
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T o  evaluate the consequences of synaptic plasticity, the network of neurons was 
exposed alternately to leftward and rightward moving stimuli for a total of 100 
trials. The excitatory connections (labelled 'EXC' in Fig. 5B) were modified 
according to the asymmetric Hebbian learning rule in Fig. 3B while the 
excitatory connections onto the inhibitory interneuron (labelled 'INH') were 
modified according to an asymmetric anti-Hebbian learning rule that reversed 
the polarity of the rule in Fig. 3B. In other words, if presynaptic activity occurred 
before (after) the postsynaptic spike in the interneuron, the excitatory connection 
to the inhibitory interneuron was weakened (strengthened). Although not yet 
reported in the neocortex, such a rule for inhibitory interneurons is consistent 
with the spike-timing dependent anti-Hebbian plasticity observed in inhibitory 
interneurons in a cerebellum-like structure in weakly electric fish (Bell et a1 1997). 

The synaptic conductances learned by two neurons (marked N l  and N2 in 
Fig. 5A) located at corresponding positions in the two chains after 100 trails of 
exposure to the moving stimuli are shown in Fig. 5C (solid line). Initially, for 
rightward motion, the slight asymmetry in the initial excitatory connections of 
neuron N1 allows it to fire slightly earlier than neuron N2 thereby inhibiting 
neuron N2. Additionally, since the EPSPs from neurons lying on the leit of N1 
occur before N1 fires, the excitatory synapses from these neurons are strengthened 
while the excitatory synapses from these same neurons to the inhibitory 
interneuron are weakened according to the two learning rules mentioned above. 
O n  the other hand, the excitatory synapses from neurons lying on the right side of 
N l  are weakened while inhibitory connections are strengthened since the EPSPs 
due to these connections occur after N1 has fired. The synapses on neuron N2 and 
its associated interneuron remain unaltered since there is no postsynaptic firing 
(due to inhibition by N1) and hence no backpropagating action potentials in the 
dendrite. Similarly, for leftward motion, neuron N2 inhibits neuron N1 and the 
synapses associated with N2 are adapted according to the two learning rules. As 
shown in Fig. 5C, after 100 trials, the excitatory and inhibitory connections to 
neuron N1 exhibit a marked asymmetry, with excitation originating from 
neurons on the left and inhibition from neurons on the right. Neuron N2 
exhibits the opposite pattern of connectivity. 

As expected from the learned pattern of connectivity, neuron N1 was found to 
be selective for rightward motion while neuron N2 was selective for leftward 
motion (Fig. 5.~). Moreover, when stimulus motion is in the preferred direction, 
each neuron starts firing a few milliseconds before the time of arrival of the input 
stimulus at its soma (marked by an asterisk) due to recurrent excitation from 
preceding neurons. Conversely, motion in the non-preferred directiorl triggers 
recurrent inhibition from preceding neurons as well as inhibition from the active 
neuron in the corresponding position in the other chain. Thus, the learned pattern 
of connectivity allows the direction-selective neurons comprising the two chains in 
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the network to conjointly code for and predict the moving input stimulus in each 
direction. 

The role o f  recurrent excitation and inhibition 

T o  ascertain the role of recurrent excitation in the model, we gradually decreased 
the value of the maximum synaptic conductance between excitatory neurons in the 
network, starting from 100% of the learned values. For a stimulus moving in the 
preferred direction, decreasing the amount of recurrent excitation increased the 
latency of the first spike in a model neuron and decreased the spike count until, 
with less than 10% of the learned recurrent excitation, the latency equalled the 
arrival time of the input stimulus and the spike count dropped to 1 (Figs 6A and 
6B). These results demonstrate that recurrent excitation plays a crucial role in 
generating predictive activity in model neurons and enhances direction-selective 
responses by increasing the spike count in the preferred direction. 

