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Abstract. When a spike is initiated near the soma of a cortical pyramidal neuron, it may
back-propagate up dendrites toward distal synapses, where strong depolatization can
trigger spike-timing dependent Hebbian plasticity at recently activated synapses. We
show that (a) these mechanisms can implement a temporal-difference algorithm for
sequence learning, and (b) a population of recurrently connected neurons with this
form of synaptic plasticity can learn to predict spatiotemporal input patterns. Using
biophysical simulations, we demonstrate that a network of cortical neurons can develop
direction selectivity similat to that observed in complex cells in alert monkey visual cortex
as a consequence of learning to predict moving stimuli.
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Neocortical circuits are dominated by massive excitatory feedback: more than 80%
of the synapses made by excitatory cortical neurons are onto other excitatory
cortical neurons (Douglas et al 1995, Braitenberg & Schiiz 1991). Why is there
such massive recurrent excitation in the neocortex and what is its role in cortical
computation? Previous modelling studies have suggested a role for excitatory
feedback in amplifying feedforward inputs (Douglas et al 1995, Suarez et al 1995,
Mineiro & Zipser 1998, Ben-Yishai et al 1995, Somers et al 1995, Chance et al
1999). Recently, it has been shown that recurrent excitatory connections between
cortical neurons ate modified according to a spike-timing dependent Hebbian
learning tule: synapses that are activated slightly before the cell fires are
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strengthened whereas those that are activated slightly after are weakened
(Markram et al 97) (see also Levy & Steward 1983, Zhang et al 1998, Bi & Poo
1998, Abbott & Blum 1996, Gerstner et al 1996, Senn 1997). Information
regarding the postsynaptic activity of the cell is conveyed back to the dendritic
locations of synapses by backpropagating action potentials from the soma (Stuart
& Sakmann 1994).

Because these recurrent feedback connections can adapt in a temporally specific
manner, they may subserve a more general function than amplification, such as the
prediction and generation of temporal sequences (Abbott & Blum 1996, Minai &
Levy 1993, Montague & Sejnowski 1994, Schultz et al 1997, Softky 1996, Koch
1999, Rao & Ballard 1997). The observation that recurrence can generate
sequences has its roots in dynamical systems theory (Scheinerman 1995) and
forms the basis of numerous engineering (Kalman 1960) and neural network
(Minai & Levy 1993, Rao & Ballard 1997, Jordan 1986, Elman 1990) models for
predicting and tracking input sequences. Consider the network of excitatory
neurons shown in Fig. 1A. By appropriately learning its recurrent connections,
the network can generate sequences of outputs in anticipation of its inputs as
depicted in Fig. 1B. The initial activation of a subset of input neurons causes the
corresponding set of excitatory neurons to be activated, which in turn activate a
different set of excitatory neurons and so on, such that each set of active neurons ata
given time step represents the anticipated input at that time step (active neurons are
represented as shaded circles in Fig. 1B). The predicted outputs occur just in time
to inhibit the input neurons if the external input is excitatory, or excite them if the
external input is inhibitory, thereby implementing a stable negative feedback loop
and allowing only the unpredicted part of the input to be conveyed to the
prediction neurons. Such a model is consistent with some recent ideas regarding
cortico-cortical feedback loops (Rao & Ballard 1997, Mumford 1994), predictive
coding (Rao & Ballard 1999, Baglow 1998, Daugman & Downing 1995) and visual
receptive field development from natural images (Rao & Ballard 1997, Olshausen
& Field 1997). In these models, feedback connections from a higher to a lower
order cortical area are posited to carry predictions of lower level neural activity,
while the feedforward connections are assumed to convey the residual errors in
prediction. These errors are used to correct the neural representation at the
higher level before generating a subsequent prediction (for example, see Rao &
Ballard 1997). Note that for clarity, Fig. 1B shows two different sets of excitatory
neurons firing at the two successive time steps, but the model allows arbitrary
overlapping subsets of neurons to fire in order to represent temporal sequences
with possible overlapping inputs, resulting in sustained firing in some neurons
and transient firing in others due to learned recurrent connections.

In this study, we have modelled spike-timing dependent Hebbian synaptic
plasticity as a form of ‘temporal-difference’ learning (Montague & Sejnowski
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FIG. 1. Prediction using recurrent excitation. (A) An example of a model network of
tecurrently connected excitatory neurons receiving inputs from a set of input neurons (bottom
row). (B) The activation of a subset of input neurons (shaded circles) causes a subset of
excitatory neurons to fire which in turn cause a different subset of excitatory neurons to fire
due to recurrent excitatory connections. If these recurrent connections are appropriately
learned, the second subset of neurons will fire slightly before the expected activation of their
corresponding input neurons, allowing inhibition of the inputs and forming a stable negative
feedback loop. For clarity, the example shows two different sets of excitatory neurons firing at
the two successive time steps, but the learning algorithm allows arbitrary overlapping subsets
of neurons to fire in order to tepresent sequences with possible overlapping inputs, resulting in
sustained firing in some neurons and transient firing in others due to the learned recutrent
connections.

