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Abstract
Resting-state functional MRI (rs-fMRI) studies have revealed specific low-frequency hemodynamic signal fluctuations
(<0.1 Hz) in the brain, which could be related to neuronal oscillations through the neurovascular coupling mechanism.
Given the vascular origin of the fMRI signal, it remains challenging to separate the neural correlates of global rs-fMRI signal
fluctuations from other confounding sources. However, the slow-oscillation detected from individual vessels by
single-vessel fMRI presents strong correlation to neural oscillations. Here, we use recurrent neural networks (RNNs) to
predict the future temporal evolution of the rs-fMRI slow oscillation from both rodent and human brains. The RNNs trained
with vessel-specific rs-fMRI signals encode the unique brain oscillatory dynamic feature, presenting more effective
prediction than the conventional autoregressive model. This RNN-based predictive modeling of rs-fMRI datasets from the
Human Connectome Project (HCP) reveals brain state-specific characteristics, demonstrating an inverse relationship
between the global rs-fMRI signal fluctuation with the internal default-mode network (DMN) correlation. The RNN
prediction method presents a unique data-driven encoding scheme to specify potential brain state differences based on the
global fMRI signal fluctuation, but not solely dependent on the global variance.
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Introduction
Neural oscillations have been extensively studied in both animal
and human brains from cellular to systems levels (Steriade 2001;
Buzsáki and Draguhn 2004; Masimore et al. 2004; Muller et al.
2018). Power profiles of EEG signals, as well as slow cortical

potentials (SCP), exhibit a slow oscillation feature (<1 Hz), which
is related to brain states mediating memory, cognition and
task-specific behaviors (Birbaumer et al. 1990; Elbert 1993; He
and Raichle 2009). Resting-state functional MRI (rs-fMRI) studies
have revealed low-frequency hemodynamic signal fluctuations
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(<0.1 Hz) (Biswal et al. 1995; Biswal et al. 1997; Cordes et al. 2001;
Fukunaga et al. 2006), which have been confirmed by intrinsic
optical imaging (Kleinfeld et al. 1998), laser-doppler-flowmetry
(Golanov et al. 1994), and near-infrared spectroscopy (Obrig et al.
2000). In particular, specific spatial correlation patterns can be
observed in the slow oscillation of the rs-fMRI signal, e.g., the
default-mode network (DMN) (Raichle et al. 2001; Greicius et al.
2003; Hampson et al. 2006). Concurrent fMRI and electrophysiol-
ogy studies have shown a correlation of the fMRI signal fluctu-
ation with the EEG signal power profile and SCP low-frequency
oscillations, which are candidates for neural correlates of the rs-
fMRI signal (Logothetis et al. 2001; Goldman et al. 2002; He et al.
2008; Shmuel and Leopold 2008; Scholvinck et al. 2010; Pan et al.
2013; Fultz et al. 2019). In addition, the slow oscillation of rs-fMRI
and hemodynamic signals from vessels are highly correlated to
simultaneously acquired intracellular Ca2+ signal fluctuations
in rodents (Du et al. 2014; Ma et al. 2016; Schwalm et al. 2017; He
et al. 2018; Chen et al. 2020).

Efforts have been made to interpret the functional indica-
tions of rs-fMRI spatial correlation patterns, including research
revealing a rich repertoire of states and their transitions that
constitute the rs-fMRI signal (Chang and Glover 2010; Handw-
erker et al. 2012; Hutchison et al. 2013; Liu et al. 2013; Liu and
Duyn 2013; Hansen et al. 2015; Karahanoglu and Van De Ville
2015; Liang et al. 2015; Chen et al. 2016; Vidaurre et al. 2017;
Yousefi et al. 2018), as well as arousal state-dependent global
fMRI signal fluctuation studies (Chang et al. 2016; Turchi et al.
2018; Wang et al. 2018). Because of the high variability in dif-
ferent dynamic states, physiological and non-physiological con-
founding factors also contribute to the rs-fMRI low-frequency
oscillation (Birn et al. 2006; Caballero-Gaudes and Reynolds 2017;
Pais-Roldán et al. 2018; Tong et al. 2019). In particular, global fMRI
signal fluctuations are one of the most controversial oscillatory
features to be linked to dynamic brain signals (Fox et al. 2009;
Murphy et al. 2009; Hahamy et al. 2014; Murphy and Fox 2017;
Power et al. 2017; Billings and Keilholz 2018; Liu et al. 2018; Xu
et al. 2018). Efforts have been made to disambiguate the global
and vascular signals, to separate the physiological components
of the global signal (Glasser et al. 2018) and to remove those
components e.g., by using the signal from the white-matter
tract as a nuisance regressor (Behzadi et al. 2007; Chang and
Glover 2009). Interestingly, the global signal has been tied to
behavioral traits (Li et al. 2019) and vigilance (Wong et al. 2013;
Wong et al. 2016) of scanned subjects and the global signal
fluctuation has been tied to the switching of whole brain spatial
patterns (Gutierrez-Barragan et al. 2019). Moreover, simultane-
ous fMRI and EEG studies in the monkey brain demonstrate
a strong linkage of brain state changes to the global rs-fMRI
signal fluctuations (Scholvinck et al. 2010). This phenomenon
has been observed at the level of single-vessel fMRI dynamic
mapping with concurrent calcium recordings (Yu et al. 2016;
He et al. 2018; Chen et al. 2019), showing stronger neural cor-
relation from vessel voxels than parenchyma voxels given the
highly deoxygen-hemoglobin-based T2∗-weighted contrast-to-
noise ratio (CNR) changes (He et al. 2018). This highly coherent
vessel-specific fMRI signal fluctuation is a direct signal source
that is closely linked to global brain state changes. Here, we
applied the artificial state-encoding recurrent neural network
system in a prediction scheme to better model the brain state-
specific coherent oscillatory features from the vessel voxels.