To evaluate the role of inhibition in maintaining direction selectivity in the 
model, we quantified the degree of direction selectivity using the direction index: 
1-(number of spikes in non-preferred direction)/(number of spikes in preferred 
direction). Figures 6C and 6D show the distribution of direction indices with and 
without inhibition in a network of two chains containing 35 excitatory and 35 
inhibitory neurons. In the control case, most of the excitatory neurons and 
inhibitory interneurons receiving recurrent excitation are highly direction 
selective. Blocking inhibition significantly reduces direction selectivity in the 
model neurons but does not completely eliminate it, consistent with some 
previous physiological observations (Sillito 1975, Nelson et a1 1794). The source 
of this residual direction selectivity in the model in the absence of inhibition can be 
traced to the asymmetric recurrent excitatory connections in the network which 
remain unaffected by the blockage of inhibition. 

Compariso?~ with awake monk9 complex cell responses 

Similar to complex cells in primary visual cortex, model neurons are direction 
selective throughout their receptive field because at each retinotopic location, the 
corresponding neuron in the chain receives the same pattern of asymmetric 
excitation and inhibition from its neighbours as any other neuron in the chain. 
Thus, for a given neuron, motion in any local region of the chain will elicit 
direction-selective responses due to recurrent connections from that part of the 
chain. This is consistent with previous modelling studies (Chance et a1 1799) 
suggesting that recurrent connections may be responsible for the spatial-phase 
invariance of complex cell responses. Assuming a 200 ptn separation between 
excitatory model neurons in each chain and utilizing known values for the 



RAO & SEJNOWSKI 

B 

% Recurrent Excitation 

C 
Exc Neurons (Control) 

0 Exc Neurons (Inh Block) 

Direction Index 

% Recurrent Excitation 

601 Interneurons (Control) 

Direction Index 

FIG. 6. The role of recurrent excitation and inhibition. (A) & (13) Latency ofthe first spike and 
number of spikes elicited in an excitatory neuron in the preferred direction as a function of the 
strength of recurrent excitation in a model network (100% corresponds to the learned values of 
recurrent connection strength). The network comprised of two chains, each containing 35 
excitatory neurons and 35 inhibitory interneurons (mutual ~nhibition between corresponding 
neurons in the two chains was mediated by a separate set of inhibitory neurons that were not 
plastic). (C,D) Distribution of direction selectivity in the network for excitatory and inhibitory 
interneurons respectively with (Control) and without GABAergic inhibition (Inh Block) as 
measured by the direction index: 1 -(Non-Preferred Direction liesponse)/(Preferred Direction 
Response). 

cortical magnification factor in monkey striate cortex (Tootell et a1 1988), one can 
estimate the preferred stimulus velocity of model neurons to be 3.1°/s in the fovea 
and 27.9"/s in the periphery (at an eccentricity of 8"). Both of these values fall 
within the range of monkey striate cortical velocity preferences ( lO/s  to 32"/s) 
(van Essen 1985, Livingstone 1998). 

The model predicts that the neuroanatomical connections for a direction- 
selective neuron should exhibit a pattern of asymtnetrical excitation and 
inhibition similar to Fig. 5C. A recent study of direction-selective cells in awake 
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monkey V1 found excitation on the preferred side of the receptive field and 
inhibition on the null side consistent with the pattern of connections learned by 
the model (Livingstone 1998). For comparison with this experimental data, 
spontaneous background activity in the model was generated by incorporating 
Poisson-distributed random excitatory and inhibitory alpha synapses on the 
dendrite of each model neuron. Post-stimulus time histograms (PSTHs) and 
space-time response plots were obtained by flashing optimally oriented bar 
stimuli at random positions in the cell's activating region. As shown in Fig. 7, 
there is good qualitative agreement between the response plot for a direction- 
selective complex cell and that for the model. Both space-time plots show a 
progressive shortening of response onset time and an increase in response 
transiency going in the preferred direction; in the model, this is due to recurrent 
excitation from progfessively closer cells on the preferred side. Firing is reduced to 
below background rates 4&60 ms after stimulus onset in the upper part of the 
plots; in the model, this is due to recurrent inhibition from cells on the null side. 
The response transiency and shortening of response time course appears as a slant 
in the space-time maps, which can be related to the neuron's velocity sensitivity (see 
Livingstone 1998 for more details). 