1994, Schultz et al 1997, Sutton 1988). We have simulated recurrent networks of
excitatory and inhibitory cortical neurons possessing this form of synaptic
plasticity and have investigated the ability of such networks to learn predictive
models of input sequences, focusing in particular on moving stimuli. Detailed
compartmental models take into account the temporal dynamics of signal
processing in dendrites and the relative timing of spikes in neural populations.
Both of these properties were found to be essential in explaining the genesis of
complex cell-like direction selectivity in model neocortical neurons.



TEMPORAL SEQUENCES IN RECURRENT NEOCORTICAL CIRCUITS 211
Results
Spike-timing dependent Hebbian plasticity as temporal-difference learning

To accurately predict input sequences, the recurrent excitatory connections
between a given set of neurons need to be adjusted such that the appropriate set
of neurons are activated at each time step. This can be achieved by using a
‘temporal-difference’ learning rule (Montague & Sejnowski 1994, Schultz et al
1997, Sutton 1988). In this paradigm of synaptic plasticity, an activated synapse
is strengthened or weakened based on whether the difference between two
temporally separated predictions is positive or negative. This minimizes the
errots in prediction by ensuring that the prediction generated by the neuron after
synaptic modification is closer to the desired value than before (see Methods for
more details).

In ordet to ascertain whether spike-timing dependent Hebbian learning in
cortical neurons can be interpreted as a form of temporal-difference learning, we
used a two-compartment model of a cortical neuron consisting of a dendrite and a
soma-axon compartment. The compartmental model was based on a previous
study that demonstrated the ability of such a model to reproduce 2 range of
cortical response properties (Mainen & Sejnowski 1996). Figures 2A and 2B
illustrate the responses of the model neuron to constant current pulse injection
into the soma and random excitatory and inhibitory Poisson-distributed synaptic
inputs to the dendrite tespectively (see Methods). The presence of voltage-
activated sodium channels in the dendrite allowed backpropagation of action
potentials from the soma into the dendrite as shown in Fig. 2C.

To study synaptic plasticity in the model, excitatory postsynaptic potentials
(EPSPs) were elicited at different time delays with respect to postsynaptic spiking
by presynaptic activation of a single excitatory synapse located on the dendrite.
Synaptic currents wete calculated using a kinetic model of synaptic transmission
(Destexhe et al 1997) with model parameters fitted to whole-cell recorded AMPA
(-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid) currents (see Methods
for more details). Other inputs representing background activity were modelled as
sub-threshold excitatory and inhibitory Poisson processes with a mean firing rate of
3 Hz. Synaptic plasticity was simulated by incrementing or decrementing the value
for maximal synaptic conductance by an amount proportional to the temporal-
difference in the postsynaptic membrane potential at time instants # + Az and /—Af¢
for presynapticactivation at time £ (see Methods). The delay parameter A7 was set to
5ms for these simulations; similar results were obtained for other values in the
5-15 ms range. Presynaptic input to the model neuron was paired with postsynaptic
spiking by injecting a depolarizing current pulse (10 ms, 200 pA) into the soma.
Changes in synaptic efficacy were monitored by applying a test stimulus before
and after pairing, and recording the EPSP evoked by the test stimulus.
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FIG.2. Model neuron response propertics. (A) Response of a model neuron toa 70 pA current
pulse injection into the soma for 900 ms. (B) Response of the same model neuron to Poisson
distributed excitatory and inhibitory synaptic inputs at random locations on the dendrite. (C)
Example of a backpropagating action potential in the dendrite of the model neuron as

compared to the corresponding action potential in the soma (enlarged from the initial portion
of the trace in [B]).

Figure 3A shows the results of pairings in which the postsynaptic spike was
triggered 5ms after and 5ms before the onset of the EPSP, respectively. While
the peak EPSP amplitude was increased 58.5% in the former case, it was
decreased 49.4% in the latter case, qualitatively similar to experimental
observations (Markram et al 1997). As mentioned above, such changes in
synaptic efficacy in the model are determined by the temporal-difference in the
dendritic membrane potential at time instants #+ Az and 7—A/ for presynaptic
activation at time #: the difference is positive when presynaptic activation occurs a
few milliseconds before a backpropagating action potential invades the dendrite
and negative when it occurs slightly after, causing respectively an increase or
decrease in synaptic efficacy. The critical window for synaptic modifications in
the model depends on the parameter Az as well as the shape of . the
backpropagating action potential. This window of plasticity was examined by
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FIG. 3. Synaptic plasticity in a model neocortical neuron. (A) (Ief? panel) The response at the
top (‘before’) is the EPSP evoked in the model neuron due to a presynaptic spike (S1) at an
excitatory synapse. Pairing this presynaptic spike with postsynaptic spiking after a 5 ms delay
(‘pairing’) induces long-term potentiation as revealed by an enhancement in the peak of the
EPSP evoked by presynaptic simulation alone (‘after’). (Right panel) If presynaptic stimulation
(52) occurs 5 ms after postsynaptic firing, the synapse is weakened resulting in a decrease in peak
EPSP amplitude. (B) Critical window for synaptic plasticity obtained by varying the delay
between presynaptic and postsynaptic spiking (negative delays refer to cases where the
presynaptic spike occurred before the postsynaptic spike).