Recurrent neural networks (RNNs) provide a computational
framework for temporally predicting dynamic brain signals.
RNNs, through interactions of recurrently connected simple

computational nodes (neurons), encode temporal patterns
of input signals, i.e., the vessel specific rs-fMRI signals, into
internal states. These states are then decoded to generate
predictions e.g., using linear weighting. Two example RNN
architectures both employing gating mechanisms and trained
through backpropagating errors (Linnainmaa 1976; Rumelhart
et al. 1988) are the gated recurrent unit (GRU) (Cho et al. 2014) and
long short-term memory (LSTM) (Hochreiter and Schmidhuber
1997; Gers et al. 2003) networks. These RNNs have been applied
to fMRI data to e.g., model hemodynamic response functions
(Güçlü and van Gerven 2017), decode task properties (Li and
Fan 2018), identify individuals (Chen and Hu 2018) and integrate
behavioral and neuroimaging data in a decision task (Dezfouli
et al. 2018). In particular, the artificial neural networks have been
used to depict dynamic brain signals over a range of time scales
and contexts (Plis et al. 2014; Yamins et al. 2014; Barrett et al.
2018; Hjelm et al. 2018; Wen et al. 2018).

In the present study, GRUs were trained to predict the slow
oscillation dynamic changes of the rs-fMRI signal from both rat
and human brains. Based on previous single-vessel fMRI studies
(He et al. 2018), vessel-specific fMRI signals were used as training
data to extract highly correlated neuronal oscillatory tempo-
ral features with varied noise profiles. Given the significantly
reduced auto-regression features of the slow oscillation after
a 10 s lag time, we trained the RNNs to predict the temporal
evolution of slow oscillations with the 10 s interval into the
future. The trained networks encoded unique temporal dynamic
features of the rs-fMRI signal, enabling the differentiation of the
global fMRI signal fluctuation from the DMN-specific temporal
dynamic patterns in the Human Connectome Project (HCP) data
(Van Essen et al. 2012). In particular, in contrast to the global
variance analysis, the RNN-based prediction presents a linear
association to the strength of DMN-specific network correlation
indicating a unique data-driven encoding scheme to specify
brain state differences.

Materials and Methods
GRU

Gated recurrent unit (GRU) (Cho et al. 2014) networks are an
RNN architecture designed to tackle the vanishing and explod-
ing gradient problems, which prevented effective learning in
networks trained using backpropagation. They introduce gating
mechanisms that control the flow of information into and out
of the GRU units and allow the network to capture dependencies
at different time scales in the processed data. The GRU encodes
each element of the input single-vessel sequence x into a hidden
state vector h(t) by computing the following functions:

r(t) = σ
(
Wirx(t) + bir + Whrh (t − 1) + bhr

)

z(t) = σ
(
Wizx(t) + biz + Whzh (t − 1) + bhz

)

n(t) = tanh
(
Winx(t) + bin + r(t) � (

Whnh (t − 1) + bhn
))

h(t) = (
1 − z(t)

)� n(t) + z(t) � h (t − 1)

where σ
()

, tanh
()

are the sigmoid and hyperbolic tangent
functions, r, z, n are the reset, update and new gates, W are
matrices connecting the gates, inputs and hidden states, b
are bias vectors and � is the elementwise product. A linear
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Table 1 Optimized GRU hyperparameters

Parameter name Description Range Final value (rat | human)

Number of layers Multiple layers of each of the recurrent units could be
stacked on top of each other.

[1; 5] 2 | 1

Hidden size Size of the hidden state vector. [10; 500] 290 | 88
Loss function As the Pearson correlation coefficient (CC) was the

final evaluation metric of networks’ performance, it
could be used as the cost function instead of the
mean squared error (MSE) loss.

[MSE, CC, MSE and CC] CC | CC

Learning rate A parameter defining the rate at which network
weights were updated during training.

[10−5; 1] 0.001 | 0.00121

L2 Strength of the L2 weight regularization. [0; 10] 0.0003 | 0.0221
Gradient clipping Gradient clipping (Pascanu et al. 2013) limits the

magnitude of the gradient to a specified value.
[yes; no] no | no

Dropout In the case of using a multi-layer RNN, dropout
(Srivastava et al. 2014) could be set.

[0; 0.2] 0.128 |—

Residual
connection

Employing a residual connection i.e., feeding the
input directly to the linear readout alongside the

RNN’s hidden state.

[yes; no] yes | no

Batch size The number of single-vessel time courses processed
by the network in the training stage before each
weight update.

[3; 32] 22 | 10

Number of epochs How many times the network processed the whole
training dataset during training.

[1; 100] 87 | 69

Washout time The number of input signals’ time points used to
drive the network into a state that is specific to a
given input. These time points are not used for
readout training and prediction.

Fixed 250 | 250

readout was used to generate the prediction based on the state
vector:

y(t) = wouth(t).

The networks were trained in PyTorch (Paszke et al. 2019) and
cross-validated across trials. The hyperparameters were found
with Bayesian optimization using the tree of Parzen estima-
tors algorithm (Hyperopt toolbox, n = 200) (Bergstra et al. 2011;
Bergstra et al. 2013). The optimized hyperparameters have been
described in Table 1.

ARMAX

The autoregressive-moving-average model with exogenous
inputs (ARMAX) (Whittle 1951) was used as a comparative
prediction method. ARMAX aims to model a time series using
autoregressive, moving-average and exogenous input terms.
This is depicted in the equation:

y(t) + a1y(t − 1) + · · · + ana y(t − na) = b1u(t − nk) + · · · + bnb u

(t − nk − nb + 1) + c1e(t − 1) + · · · + cnc e(t − nc) + e(t),

where y(t) is the model’s output at time t; u(t) is the exogenous
input at time t; e(t) is the noise term at time t; na, nb, nc are the
numbers of model’s past outputs, inputs and error terms that
influence the current output; nk is the delay after which the
inputs influence the output; ai, bi, ci are estimated model coeffi-
cients. To match the 10 s prediction scheme nk was set to 10 and
the raw inputs and slow oscillation outputs were not shifted. An
extensive grid search was performed to find the na, nb, nc values

that led to the best predictions. All combinations of na, nb, nc

values ranging from 1 to 50 with a step of 1 and from 1 to 150 with
a step of 5 were evaluated to estimate the model’s coefficients
ai, bi, ci. Exactly the same data as in GRU’s case were used for
training and evaluation and the best set of na, nb, nc values was
also found through cross-validation. MATLAB armax and forecast
functions were used to find the coefficient values and evaluate
the models. The autoregressive model with exogenous input
(ARX) and the autoregressive-integrated-moving-average model
with exogenous inputs (ARIMAX) were also tested but yielded
worse performances, hence are not reported.