Discussion 

Our results show that a network of recurrently connected neurons endowed with a 
temporal-difference based asymmetric Hebbian learning mechanism can learn a 

predictive model of its spatiotemporal inputs. Using a biophysical model of 
neocortical neurons, we showed that a temporal-difference learning rule for 
prediction when applied to backpropagating action potentials in dendrites 
produces asymmetric learning windows similar to those observed in 
physiological experiments (see Senn 1997, Egelman & Montague 1998) for 
possible biophysical mechanisms based on N-methyl-D-aspartate (NMDA) 
receptor activation and voltage-dependent Ca2+ channels). When exposed to 
moving stimuli, neurons in a simulated network with recurrent excitatory and 
inhibitory connections learned to fire a few milliseconds before the expected 
arrival of an input stin~ulus and developed direction selectivity as a consequence 
of learning. The model predicts that a direction-selective neuron should start 
responding a few milliseconds before the preferred stimulus arrives at the 
retinotopic location of the neuron in primary visual cortex. Such predictive 
neural activity has recently been reported in ganglion cells in the rabbit and 
salamander retina (Berry et a1 1999). 

The development of direction selectivity in our model requires a s l~ght  initial 

bias in cortical connectivity (Fig. 5C) which is then sharpened by visual 
experience of moving stimuli. This is consistent with experimental evidence 
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FIG. 7 .  Comparison of monkey and model space-time response plots. (Left) Sequence of PSTHs obtained by flashing optimally oriented bars at 
20 positions across the 5"-wide receptive field (RF) of a complex cell in alert monkey V1 (from Livingstone 1998). The celI's preferred direction is 
from the pan  of the RF represented at the bottom towards the top. Flash duration=56 ms; inter-stimulus delay=100 ms; 75 stimulus 
presentations. (Right) PSTHs obtained from a model neuron after stimulating the chain of neurons at 20 positions to the left and right side of 
the given neuron. Lower PSTHs represent stimulations on the preferred side while upper PSTHs represent stimulations on the null side. 
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indicating that (a) some cells in cat visual cortex show some amount of direction 
selectivity before eye opening (Movshon & van Sluyters 1981) and (b) visual 
experience during a critical period can profoundly affect the development of 
direction selectivity (for example, direction selectivity can be abolished by strobe 
rearing; Humphrey & Saul 1998). Although several models for the development of 
direction selectivity have been proposed (Feidler et a1 1997, Wimbauer et a1 1997), 
the roles of spike timing and asymmetric Hebbian plasticity have not been 
previously explored. An interesting question currently being investigated is 
whether the explicit dependence of visual development on spike timing in our 
model can account for the fact that only low frequencies of stroboscopic 
illumination (approximately 8 Hz or below) lead to a loss of direction selectivity. 

Temporally asymmetric Hebbian learning has previously been suggested as a 
possible mechanism for sequence learning in the hippocampus (Levy & Steward 
1983, Abbott & Blum 1996) and as an explanation for the asymmetric expansion of 
hippocampal place fields during route learning (Mehta et a1 1997). Some of these 
theories require relatively long temporal windows of synaptic plasticity (on the 
order of several hundreds of milliseconds) (Abbott & Bluin 1996) while others 
have utilized temporal windows in the sub-millisecond range for coincidence 
detection (Gerstner et a1 1996). Prediction and sequence learning in our model is 
based on a window of plasticity in the tens of milliseconds range which is roughly 
consistent with recent physiological observations (Marltram et a1 1997, Zhang et a1 

1998, Bi & Poo 1998). Although a fixed learning window (roughly 15 ms of 
potentiation/depression) was used in the simulations, the temporal extent of this 
window can be modified by changing the parameter At. The temporal-difference 
model predicts that the shape and width ofthe asymmetric learning window should 
be a function of the backpropagating action potentials in the dendrite that the 
synapse is located on. In the case of hippocampal neurons and cortical neurons, 
the width of backpropagating action potentials in apical dendrites has been 
reported to be in the range of 10-25 ms, which is comparable to the size of 
potentiation/depression windows for synapses located on these dendrites (Bi & 

Poo 1998, Stuart & Sakmann 1994). Addi t iodly,  in order to account for the off 
regions observed in the receptive fields of cortical direction-selective cells 
(Livingstone 1998), we included synaptic plasticity of excitatory synapses on 
inhibitory interneurons by assuming that the sign of the spike-timing dependent 
Hebbian learning window was inverted from that found on pyramidal neurons. 
This inversion has been found in excitatory synapses on inhibitory interneurons 
in a cerebellum-like brain structure in weakly electric fish (Bell et a1 1997), but 
remains a prediction of our model for the cortex. 