varying the time interval between presynaptic stimulation and postsynaptic
spiking (with A7=5ms). As shown in Fig. 3B, changes in synaptic efficacy
exhibited a highly asymmetric dependence on spike timing similar to
physiological data (Bi & Poo 1998). Potentiation was observed for EPSPs that




214 RAO & SEJNOWSKI

occurred between 1 and 12ms before the postsynaptic spike, with maximal
potentiation at 6 ms. Maximal depression was observed for EPSPs occurring
6ms after the peak of the postsynaptic spike and this depression gradually
decreased, approaching zero for delays greater than 10 ms. As in rat neocortical
neurons (Markram et al 1997), Xenopus tectal neurons (Zhang et al 1998), and
cultured hippocampal neurons (Bi & Poo 1998), a narrow transition zone
(roughly 3 ms in the model) separated the potentiation and depression windows.
Note that the exact duration of the potentiation and depression windows in the
model can be adapted to match physiological data by appropriately choosing the
tempotral-difference parameter Az and/or varying the distribution of active
channels in the dendtite the synapse is located on.

Learning to predict using temporal-difference learning

To see how a network of model neurons can learn to predict sequences using the
Jearning mechanism described above, consider the simplest case of two excitatory
neurons N1 and N2 connected to each other, receiving inputs from two separate
input neurons I1 and 12 (Fig. 4A). Suppose input neuron I1 fires before input
neuron 12, causing neuron N1 to fire (Fig. 4B). The spike from N1 results in a
sub-threshold EPSP in N2 due to the synapse S2. If input arrives from I2 any
time between 1 and 12 ms after this EPSP and the temporal summation of these
two EPSPs causes N2 to fire, the synapse S2 will be strengthened. The synapse
S1, on the other hand, will be weakened because the EPSP due to N2 arrives a
few milliseconds after N1 has fired. Thus, on a subsequent trial, when input I1
causes neuron N1 to fire, it in turn causes N2 to fire several milliseconds before
input 12 occurs due to the potentiation of the recurrent synapse S2 in previous
trial(s) (Fig. 4C). Input neuron I2 can thus be inhibited by the predictive
feedback from N2 just before the occurrence of imminent input activity
(marked by an asterisk in Fig. 4C). This inhibition prevents input 12 from
further exciting N2. Similarly, a positive feedback loop between neurons NI
and N2 is avoided because the synapse S1 was weakened in previous trial(s)
(see arrows in Figs 4B and 4C). Figure 4D depicts the process of potentiation
and depression of the two synapses as a function of the number of exposures to
the 11-12 input sequence. The decrease in latency of the predictive spike elicited
in N2 with respect to the timing of input 12 is shown in Fig. 4E. Notice that
before learning, the spike occurs 3.2ms after the occutrence of the input
whereas after learning, it occurs 7.7 ms before the input. This simple example
helps to illustrate how subsets of neurons may learn to selectively trigger other
subsets of neurons in anticipation of future inputs while maintaining stability in
the recurrent network,



TEMPORAL SEQUENCES IN RECURRENT NEOCORTICAL CIRCUITS 215

Sl S2
Excitatory Neucon N1 Excitatary Neuron N2
0.03 saa
£y
a
£ £ = 0,025) »°
vy Synapse S2
\j/' A
0.02¢ a
5
&0 a
5 0.015} as®
Input Neuron 11 O >—@ o< Input Neuron 12 e La8®
o 0.0tf an
Input 1 {nput 2 P=] saaads?
% ;Aeeﬁgoaooouoooooo
= 0.005f o,
& °, Synapse Sl
. N o - o
Before Learning After Learning eeeeooeoaseseee
NI NI 0 10 20 30 40

Time (number of trials)

—_-—
—-—

|
1
]
=

I

]

15 ms

5 | .
© ©
—8} .
R Q 10 20 30 40
\h

Time (number of trials)

N2 N2

AW 0¥

Latency of Predictive Spike (ms)