Experimental Procedures

All experimental procedures were approved by the Animal
Protection Committee of Tuebingen (Regierungsprasidium
Tuebingen) and performed in accordance with the guidelines.
All human subject experiments follow the guidelines of the
regulation procedure in the Max Planck Institute, and the
informed consents were obtained from all human volunteers.
Single-vessel fMRI data acquired from 6 rats and 6 human
subjects have been previously published (He et al. 2018). The
rats were imaged under alpha-chloralose anesthesia. For details
related to the experimental procedures refer to (Yu et al. 2010;
He et al. 2018).

Rat MRI Data Acquisition

The measurements have been performed using a 14.1 T/26 cm
horizontal bore magnet (Magnex) interfaced with an Avance
III console (Bruker). To acquire the images a 6 mm (diameter)
transceiver surface coil was used.
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bSSFP rs-fMRI

The balanced steady-state free precession (bSSFP) sequence
was used to acquire 2–5 trials of single-slice Blood-oxygen-
level-dependent (BOLD) rs-fMRI for every rat. Each run had a
length of 15 minutes with a one slice repetition time of 1 s.
The bSSFP parameters were: echo time (TE) = 3.9 ms; repetition
time (TR) = 7.8 ms; flip angle = 12◦; matrix = 96 × 128; field of
view (FOV) = 9.6 × 12.8 mm; slice thickness = 400 μm; in-plane
resolution = 100 × 100 μm2.

MGE A-V Map Acquisition in Rats

To detect individual blood vessels a 2D multi-gradient-echo
(MGE) sequence was used. The sequence parameters were:
TR = 50 ms; TE = 2.5, 5, 7.5, 10, 12.5 and 15 ms; flip angle = 40◦;
matrix = 192 × 192; in-plane resolution = 50 × 50 μm2; slice
thickness = 500 μm. The second up to the fifth echoes of the MGE
images were averaged to create arteriole-venule (A-V) maps (Yu
et al. 2016). The A-V maps enable identifying venule voxels as
dark dots due to the fast T2∗ decay and arteriole voxels as bright
dots because of the in-flow effect.

Human MRI Data Acquisition

Data from six healthy adult subjects (male, n = 3; female,
n = 3; age: 20–35 years) were acquired using a 3-T Siemens
Prisma with a 20-channel receive head coil. BOLD rs-fMRI
measurements were performed using an echo-planar imaging
(EPI) sequence with: TR = 1000 ms; TE = 29 ms; flip angle = 60◦;
matrix = 121 × 119; in-plane resolution = 840 μm × 840 μm; 9
slices with thicknesses of 1.5 mm. Image acquisition was
accelerated with parallel imaging (GRAPPA factor: 3) and
partial Fourier (6/8). Subjects had their eyes closed during
each 15 minute trial. Respiration and pulse oximetry were
simultaneously monitored using the Siemens physiologic
Monitoring Unit.

Data Preprocessing

All data preprocessing was done using MATLAB and the Analysis
of Functional Neuro Images (AFNI) software package (Cox 1996).
The functional data were aligned with the A-V map using the
mean bSSFP template and the 3dTagAlign AFNI function with 10
tags located in the venule voxels. Other details of the prepro-
cessing procedure are reported in a previous study (Zhang et al.
2012). No spatial smoothing was done at any point.

Localization of Individual Veins

To localize venule voxels in A-V maps, local statistics analysis
and thresholding were performed using AFNI. First, for each
voxel, the minimum value in a 1 voxel-wide rectangular neigh-
borhood was found. Then, the resulting image was filtered with
a 10 voxel rectangular rank filter and divided by the size of the
filter. Finally, the image was thresholded to create a mask with
vein locations. For human data, the mean of EPI time series was
used instead of the A-V map.

ICA Identification of Vascular Slow Oscillations

To extract signals only from vessels exhibiting strong slow oscil-
lations an additional independent components analysis (ICA)-
based mask was combined with the described above vessel

localization method. The functional rs-fMRI data were processed
using the Group ICA of fMRI Toolbox (GIFT, http://mialab.mrn.o
rg/software/gift) in MATLAB. First, principal component anal-
ysis (PCA) was employed to reduce the dimensionality of the
data. PCA output was used to find 10 independent compo-
nents and their spatial maps using spatial Infomax ICA (Bell
and Sejnowski 1995). If a component exhibiting slow oscilla-
tions predominantly in individual vessels had been found, it
was thresholded and used together with the vascular mask to
identify vessels of interest and extract their signals.

Frequency Normalization

To normalize the data, power density estimates of signals’ high-
frequency components were used. Every time course had its
mean removed and was divided by the mean power spectral
density estimate (PSD) of its frequency components higher than
0.2 Hz. The 0.2 Hz point was chosen, as above this value spectra
of extracted signals were centered on a horizontal, non-decaying
line. Performing the division brought the mean PSD of high-
frequency components to a common unit baseline for all signals.

This allowed to better compensate for different signal
strengths across trials than when scaling the data using minimal
and maximal values. Additionally, the relative strength of flatter
signals and those exhibiting stronger low-frequency oscillations
was better preserved when compared to variance normalization.
Ultimately it also improved prediction performance.

Power Spectrum Analysis

The spectral analysis was performed in MATLAB. To compute
the PSDs of utilized signals we employed Welch’s method (Welch
1967) with the following parameters: 1024 discrete Fourier trans-
form points; Hann window of length 128; 50% overlap.