In  vitro experiments involving cortical and h~ppocampal slices suggest the 
possibility of short-term plasticity in synaptic connections onto pyramidal 
neurons (Thomson 8: Deuchars 1994, Tsodylts & Markram 1997, Abbott et a1 
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1997). The kinetic model of synaptic transmission used in the present study can be 
extended to include short-term plasticity with the addition of a parameter 
governing the level of depression caused by each presynaptic action potential 
(Chance et a1 1999, Tsodyks & Markram 1997, Abbott et a1 1997). The 
adaptation of this parameter may allow finer control of postsynaptic firing in the 
model in addition to the coarse-grained control offered by modifications of 
maximal synaptic conductance. As suggested by previous studies (Chance et a1 
1999, Abbott 1997), we expect the addition of synaptic depression in our model 
to enhance the transient response of model neurons to stimuli such as flashed bars 
(see Fig. 7) and to broaden the response to drifting stimuli, due to the reduced 
sensitivity of postsynaptic neurons to mean presynaptic firing rates. In 
preliminary simulations, the inclusion of short-term plasticity did not 
significantly alter the development of direction selectivity in recurrent network 
models as reported here. 

The idea that prediction and sequence learning may constitute an important goal 
of the neocortex has previously been suggested in the context of statistical and 
information theoretic models of cortical processing (Minai 8: Levy 1993, 
Montague & Sejnowski 1994, Mumford 1994, Daugman & Downing 1995, 
Abbott & Blum 1996, Schultz et a1 1997, Rao & Ballard 1997, Barlow 1998, Rao 
1999). Our biophysical simulations suggest a possible implementation of such 
models in cortical circuitry. Several authors have observed the general 
uniformity in the basic structure of the neocortex across different cortical areas 
(I-Iubel & Wiesel 1974, Creutzfeldt 1977, Sejnowski 1986, Douglas et a1 1989). 
Given the universality of the problem of encoding and generating temporal 
sequences in both sensory and motor domains, the hypothesis of predictive 
sequence learning in recurrent neocortical circuits may help provide a unifying 
principle for understanding the general nature of cortical information processing 
(Creutzfeldt 1977, Sejnowslti 1986). 

Methods 

Ternpol-a/-dzfferencelearni~g The simplest example of a temporal-difference learning 
rule arises in the problem of predicting a scalar quantity using a neuron with 
synaptic weights ~ ( l ) ,  . . . ~ ( k )  (represented as a vector w). The neuron receives as 
presynaptic input the sequence of vectors x,, . . . x,,. The output of the neuron at 
time t 1s assumed to be given by: P,=~,w(i)x,., ').  The goal is to learn a set of 
synaptic welghts such that the prediction P ,  is as close as possible to the target 
x. One method for achieving this goal is to use a temporal-difference (TD[O]) 
learning rule (Sutton 1988). The weights are changed at time t by an amount 
given by: 
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where a is a learning rate or gain parameter and the final prediction is defined 
to be a. Note that in such a learning paradigm, synaptic plasticity is governed by 
the temporal difference in postsynaptic activity at time instants t + 1 and t in 
conjunction with presynaptic activity x, at time t. 