FIG. 4. Leatning to predict using spike-timing dependent Hebbian plasticity. (A) A simple
network of two model neurons N1 and N2 recurrently connected via excitatory synapses S1
and S2. Sensoty inputs are relayed to the two model neurons by input neurons I1 and I2.
Feedback from N1 and N2 inhibit the input neurons via inhibitory interneurons (darkened
circles). (B) Activity in the network elicited by the input sequence I1 followed by I2. Notice
that N2 fires after its input neuron I2 has fired. (C) Activity in the network elicited by the same
input sequence after 40 trials of leatning. Notice that due to the strengthening of synapse S2,
neuron N2 now fires several milliseconds before the time of expected input from 12 (dashed
line), allowing it to inhibit 12 (asterisk). On the other hand, synapse S1 has been weakened,
thereby preventing re-excitation of N1 (downward arrows show the corresponding decrease in
EPSP). (D) Potentiation and depression of synapses S1 and S2 respectively during the course of
learning. Synaptic strength was defined as maximal synaptic conductance in the kinetic model of
synaptic transmission (see Methods). (E) Latency of the predictive spike in neuron N2 during the
course of learning measured with respect to the time of input spike in 12 (dotted line). Note that
the latency is initially positive (N2 fires after 12) but later becomes negative, reaching a value of
up to 7.7 ms before input I2 ds a consequence of learning.

Direction selectivity from predictive sequence learning

To facilitate comparison with published neurophysiological data, we have focused
specifically on the problem of predicting moving visual stimuli. Previous
modelling studies have suggested that recurrent excitation may play a crucial role
in generating direction selectivity in cortical neurons by amplifying their weak
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feedforward inputs (Douglas et al 1995, Suarez et al 1995, Mineiro & Zipser 1998).
Ouzr simulations suggest that a network of recurrently connected neurons can
develop direction selectivity as a consequence of learning to predict moving
stimuli. We used a network of recurrently connected excitatory neurons as
shown in Fig. 5A receiving retinotopic sensory input consisting of-moving
pulses of excitation (8 ms pulse of excitation at each neuron) in the rightward and
leftward directions. The task of the network was to predict the sensory input by
learning appropriate recurrent connections such that a given neuron in the
network can fire a few milliseconds before the arrival of its input pulse of
excitation. The network was comprised of two parallel chains of neurons with
mutual inhibition (dark arrows) between corresponding pairs of neurons along
the two chains. The network was initialized such that within a chain, a given
excitatory neuron received both excitation and inhibition from its predecessors
and successors. This is shown in Fig. 5B for a neuron labelled ‘0’. Inhibition at a
given neuron was mediated by an inhibitory interneuron (dark circle) which
received excitatory connections from neighbouring excitatory neurons (Fig. 5B,
lower panel). The interneuron received the same input pulse of excitation as the
nearest excitatory neuron. Excitatory and inhibitory synaptic currents wete
calculated using kinetic models of synaptic transmission based on properties of
AMPA and GABA, (y-aminobutyric acid A) receptors as determined from
whole-cell recordings (see Methods). Maximum conductances for all synapses
were initialized to small positive values (dotted lines in Fig. 5C) with a slight
asymmetry in the recurrent excitatory connections for breaking symmetry
between the two chains. The initial asymmetry elicited a single spike slightly
catlier for neurons in one chain than neurons in the other chain for a given
motion direction, allowing activity in the other chain to be inhibited.

FIG. 5. Emergence of direction selectivity in the model. (A) A model network consisting of
two chains of recurrently connected neurons receiving retinotopic inputs. A given neuron
receives recutrent excitation and recurrent inhibition (white-headed arrows) as well as
inhibition (dark-headed arrows) from its counterpart in the other chain. (B) Recurrent
connections to a given neuron (labelled ‘0’) arise from 4 preceding and 4 succeeding neurons in
its chain. Inhibition at a given neuron is mediated via a GABAergic interneuron (darkened
circle). (C) Synaptic strength of recurrent excitatory (EXC) and inhibitory (INH) connections
to neurons N1 and N2 before (dotted lines) and after learning (solid lines). Synapses were
adapted during 100 trials of exposure to alternating leftward and rightward moving stimuli.
(D) Responses of neurons N1 and N2 to rightward and leftward moving stimuli. As a result of
learning, neuron N1 has become selective for rightward motion (as have other neurons in the
same chain) while neuron N2 has become selective for leftward motion. In the preferred
direction, each neuron starts firing several milliseconds befote the actual input arrives at its
soma (marked by an asterisk) due to recurrent excitation from preceding neurons. The dark
triangle represents the start of input stimulation in the network.
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To evaluate the consequences of synaptic plasticity, the network of neurons was
exposed alternately to leftward and rightward moving stimuli for a total of 100
trials. The excitatoty connections (labelled ‘EXC’ in Fig. 5B) were modified
according to the asymmetric Hebbian learning rule in Fig. 3B while the
excitatory connections onto the inhibitory interneuron (labelled ‘INH’) wete
modified according to an asymmetric anti-Hebbian learning rule that reversed
the polarity of the rule in Fig. 3B. In other words, if presynaptic activity occurred
before (after) the postsynaptic spike in the interneuron, the excitatory connection
to the inhibitory interneuron was weakened (strengthened). Although not yet
reported in the neocortex, such a rule for inhibitory interneurons is consistent
with the spike-timing dependent anti-Hebbian plasticity observed in inhibitory
interneurons in a cerebellum-like structure in weakly electric fish (Bell et al 1997).