Filtering

To obtain target signals, single-vessel time courses were band-
pass filtered in MATLAB using butter and filtfilt functions. The
frequency bands (0.01–0.1 for human and 0.01–0.05 for rat data)
were chosen based on the PSD curves of single-vessel and ICA
time courses.

Surrogate Data Generation

Surrogate data methods are primarily used to measure the
degree of nonlinearity of a time series (Theiler et al. 1992). They
allow creating artificial time courses that preserve basic statis-
tics of original data like the mean, variance and autocorrelation
structure. In this study, Fourier based surrogate signals were
generated for each single-vessel time course using the itera-
tive amplitude adjusted Fourier transform (IAAFT) algorithm
(Schreiber and Schmitz 1996).

To create a surrogate control, a list of a signal’s amplitude-
sorted values and the complex magnitudes of its Fourier fre-
quency decomposition need to be saved. First, the original signal
is randomly reordered. The complex magnitudes of the shuffled
signal are replaced by the stored values of the original signal
with the new phases being kept. This changes the amplitude
distribution. To compensate for this, the new signal’s sorted
values are assigned values from the stored ordered amplitude
distribution of the source signal (the new signal is only sorted
for the assignment, its order is restored afterwards). In turn,
matching the amplitudes modifies the spectrum, so the complex
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magnitude and amplitude matching steps are repeated and
the modified phases of the resulting signal are kept through
iterations.

The iteratively generated signals had the same amplitude
distribution as the source data and extremely similar ampli-
tudes of the power spectrum. However, the phases of their
complex Fourier components were randomized.

Principal Component Analysis of GRU Hidden States

We used the MATLAB pca function to apply PCA to the network’s
hidden states and generate PCA time courses.

Sliding Window Score Signals

For each time point we computed the correlation between the
predicted and target single-vessel signal in 30 s windows. The
first and last 15 values of each sliding window signal were
based on shorter windows due to the window extending beyond
available data.

HCP Data—Preprocessing

Data from 4012 15-minute sessions of rs-fMRI acquired by
the Human Connectome Project (HCP) (Van Essen et al. 2012)
were used to extract V1 signals and compute whole-brain
correlation maps. The data set was preprocessed (Glasser et al.
2013; Smith et al. 2013), had artifacts removed via ICA + FIX
(Griffanti et al. 2014; Salimi-Khorshidi et al. 2014) and was
registered to a common space (Robinson et al. 2014; Glasser
et al. 2016) by the HCP. The data were resampled from the
original 0.72 s sampling rate to match the 1 s TR of our in-house
datasets.

HCP Data—ROI Signal Extraction

The multi-modal cortical parcellations (Glasser et al. 2016) was
used to extract 180 region of interest (ROI) signals per hemi-
sphere. The DMN ROI was based on the DMN ROI specified in
Yeo et al. (Yeo et al. 2011). Subcortical structures were extracted
using the Connectome Workbench (Marcus et al. 2011). The
global signal was computed by averaging signals of all cortical
voxels.

HCP Data—ICA Parcellations

ICA spatial maps and their corresponding time courses for each
rs-fMRI session were obtained from the S1200 Extensively Pro-
cessed fMRI Data released by HCP. The spatial maps are based
on group-PCA results generated using MIGP (MELODIC’s Incre-
mental Group-PCA) (Smith et al. 2014). Spatial ICA was applied
to the group-PCA output using FSL’s MELODIC tool (Hyvarinen
1999; Beckmann and Smith 2004). To derive component-specific
time courses for each session, the spatial maps were regressed
against the rs-fMRI data (Filippini et al. 2009). In this work,
we used results from the 15-component decomposition. 4012
rs-fMRI sessions had the ICA results available.

Spatial Correlation Difference Maps Generation

To create a correlation map for one session, the time course of
either the V1 ROI, DMN ROI, cortical global mean, DMN ICA or
V1 ICA served as the seed which was correlated with all voxel
time courses in that session. To generate the difference maps,

individual maps of selected sessions were group averaged and
subtracted.

Intrinsic DMN Correlation

Intrinsic DMN correlation in an individual trial was computed as
the average correlation between the DMN ICA time course and
all individual DMN ROI voxel signals.

Cross-Correlation

MATLAB xcorr and zscore functions were used to compute cross-
correlation. Lag times were computed between predictions and
desired outputs. Positive lags correspond to delayed predictions
and negative lags to too early predictions.

Correlation Matrix Spectral Reordering

To change the order of matrix entries so that ROIs with simi-
lar whole-brain correlation patterns were clustered together, a
Laplacian-based spectral reordering method was used (Barnard
et al. 1995).

Statistical Tests

The statistical significance of the difference between real/sur-
rogate and GRU/ARMAX prediction scores was verified using a
paired t-test (MATLAB ttest function). To determine differences
between seed-based correlation maps and PSDs two-sample t-
tests were applied (MATLAB ttest2 function). Fisher’s z-transform
has been applied to all correlation values before conducting
statistical tests. The results have been controlled for false dis-
covery rate with adjustment (Benjamini and Hochberg 1995;
Yekutieli and Benjamini 1997). P values < 0.05 were considered
statistically significant.

Results
Two datasets were used in our study, one from rats and
another from humans. First, we trained a GRU to encode
temporal dynamics of BOLD-fMRI signals from vessel voxels
in anesthetized rat brains to estimate the prediction efficiency.
Second, we trained another GRU to predict the slow oscillation
of fMRI signals from occipital lobe sulcus veins of awake
human subjects and applied the GRU trained on human data
to classify the brain-state changes from rs-fMRI data acquired
by the Human Connectome Project (HCP). We compared the
GRU results with the predictions of autoregressive moving
average with exogenous input modeling (ARMAX) (Whittle
1951; Box 1976). Lastly, we specified the RNN prediction-based
DMN activity classification of the HCP datasets, showing a
unique brain state encoding scheme, different from the global
variance-based approach.