Neocorticdlnettronmodel. Two-compartment model neocortical neurons consisting 
of a dendritic compartment and a soma-axon compartment (Mainen & Sejnowski 
1996) were implemented using the simulation software Neuron (Hines 1993). Four 
voltage-dependent currents and one Ca2+-dependent current were simulated: fast 
Na', INd; fast I<+, IKV; slow non-inactivating I<+, IKm; high voltage-activated Ca2+, 
Ic,; and Ca2+-dependent I<+ current, IKG (see Mainen & Sejnowski 1996 for 
references). Conventional Hodgkin-Huxley-type kinetics were used for all 
currents (integration time step = 25 ps, temperature= 37 "C). Ionic currents I 
were calculated using the ohmic equation: I=jAXB(V-E) where j is the 
maximal ionic conductance density, A and B are activation and inactivation 
variables, respectively (k denotes the order of kinetics; see Mainen & Sejnowski 
1996 for further details), and E is the reversal potential for the given ion species 
(EK= -90 mV, ENa=60 mV, Ec,=140 mV, Eledk= -70 tnV). The following active 
conductance densities were used in the dendritic compartment (in pS/pm2): 
gNa = 20, = 0.2, jK, = 0.1, and gKCa = 3, with leak conductance 33.3 pS/cm2 and 
specific membrane resistance 30 kQ/cm2. The sorna-axon compartment contained 
gNd=40000 and &,=1400. For all compartments, the specific membrane 
capacitance was 0.75pF/cm2. Two key parameters governing the response 
properties of the model neuron are (Mainen & Sejnowski 1996): the ratio of axo- 
somatic area to dendritic membrane area ( p )  and the coupling resistance between 
the two compartments ( K ) .  For the present simulations, we used the values p =I50 
(with an area of 100pm2 for the soma-axon compartment) and a coupling 
resistance of K: = 8 MQ. Poisson-distributed synaptic inputs to the dendrite were 
simulated using alpha function (Koch 1999) shaped current pulse injections (time 
constant = 5 ms) at Poisson intervals with a mean presynaptic firing frequencj~ of 
3 Hz. 

Model of synaptic tram-mission arzd plasticity. Synaptic transnlission at excitatory 
(AMPA) and inhibitory (GABAp3 synapses was simulated using first order 
kinetics of the form: 



226 RAO & SEJNOWSKI 

where r(t) denotes the fraction of postsynaptic receptors bound to the 
neurotransmitter at time t, [ T J  is the neurotransmitter concentration, and a and P 
are the forward and backward rates for transmitter binding. Assuming receptor 
binding directly gates the opening of an associated ion channel, the resulting 
synaptic current can be described as (Destexhe et a1 1998): 

wheregy, is the maximal synaptic conductance, VV,(t) is the postsynaptic potential 
and EY is the synaptic reversal potential. For the simulations, all synaptic 
parameters were set to values that gave the best fit to whole-cell recorded 
synaptic currents (see Destexhe et a1 1998). Parameters for AMPA synapses: 
a= 1.1 x low6 M-Is-', /3= 190 s-', and EAMPA = O  mV. Parameters for GABAA 
receptors: a =5 x 1 OP6 M-Is-', = 180 s-', and EGA BAA = -80 mV. Synaptic 
plasticity was simulated by adapting the maximal synaptic conductance 
for recurrent excitatory synapses onto excitatory neurons and GABAergic 
interneurons according to the learning mechanism described in the text. 
Inhibitory synapses were not adapted since evidence is currently lacking for their 
plasticity. We therefore used the following fixed values for gCABAA (in pS): 0.04 
for Fig. 4, 0.05 for mutual inhibition between the two chains and 0.016 for 
recurrent inhibitory connections within a chain for the simulations in Fig. 5. 

Synaptic plasticity was simulated by changing maximal synaptic conductance 
bMPA by an amount equal to A&A4PA = GC(P/+~,  - P t - ~ / )  for each presynaptic 
spike at time t, where P ,  denotes the postsynaptic membrane potential at time t. 
The conductance was adapted whenever the absolute value of gAnsPA exceeded 
10 mV with a gain a in the range 0.02-0.03 pS/V. The maximum value attainable 
by a synaptic conductance was set equal to 0.03 pS. Note that the learning rule 
above differs from the pure TD(0) learning rule in that it depends on 
postsynaptic activity At ms in the future as well as At ms in the past whereas the 
TD(0) rule depends on future and current postsynaptic activity (see Equation 1). 
This phenomenological model of synaptic plasticity is consistent with known 
biophysical mechanisms such as calcium-dependent and NMDA receptor- 
dependent induction of long-term potentiation (LTP) and depression (LTD) 
(see Senn 1997, Egelman & Montague 1998, for possible biophysical 
implementations). 
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