The synaptic conductances learned by two neurons (marked N1 and N2 in
Fig. 5A) located at corresponding positions in the two chains after 100 trails of
exposure to the moving stimuli are shown in Fig. 5C (solid line). Initially, for
rightward motion, the slight asymmetry in the 1nitial excitatory connections of
neuron N1 allows it to fire slightly earlier than neuron N2 thereby inhibiting
neuron N2. Additionally, since the EPSPs from neurons lying on the left of N1
occur before N1 fires, the excitatory synapses from these neurons are strengthened
while the excitatory synapses from these same neurons to the inhibitory
interneuron are weakened according to the two learning rules mentioned above.
On the other hand, the excitatory synapses from neurons lying on the right side of
N1 are weakened while inhibitory connections are strengthened since the EPSPs
due to these connections occur after N1 has fired. The synapses on neuron N2 and
its associated interneuron remain unaltered since there is no postsynaptic firing
(due to inhibition by N1) and hence no backpropagating action potentials in the
dendrite. Similatly, for leftward motion, neuron N2 inhibits neuron N1 and the
synapses associated with N2 are adapted according to the two learning rules. As
shown in Fig. 5C, after 100 trials, the excitatory and inhibitory connections to
neuron N1 exhibit a marked asymmetry, with excitation originating from
neurons on the left and inhibition from neurons on the right. Neuron N2
exhibits the opposite pattern of connectivity.

As expected from the learned pattern of connectivity, neuron N1 was found to
be selective for rightward motion while neuron N2 was selective for leftward
motion (Fig. 5D) Moreover, when stimulus motion is in the preferred direction,
each neuron starts firing a few milliseconds before the time of arrival of the input
stimulus at its soma (marked by an asterisk) due to recurrent excitation from
preceding neurons. Conversely, motion in the non-preferred direction triggers
recurrent inhibition from preceding neurons as well as inhibition from the active
neuron in the corresponding position in the other chain. Thus, the leatned pattern
of connectivity allows the direction-selective neurons comprising the two chains in
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the network to conjointly code for and predict the moving input stimulus in each
direction.

The role of recurrent exccitation and inhibition

To ascertain the role of recurrent excitation in the model, we gradually decreased
the value of the maximum synaptic conductance between excitatory neurons in the
network, starting from 100% of the learned values. For a stimulus moving in the
preferred direction, decreasing the amount of recurrent excitation increased the
latency of the first spike in a model neuron and decreased the spike count until,
with less than 10% of the learned recurrent excitation, the latency equalled the
arrival time of the input stimulus and the spike count dropped to 1 (Figs 6A and
6B). These results demonstrate that recurrent excitation plays a crucial role in
generating predictive activity in model neurons and enhances direction-selective
responses by increasing the spike count in the preferred direction.

To evaluate the role of inhibition in maintaining direction selectivity in the
model, we quantified the degree of direction selectivity using the direction index:
1—(number of spikes in non-preferred direction)/(number of spikes in preferred
direction). Figures 6C and 6D show the distribution of ditection indices with and
without inhibition in a network of two chains containing 35 excitatory and 35
inhibitory neurons. In the control case, most of the excitatory neurons and
inhibitory interneurons receiving recurrent excitation are highly direction
selective. Blocking inhibition significantly reduces direction selectivity in the
model neurons but does not completely eliminate it, consistent with some
previous physiological observations (Sillito 1975, Nelson et al 1994). The source
of this residual direction selectivity in the model in the absence of inhibition can be
traced to the asymmetric recurrent excitatory connections in the network which
remain unaffected by the blockage of inhibition.

Comparisonwith awake monkey complex cell responses

Similar to complex cells in primary visual cortex, model neurons are direction
selective throughout their receptive field because at each retinotopic location, the
corresponding neuron in the chain receives the same pattern of asymmettric
excitation and inhibition from its neighbours as any other neuron in the chain.
Thus, for a given neuron, motion in any local region of the chain will elicit
direction-selective responses due to recurrent connections from that part of the
chain. This is consistent with previous modelling studies (Chance et al 1999)
suggesting that recurrent connections may be responsible for the spatial-phase
invariance of complex cell responses. Assuming a 200 um separation between
excitatory model neurons in each chain and utilizing known values for the
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FIG.6. Theroleof recurrent excitation and inhibition. (A) & (B) Latency of the first spike and
number of spikes elicited in an excitatory neuron in the preferred direction as a function of the
strength of recurrent excitation in a model network (100% corresponds to the learned values of
recurrent connection strength). The network comprised of two chains, each containing 35
excitatory neurons and 35 inhibitory interneurons (mutual inhibition between corresponding
neurons in the two chains was mediated by a separate set of inhibitory neurons that were not
plastic). (C,D) Distribution of direction selectivity in the network for excitatory and inhibitory
interneurons respectively with (Control) and without GABAergic inhibition (Inh Block) as
measured by the ditection index: 1—(Non-Preferred Direction Response)/(Preferred Direction
Response).

cortical magnification factor in monkey striate cortex (Tootell et al 1988), one can
estimate the preferred stimulus velocity of model neurons to be 3.1°/s in the fovea
and 27.9°[s in the periphery (at an eccentricity of 8°). Both of these values fall
within the range of monkey striate cortical velocity preferences (1°/s to 32°/s)
(van HEssen 1985, Livingstone 1998).