Extracting Slow Oscillatory Features of the
Single-Vessel fMRI Signal from Rat Brains

We used recordings obtained from the balanced steady-state
free precession (bSSFP) sequence (Scheffler and Lehnhardt 2003)
on single-vessel fMRI data from anesthetized rats (He et al.
2018). Arteriole-venule (A-V) maps based on the multi-gradient-
echo (MGE) sequence were acquired to localize individual
venules penetrating the cortex, which were shown as dark dots
due to the fast T2∗ decay of the deoxygenated blood (Fig. 1A)
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Figure 1. Extraction of signals from single venules exhibiting strong slow fluctuations—rat. (A) The A-V map enables localization of single venules (dark dots) in the
rat somatosensory cortex (red—3 vessel masks; plotted in D. (B) Time course of the slowly changing ICA component shaping vascular dynamics and its PSD. (C) The
corresponding ICA spatial map highlights the presence of slow fluctuations predominantly in veins. (D) Examples of extracted vascular time courses selected for
further processing (marked as red dots on the A-V map in A along with their PSDs. The ICA component is present in the signals, but the noise level is much higher

and individual differences are clearly visible.

(Yu et al. 2016). After registering functional data with the A-V
map, fMRI time courses from individual venules were extracted
and analyzed using independent component analysis (ICA) (Bell
and Sejnowski 1995; Mckeown et al. 1998; Calhoun et al. 2009).
Figure 1B shows the time series of the largest ICA component,
which is dominated by the low frequency fluctuation (<0.1 Hz).
The superposition of this ICA component with the single-
vessel fMRI signal fluctuation on the A-V map overlapped
with venule-dominated patterns (Fig. 1C). Figure 1D shows
the raw bSSFP-fMRI signal fluctuation from three venules, as
well as their power spectral density (PSD) plots. These data
presented highly coherent oscillatory features of single-vessel
fMRI signals, which can be used as a training set. It is important
to note that this coherent oscillation of vessel-specific rs-
fMRI signals is strongly correlated to the concurrent calcium
transients, showing brain state-dependent dynamic fluctuation
(He et al. 2018).

Supervised Training of the GRU-Based Prediction of the
fMRI Slow Oscillation

Figure 2A illustrates the data-driven training scheme for the
RNN-based prediction of the rs-fMRI signal fluctuation. The

single-vessel fMRI signals showing a strong slow oscillatory
correlation (Fig. 1) were used as input time series for the super-
vised training. The targets of the output were bandpass-filtered
fMRI signals from the voxels of the same vessel with a 10 s
time shift. The 10 s time shift was selected as the autocorre-
lation of both rat and human signals is largely reduced at the
10 s lag (Supplementary Fig. 1). Pearson correlation analysis was
performed to estimate the correlation coefficient (CC) between
GRU’s output predictions and the filtered target signals, to mea-
sure the RNN’s performance. We used Bayesian optimization
and cross validation to find the set of hyperparameter values
that produced the best performing network, see details in the
Methods section).

GRU-Based Single-Vessel fMRI Slow Oscillation
Prediction in Anesthetized Rats

We first illustrate the predictive capacity of the trained GRU by
analyzing correlation coefficients across all cross-validation
tests. Figure 2B demonstrates the CC of the slow oscillation
prediction of all vessels from a representative rat. For each
vessel, we generated a surrogate control time course that
mimicked the frequency power profile of the fMRI signal.
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Figure 2. GRU prediction of the spontaneous slow fluctuation of rat vascular dynamics. (A) Prediction system operation pipeline. Raw vascular data are extracted from
fMRI data using venule and ICA masks and are fed into the GRU. They are also bandpass filtered and shifted by 10 s to become target outputs of the network. The
reservoir encodes the temporal dynamics of input signals into state vectors. The decoder interprets these states and generates a prediction of the slow fluctuation’s
value 10 s ahead. After generating the full predicted time series, it is compared with the target output using Pearson’s correlation coefficient. (B) Prediction scores of
all the signals extracted from a single rat (blue dots) ordered by trials. Real data are matched with controls (red dots) for every vessel. Black dots show mean scores
across trials and bars are SD values. (C) Significantly higher mean of training rat real data prediction scores (CC = 0.31 ± 0.01 SEM) compared to controls (CC = 0.25 ± 0.01
SEM; paired-sample t-test, P = 3.7∗10–10). (D) The signal from a single vessel with the best prediction score (CC = 0.51, tlag = −1 s; black—raw data, green—target signal,
blue—network prediction). (E) Surrogate signal created to match the real vascular signal shown in D (CC = 0.41, tlag = −4 s; black—raw data, green—target, red—network
prediction). (F) Mean prediction scores for trials extracted from five rats (blue) and their corresponding controls (red). (G) Significantly higher mean of different rats’
real data prediction scores (CC = 0.29 ± 0.01 SEM) than controls (CC = 0.24 ± 0.01 SEM; paired-sample t-test, P = 6.4∗10–24). (H) Predictions of single-vessel signals from
two different rats (v1, CC = 0.51, tlag = 0 s; v2, CC = 0.52, tlag = 0 s).
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To differentiate the control dataset from true brain dynamic
signals, we randomized the phase distribution of its frequency
components (Theiler et al. 1992; Schreiber and Schmitz 1996)
(Supplementary Fig. 2, see Methods). The GRU prediction
performance showed significantly higher mean CC for fMRI
data (P = 3.7∗10−10; CC = 0.31 ± 0.01 SEM) than surrogate controls
(CC = 0.25 ± 0.01 SEM) (Fig. 2C). Figure 2D shows the predicted
time course from the vessel with the highest prediction score
(CC = 0.51, tlag = −1 s) in contrast to the surrogate control signal
corresponding to the same vessel (CC = 0.41, tlag = −4 s). This
shows that the trained GRU was better at predicting the fMRI
signal fluctuations.