The model predicts that the neuroanatomical connections for a direction-
selective neuron should exhibit a pattern of asymmetrical excitation and
inhibition similar to Fig. 5C. A recent study of direction-selective cells in awake
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monkey V1 found excitation on the preferred side of the receptive field and
inhibition on the null side consistent with the pattern of connections learned by
the model (Livingstone 1998). For comparison with this experimental data,
spontancous background activity in the model was generated by incotrporating
Poisson-distributed random excitatory and inhibitory alpha synapses on the
dendrite of each model neuron. Post-stimulus time histograms (PSTHs) and
space-time response plots were obtained by flashing optimally otiented bar
stimuli at random positions in the cell’s activating region. As shown in Fig. 7,
thete is good qualitative agreement between the response plot for a direction-
selective complex cell and that for the model. Both space-time plots show a
progressive shortening of response onset time and an increase in response
transiency going in the preferred direction; in the model, this is due to recurrent
excitation from progressively closer cells on the preferred side. Firing is reduced to
below background rates 40-60 ms after stimulus onset in the upper part of the
plots; in the model, this is due to recurrent inhibition from cells on the null side.
The response transiency and shortening of response time course appears as a slant
in the space-time maps, which can be related to the neuron’s velocity sensitivity (see
Livingstone 1998 for more details).

Discussion

Our results show that a network of recurrently connected neurons endowed with a
temporal-difference based asymmetric Hebbian learning mechanism can learn a
predictive model of its spatiotemporal inputs. Using a biophysical model of
neocortical neurons, we showed that a temporal-difference learning rule for
prediction when applied to backpropagating action potentials in dendrites
produces asymmetric learning windows similar to those observed in
physiological experiments (see Senn 1997, Egelman & Montague 1998) for
possible biophysical mechanisms based on N-methyl-D-aspartate (INMDA)
receptor activation and voltage-dependent Ca?* channels). When exposed to
moving stimuli, neurons in a simulated network with recurrent excitatory and
inhibitory connections learned to fire a few milliseconds before the expected
arrival of an input stimulus and developed direction selectivity as a consequence
of learning. The model predicts that a direction-selective neuron should start
responding a few milliseconds before the preferred stimulus arrives at the
retinotopic location of the neuron in primary visual cortex. Such predictive
neural activity has recently been reported in ganglion cells in the rabbit and
salamander retina (Berry et al 1999).

The development of direction selectivity in our model requires a slight initial
bias in cortical connectivity (Fig. 5C) which is then sharpened by visual
experience of moving stimuli. This is consistent with experimental evidence



= Monkey Data Model
3 . ) . .
E 5 A O Py P Py Ry TS - W PP P S O
'_:‘ e Rorradbstn i, i, sl BB . S ud P S G S O N
: f s . 2 DV MW “§ VERY W - o R T, —_ S
J 4 PO T S o um [ X x Py il o ek g e
. Akl M o . i Eam <. el Bt e e oo =
L
[oh) [ TSI A - SR W gyt S Y O ol — B d .
c% PR s - 5 G TP SR § S Y PR 8 ST SR S S
«
= “—M (PP~ " T ] 2
o _‘__..‘_.MM
SN PRSI NN T -
I 52
8 T Bl s s MM‘—J—“‘
a0 WD T N TS
] )
Q
e DT TG e gy T ¥ PR SVES S sbenal -
g w2 1 . PSS SO S 5 ST ST SR ¥ e, EN —a - e -
—c% PR g+ Y W 3 - . I, . - O’ ——— . —— .
vy
88' et B s ortbctiedt il sty — et - ~
& 0 . 50 100 0 . 50 100
S stimulus time (ms) stimulus time (ms)
jo®

FIG.7. Comparison of monkey and model space-time response plots. (Lef#) Sequence of PSTHs obtained by flashing optimally oriented bars at
20 positions across the 5°-wide receptive field (RF) of a complex cell in alert monkey V1 (from Livingstone 1998). The cell’s preferred direction is
from the part of the RF represented at the bottom towards the top. Flash duration=>56ms; inter-stimulus delay=100ms; 75 stimulus
presentations. (Righ#) PSTHs obtained from a model neuron after stimulating the chain of neurons at 20 positions to the left and right side of
the given neuron. Lower PSTHs represent stimulations on the preferred side while upper PSTHs represent stimulations on the null side.
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indicating that (a) some cells in cat visual cortex show some amount of direction
selectivity before eye opening (Movshon & van Sluytets 1981) and (b) visual
experience during a critical period can profoundly affect the development of
ditection selectivity (for example, direction selectivity can be abolished by strobe
rearing; Humphrey & Saul 1998). Although several models for the development of
direction selectivity have been proposed (Feidler et al 1997, Wimbauer et al 1997),
the roles of spike timing and asymmetric Hebbian plasticity have not been
previously explored. An interesting question currently being investigated is
whether the explicit dependence of visual development on spike timing in our
model can account for the fact that only low frequencies of stroboscopic
illumination (approximately 8 Hz or below) lead to a loss of direction selectivity.

- Temporally asymmetric Hebbian learning has previously been suggested as a
possible mechanism for sequence learning in the hippocampus (Levy & Steward
1983, Abbott & Blum 1996) and as an explanation for the asymmetric expansion of
hippocampal place fields during route learning (Mehta et al 1997). Some of these
theories require relatively long temporal windows of synaptic plasticity (on the
order of several hundreds of milliseconds) (Abbott & Blum 1996) while others
have utilized temporal windows in the sub-millisecond range for coincidence
detection (Gerstner et al 1996). Prediction and sequence learning in our model is
based on a window of plasticity in the tens of milliseconds range which is roughly
consistent with recent physiological observations (Markram et al 1997, Zhang et al
1998, Bi & Poo 1998). Although a fixed learning window (roughly 15ms of
potentiation/depression) was used in the simulations, the temporal extent of this
window can be modified by changing the parameter Az. The temporal-difference
model predicts that the shape and width of the asymmetriclearning window should
be a function of the backpropagating action potentials in the dendrite that the
synapse is located on. In the case of hippocampal neurons and cortical neurons,
the width of backpropagating action potentials in apical dendrites has been
reported to be in the range of 10-25ms, which is comparable to the size of
potentiation/depression windows for synapses located on these dendrites (Bi &
Poo 1998, Stuart & Sakmann 1994). Additionally, in order to account for the off
regions observed in the receptive fields of cortical direction-selective cells
(Livingstone 1998), we included synaptic plasticity of excitatory synapses on
inhibitory intetneurons by assuming that the sign of the spike-timing dependent
Hebbian learning window was inverted from that found on pyramidal neurons.
This inversion has been found in excitatory synapses on inhibitory interneurons
in a cerebellum-like brain structure in weakly electric fish (Bell et al 1997), but
remains a prediction of our model for the cortex.

In vitro experiments involving cortical and hippocampal slices suggest the
possibility of short-term plasticity in synaptic connections onto pyramidal
neurons (Thomson & Deuchars 1994, Tsodyks & Markram 1997, Abbott et al
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1997). The kinetic model of synaptic transmission used in the present study can be
extended to include short-term plasticity with the addition of a parameter
governing the level of depression caused by each presynaptic action potential
(Chance et al 1999, Tsodyks & Markram 1997, Abbott et al 1997). The
adaptation of this parameter may allow finer control of postsynaptic firing in the
model in addition to the coatse-grained control offered by modifications of
maximal synaptic conductance. As suggested by previous studies (Chance et al
1999, Abbott 1997), we expect the addition of synaptic depression in our model
to enhance the transient response of model neurons to stimuli such as flashed bars
(see Fig. 7) and to broaden the response to drifting stimuli, due to the reduced
sensitivity of postsynaptic neurons to mean presynaptic firing rates. In
preliminary simulations, the inclusion of short-term plasticity did not
significantly alter the development of direction selectivity in recurrent network
models as reported here.

The idea that prediction and sequence learning may constitute an important goal
of the neocortex has previously been suggested in the context of statistical and
information theoretic models of cortical processing (Minai & Levy 1993,
Montague & Sejnowski 1994, Mumford 1994, Daugman & Downing 1995,
Abbott & Blum 1996, Schultz et al 1997, Rao & Ballard 1997, Barlow 1998, Rao
1999). Our biophysical simulations suggest a possible implementation of such
models in cortical circuitry. Several authots have observed the general
uniformity in the basic structure of the neocortex across different cortical areas
(Hubel & Wiesel 1974, Creutzfeldt 1977, Sejnowski 1986, Douglas et al 1989).
Given the universality of the problem of encoding and generating temporal
sequences in both sensory and motor domains, the hypothesis of predictive
sequence learning in recurrent neocortical circuits may help provide a unifying
principle for understanding the general nature of cortical information processing

(Creutzfeldt 1977, Sejnowski 1986).

Methods

Temporal-difference learning.  'The simplest example of a temporal-difference learning
rule arises in the problem of predicting a scalar quantity g using a neuron with
synaptic weights w(1),. .. w(k) (represented as a vector w). The neuron receives as
presynaptic input the sequence of vectors xy, . .. X,. The output of the neuron at
time / is assumed to be given by: P,=> w(i)x,(). The goal is to learn a set of
synaptic weights such that the prediction P, is as close as possible to the target
z. One method for achieving this goal is to use a temporal-difference (TD{0])
learning rule (Sutton 1988). The weights are changed at time ¢ by an amount
given by:
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AWt = OC(P,_H - Pt)X/ (1)

where « is a learning rate or gain parameter and the final prediction P, is defined
to be g. Note that in such a learning paradigm, synaptic plasticity is governed by
the temporal difference in postsynaptic activity at time instants £+ 1 and # in
conjunction with presynaptic activity x, at time 7.