In addition, the GRU trained on one rat was used to
predict the fMRI fluctuation of five different rats. Figure 2F
demonstrates trial-specific plots of mean CCs from all vessels
in comparison to their surrogate controls (380 vessels from
5 rats), showing significantly higher CC of the fMRI signal
(P = 6.4∗10−24; CC = 0.29 ± 0.01 SEM) than that of surrogate con-
trols (CC = 0.24 ± 0.01 SEM; Fig. 2G). Figure 2H shows predicted
slow oscillatory time courses of two vessels from different rats
based on the trained GRU (v1, CC = 0.51, tlag = 0 s; v2, CC = 0.52,
tlag = 0 s). These results indicate that the fMRI signal fluctuation
can be predicted by the trained RNN.

GRU-Based Single-Vessel fMRI Slow Oscillation
Prediction in Awake Human Subjects

As previously reported (Barth and Norris 2007; He et al. 2018), the
fMRI signal from sulcus veins of the occipital lobe demonstrated
highly correlated slow-oscillatory features (Fig. 3). The vein-
specific rs-fMRI signal fluctuations were recorded with high-
resolution EPI-fMRI with 840 x 840 μm in-plane resolution and
1.5 mm thickness (Fig. 3A, veins are dark dots) and analyzed with
ICA. The largest vascular ICA component exhibited slow oscil-
latory fluctuations in the 0.01–0.1 Hz frequency range (Fig. 3B)
and its correlation map primarily highlighted the individual
sulcus veins in the EPI image (Fig. 3C). Figure 3D shows raw fMRI
time courses from two sulcus veins, demonstrating the vessel-
specific time courses and PSDs with varied noise contributions
to different veins. Differences between species are visible in
the PSDs. A significantly wider range of frequencies contribute
strongly to time courses extracted from human vessels
compared to rat data (Supplementary Fig. 3, humanFWHM:
0.031 ± 0.01 Hz; ratFWHM: 0.008 ± 0.001 Hz, P = 0.001). These
results also enable the use of the GRU to encode the slow oscil-
lation based on the vessel-specific fMRI signals from human
brains.

In contrast to the multi-trial single-vessel rat fMRI studies,
only one trial (15 min) was acquired from each human subject
(159 veins from 6 subjects). To perform the supervised training,
we designed the 5 + 1 cross-subject validation process (trials
from 5 subjects were used for training, and the sixth trial was
used for test validation). Specific surrogate control time courses
were created based on PSD profiles of fMRI signals acquired from
individual veins in the human brain. Using the trained RNN,
higher CC values were obtained by predicting slow oscillatory
fMRI signals of individual veins compared to their surrogate con-
trols (P = 1.6∗10−13; Fig. 3E), demonstrating a significantly higher
mean CC value for brain dynamic signals (CC = 0.32 ± 0.01 SEM)
than for control datasets (CC = 0.28 ± 0.01 SEM) (Fig. 3F). Also, the
histogram of cross-correlation lag times of the predicted and
reference time courses showed a median of the lag time equal
to 0, demonstrating the effective prediction (Fig. 3G). Figure 3H

shows an example of a predicted slow oscillatory time course
from a human subject based on the trained RNN (CC = 0.58,
tlag = −1 s). Figure 3I shows the less accurate performance of
the matching surrogate control (CC = 0.50, tlag = 61 s). These
results demonstrate the GRU-based cross-subject prediction of
slow oscillatory fMRI signals.

To inspect the trained network, we applied PCA to the
hidden states of the human data-based GRU. Time courses
associated with the first component were highly correlated
with network inputs. The second component’s signals mostly
resembled the generated prediction. Interestingly the third
component correlated with the sliding-window score signal
(Supplementary Fig. 4A). Trajectories of the hidden states in the
space defined by the three components seem to be contained on
a two dimensional manifold. Different regions of the manifold
appear to correspond to the quality of generated predictions
(Supplementary Fig. 4B). To investigate to which oscillatory
features the trained networks were most sensitive, the trained
RNNs predicted artificial time courses with a range of peak
frequencies and spectral widths (Supplementary Fig. 5A and
B). The predicted spread of the signal spectra preference for
GRUhuman was greater than for GRUrat as shown in the two-
dimensional graphs of peak vs. width of the CC distribution
(Supplementary Fig. 5C and D). These species differences
may reflect the difference in their rs-fMRI. Interestingly, the
harmonic patterns had negative correlations for the preferred
frequency, which could be a consequence of the trained
RNNs favoring the dominating frequency ranges with the 10 s
prediction interval.

GRU-Based Prediction of the fMRI Slow Oscillation in
the Visual Cortex (V1) of HCP Data

Previously, we showed that smoothed single-vessel rs-fMRI
correlation maps mimic conventional correlation maps in the
human occipital area (He et al. 2018). As shown in the PSD
plots (Fig. 3), the vessel-specific fMRI slow oscillation dominates
the 0.01–0.1 Hz frequency range. To examine whether the GRU
trained by the single-vessel fMRI scheme can be used to predict
fMRI slow oscillations of a broader range of datasets, we applied
the trained GRU to predict the rs-fMRI signals from the V1 of
HCP data (a total of 4012 rs-fMRI sessions; V1 signal extracted
from left and right hemispheres separately, yielding 8024 time
courses resampled at 1 s TR, details in the Methods section). To
examine the predictive capacity of the GRU on each trial of the
HCP dataset, the CCs of all prediction trials were plotted in a
histogram. The CC distribution resembled a normal distribution
centered on 0.29 (median) (Fig. 4A).

To specify the rs-fMRI signal temporal dynamics based on
the prediction scores, we first selected two clusters of HCP
sessions based on the top and bottom 5% CC scores of the
overall histogram distribution (Fig 4A). The top 5% trials showed
much higher power levels than the bottom 5% trials at the
0.01–0.1 Hz frequency range (Fig. 4B). The lag time distribution
of the top 5% group is centered at zero, unlike the bottom
5% group covering the whole range of lag values (Fig. 4C). In
particular, many lag values of the poorly predicted sessions
show a delay of more than the full wavelength of GRU’s pre-
ferred frequency. Figure 4D shows three predicted slow oscil-
latory time courses from the HCP rs-fMRI sessions (top 5%
group) (CC1 = 0.64, tlag,1 = −1 s; CC2 = 0.62, tlag,2 = 1 s; CC3 = 0.62,
tlag, 3 = −1 s). The predictions of the GRU were dominated by
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Figure 3. Extraction and prediction of the spontaneous slow fluctuation of human vascular dynamics. (A) The temporal mean of a human single-vessel EPI slice enables
the localization of single veins (black dots) in the occipital cortex (red—3 vessel masks; plotted in D. (B) Time course of the slowly changing ICA component shaping
vascular dynamics and its PSD. (C) An ICA spatial map highlights the presence of slow fluctuations predominantly in sulcus veins. (D) Two single vessel time courses
selected for further processing (marked as red dots in A along with their PSDs. The ICA component is present in the signals, along with individual variations. (E)
Prediction scores of all the signals extracted from 6 human subjects (blue dots). Real data are matched with controls for every subject (red dots). (F) Significantly higher

mean prediction score of real data (CC = 0.32 ± 0.01 SEM) as compared to controls (CC = 0.28 ± 0.01 SEM; paired-sample t-test, P = 1.6∗10–13). (G) Histogram of lags at
which the correlation between target outputs and network predictions was the highest. Distribution centered around 0 s (median = 0 s) indicates that the prediction was
not simply the filtered input. (H) Prediction plot of the signal that obtained the highest score among all training human vessels (CC = 0.58, tlag = −1 s; black—raw data,
green—target, blue—network prediction). (I) Prediction plot of the surrogate control signal created based on the real vascular signal shown in H (CC = 0.50, tlag = 61 s;

black—raw data, green—target prediction, red—network output).

the low-frequency power in the rs-fMRI signals from individual
trials.

Next, to verify the specific classification of the low-frequency
rs-fMRI signal fluctuation by the RNN-based prediction, we com-
pared the GRU predictions with those of ARMAX modeling.
The best ARMAX models were found using an exhaustive grid
search (see Methods). The RNN prediction scheme presented

better performance than ARMAX modeling on our in-house
datasets (Human: CCGRU = 0.32 ± 0.01, CCARMAX = 0.30 ± 0.01; Rat:
CCGRU = 0.3 ± 0.01, CCARMAX = 0.26 ± 0.01; mean ± SEM) (Fig. 5A),
as well as on the HCP datasets (Fig. 5B). In addition, different
trials obtained the best and worst scores between the methods
(Fig. 5C), as the sensitivity to low frequency oscillations was
much less pronounced by the ARMAX modeling (Fig. 5D). These
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Figure 4. GRU categorization of V1 temporal patterns. (A) Histogram of prediction scores obtained by predicting slow fluctuations of 8024 single-hemisphere V1 ROI
signals extracted from HCP data. The used GRU was trained on occipital cortex single-vessel signals of 6 in-house subjects. Green and violet dashed lines mark the
bottom and top 5% of correlation coefficients. (B) Mean PSDs of time courses whose predictions obtained the bottom 5% (green) and top 5% (violet) scores. Shaded
areas show SD. (C) Histogram of lags at which the correlation between targets and network outputs was the highest. The lags of top 5% of the predictions (violet)

are concentrated around 0. The lags of bottom 5% (green) are spread across the highest and lowest lag values. Bottom: Enlarged region marked on the top plot. (D)
Predictions of signals with three of the best correlations (CC1 = 0.64, tlag,1 = −1 s; CC2 = 0.62, tlag, 2 = 1 s; CC3 = 0.62, tlag, 3 = −1 s; black—raw data, green—target, blue—
network prediction).

results confirmed the reliability of the RNN-based rs-fMRI signal
predictions.

RNN-Based Brain State Classification of HCP Data

Here, we investigated the DMN internal correlation, as a brain
state marker of the HCP datasets based on the RNN prediction
scores. First, we analyzed whole-brain correlation patterns of
the HCP dataset, initially focusing on datasets with the top and
bottom 5% GRU predictions. Figure 6 shows flattened cortical
difference maps of seed-based correlations calculated for the
two groups of HCP datasets. First, rs-fMRI time courses from
the V1 ROI and the whole cortex (global mean) were used as
seeds to calculate voxel-wise correlation maps. The V1 ROI
and global mean-based differential maps of the two groups
show similar patterns, demonstrating much more synchronized
activity across the cortex in the group with top 5% predictions
(Fig. 6A). Based on the global characteristic of the differences, we
computed correlation matrices based on 360 ROIs predefined
in the brain atlas (Glasser et al. 2016) as well as 19 subcortical
ROIs defined using the Connectome Workbench (Marcus et al.

2011). The hippocampus and the brainstem were two subcorti-
cal regions which have shown the strongest increase in global
correlation (Supplementary Fig. 6B). Importantly, we found that
the DMN nodes formed a major cluster of regions that did not
show the increase across the groups (Supplementary Fig. 6A).
We followed this result and created the cortical correlation
difference map using DMN ROI signals as seeds. Interestingly,
although the DMN-ROI also shows higher correlation with the
whole brain in the top 5% group, the internal correlations of
the DMN-specific nodes do not show significant differences
(Fig. 6A, the difference between correlations inside and outside
of the DMN is significant, P = 1.52∗10−127). Representative seed
time courses of four subjects from each group are shown in
Supplementary Figure 7.