Neocortical nenron model.  “Two-compartment model neocortical neurons consisting
of a dendritic compartment and a soma-axon compartment (Mainen & Sejnowski
1996) were implemented using the simulation software Nexrox (Hines 1993). Four
voltage-dependent currents and one Ca?*-dependent current were simulated: fast
Na't, T, fast K*, Ix,; slow non-inactivating K*, Ig,,; high voltage-activated Ca?*,
Ic,; and Ca?*-dependent K* current, Ixe, (see Mainen & Sejnowski 1996 for
references). Conventional Hodgkin—Huxley-type kinetics were used for all
currents (integration time step=25pus, temperature=37°C). lonic cutrents [
were calculated using the ohmic equation: I=gA*B(lV—E) where g is the
maximal ionic conductance density, 4 and B are activation and inactivation
variables, respectively (x denotes the order of kinetics; see Mainen & Sejnowski
1996 for further details), and E is the reversal potential for the given ion species
(Ex=-90mV, En,=60mV, E,,=140mV, E,,,=—70mV). The following active
conductance densities were used in the dendritic compartment (in pS/um?):
2na=20, 2c,=0.2, gx,,=0.1, and gxc, =3, with leak conductance 33.3 uS/cm? and
specific membrane resistance 30 kQ/cm?. The soma—axon compartment contained
2N.=40000 and gg,=1400. For all compartments, the specific membrane
capacitance was 0.75uF/cm? 'Two key parameters governing the response
properties of the model neuron are (Mainen & Sejnowski 1996): the ratio of axo-
somatic area to dendritic membrane area (p) and the coupling resistance between
the two compartments (k). For the present simulations, we used the values p =150
(with an area of 100 um? for the soma—axon compartment) and a coupling
resistance of k=8 MQ. Poisson-distributed synaptic inputs to the dendrite were
simulated using alpha function (Koch 1999) shaped current pulse injections (time
constant=>5 ms) at Poisson intervals with a mean presynaptic firing frequency of

3 Hz.

Model of synaptic transmission and plasticity.  Synaptic transmission at excitatory
(AMPA) and inhibitory (GABA,) synapses was simulated using first order

kinetics of the form:

i 2
ol TI(1 = 1)~ @)
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whete r(#) denotes the fraction of postsynaptic receptors bound to the
neurotransmitter at time £, [ 1] is the neurotransmitter concentration, and o and f
are the forward and backward rates for transmitter binding. Assuming receptor
binding directly gates the opening of an associated ion channel, the resulting
synaptic current can be described as (Destexhe et al 1998):

Iyﬂ - gy’ﬂr(t)< an(f) - Ew) (3)

where g, is the maximal synaptic conductance, 1/,,(#) is the postsynaptic potential
and Eg, is the synaptic reversal potential. For the simulations, all synaptic
patametets were set to values that gave the best fit to whole-cell recorded
synaptic currents (see Destexhe et al 1998). Parameters for AMPA synapses:
a=1.1x10""M~1s~1 B=190s"1 and E 4pp4=0mV. Parameters for GABA
receptors: a=5x10"M~1s71 f=180s"1, and Ecyp44=—80mV. Synaptic
plasticity was simulated by adapting the maximal synaptic conductance g4prp.4
for recurrent excitatory synapses onto excitatory neurons and GABAergic
interneurons according to the learning mechanism described in the text.
Inhibitory synapses were not adapted since evidence is currently lacking for their
plasticity. We therefore used the following fixed values for gg4p4.4 (in uS): 0.04
for Fig. 4, 0.05 for mutual inhibition between the two chains and 0.016 for
recutrent inhibitory connections within a chain for the simulations in Fig. 5.

Synaptic plasticity was simulated by changing maximal synaptic conductance
Z4ampa by an amount equal to Agapmpa = o(Prpar — Pi—as) for each presynaptic
spike at time #, where P, denotes the postsynaptic membrane potential at time 7.
The conductance was adapted whenever the absolute value of g4ppaq exceeded
10 mV with a gain « in the range 0.02-0.03 uS/V. The maximum value attainable
by a synaptic conductance was set equal to 0.03 uS. Note that the learning rule
above differs from the pure TD(0) learning rule in that it depends on
postsynaptic activity Afms in the future as well as Azms in the past whereas the
TD(0) rule depends on future and current postsynaptic activity (see Equation 1).
This phenomenological model of synaptic plasticity is consistent with known
biophysical mechanisms such as calcium-dependent and NMDA receptor-
dependent induction of long-term potentiation (L'TP) and depression (L'TD)
(see Senn 1997, Egelman & Montague 1998, for possible biophysical
implementations).
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