To further investigate the relationship between the internal
DMN correlations and the RNN prediction scores, we used ICA
component time courses of the V1 area and of the DMN network
to analyze the differential maps (Fig. 6B-E). Figure 6C shows that
the visual ICA-based map resembled the V1 ROI seed-based
differential map, demonstrating a higher correlation feature in
the group with the top 5% CC scores. In contrast, as the DMN
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Figure 5. Comparison of different methods’ prediction results. (A) Mean prediction scores of all in-house human and rat vessel signals obtained using the best

GRU and ARMAX models. Significantly higher scores (paired-sample t-test, phuman = 8.9∗10–9, prat = 1.9∗10–20) obtained by the RNN than ARMAX in both human
(CCGRU = 0.32 ± 0.01; CCARMAX = 0.30 ± 0.01; mean ± SEM) and rat cases (CCGRU = 0.30 ± 0.01; CCARMAX = 0.26 ± 0.004; mean ± SEM). (B) GRU and ARMAX histograms of
prediction scores of 8024 single-hemisphere V1 ROI signals extracted from HCP data. ARMAX predictions are much worse than those of the GRU. (C) GRU scores of

sessions with the 5% best and worst predictions obtained by the both methods. The groups show little overlap. (D) Mean PSDs of time courses whose predictions
obtained the bottom 5% (green) and top 5% (violet) scores (top—GRU; bottom—ARMAX). Shaded areas show SD. ARMAX shows less sensitivity to low-frequency power
compared to the RNN.

ICA time courses show a very small global signal content (mean
global signal and DMN ICA signal correlation = −0.09+/−0.14
across all trials), significantly reduced internal DMN correlations
were observed in the differential map when comparing the
top vs. bottom 5% trials (Fig. 6D and E). To provide a holistic
perspective of the RNN prediction scores and brain state rela-
tionship, we plotted the internal DMN connectivity as a function
of the RNN prediction scores for all individual trials of the
HCP datasets. The internal DMN correlations were decreasing
as the prediction scores increased (Fig. 6F and G). This linear
relationship of RNN prediction scores and internal DMN activity
demonstrates a unique classification scheme to differentiate
brain-state dependent rs-fMRI signal fluctuations in the HCP
dataset.

Despite the strong linkage to the low frequency power of the
rs-fMRI signal, the RNN-based prediction is not simply based on
the variance of the rs-fMRI signal fluctuation. By applying a sim-
ilar analysis scheme, we also classified the HCP datasets based
on the variance of the global rs-fMRI signal. Interestingly, the
identified groups of sessions with top vs. bottom 5% global signal
variance do not show highly distinct GRU prediction CC scores
and vice versa (Fig. 7A-C). In particular, the top and bottom 5%
variance groups had much broader CCGRU values and largely
overlapped each other in the histogram plot (Fig. 7A). Trials with
the bottom 5% of GRU predicted CC scores tend to have lower
global signal variance, but they overlap with variances of trials
with the top 5% scores which cover the whole range of variance
values (Fig. 7C).

To further understand the issues of the global variance rela-
tionship with the internal DMN correlation, we also plotted
the DMN correlation values as a function of variance for all
trials of the HCP datasets, showing a much more condensed
distribution at the low variance ends in the linear scale plot
(Fig. 7D and E). The negative correlation feature can be better
depicted in the logarithmic scale plot, but, interestingly, this

relationship breaks at low variance values, as for the lowest
variance values the DMN correlations decrease (Fig. 7E). Thus,
the variance-based differential maps of the top vs. bottom 5%
trials also show much less DMN node-specific patterns than the
RNN-based prediction (Fig. 7F). In particular, the RNN prediction-
based differential maps highlighted the DMN nodes, e.g., the
inferior parietal lobe and posterior cingulate and retrosplenial
cortex. In contrast, the variance-based map is much less specific
to the internal DMN nodes, but spread more to the somatomotor
cortex as demonstrated in the flattened map (Fig. 7F). These
results indicate that the RNNs trained with vessel-specific rs-
fMRI signals encode specific brain state differences, which are
not simply explainable by the variance of the rs-fMRI signal
fluctuation.

Discussion
We used the time courses of single-vessel rs-fMRI signals as
inputs to train RNN networks to predict the rs-fMRI signal
10 s ahead in both rodents and humans. We also showed that
the single-vessel fMRI-based training leads to an RNN encod-
ing specific to low-frequency rs-fMRI signal fluctuations. The
trained network was used to analyze HCP datasets with diverse
brain states. In particular, it allowed identifying trials, showing
unique brain-wide synchrony and to decouple the global signal
fluctuations from internal DMN correlations.

We selected the input fMRI time series from individual
vessel voxels based on a previously established single-vessel
fMRI mapping method (Yu et al. 2016; He et al. 2018; Chen
et al. 2019). The BOLD fMRI signal has a direct vascular origin
based on the oxy/deoxy-hemoglobin ratio changes (Bandettini
et al. 1992; Kwong et al. 1992; Ogawa et al. 1992). The high-
resolution single-vessel mapping method allows us to directly
extract the venule-dominated BOLD signals with a much higher
contrast-to-noise ratio (CNR) than the conventional EPI-fMRI
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Figure 6. Difference maps for ICA seed-based correlation between well and poorly predicted fMRI sessions. (A) Flattened cortical maps showing the difference between
the mean seed-based correlation maps of the 5% “top” and “bottom” groups. The seed signals were: the V1 ROI (left; V1 marked by blue borders), mean global cortical
signal (center) and the DMN ROI (right; DMN marked by white borders). (B) V1 ICA component spatial map. V1 ROIs are marked by blue borders. (C) Flattened cortical
map showing the difference between the mean seed-based correlation maps of the 5% “top” and “bottom” groups. The time course of the ICA component shown in B
served as the seed. V1 ROIs are marked by blue borders. The result resembles the pattern in A obtained by using the V1 ROI as the seed. Nodes in which the difference
was insignificant are masked. The same map is shown on the right without the threshold. (D) DMN ICA component spatial map. DMN ROIs are marked by white
borders. (E) Flattened cortical map showing the difference between the mean seed-based correlation maps of the 5% “top” and “bottom” groups. The time course of
the ICA component shown in D served as the seed. DMN ROIs are marked by white borders. Nodes in which the differences were insignificant are masked (threshold
at P = 0.05). The intrinsic DMN signals show significantly reduced connectivity with DMN areas. The same map is shown on the right without the threshold. (F) GRU
scores of all trials plotted against mean correlations of DMN voxels. Shaded areas cover the top and bottom 2% (dark), 5% and 10% (light) of all scores. (G) GRU scores
of all 4012 trials averaged in 2% bins and plotted against mean correlations of DMN voxels.

integrating the BOLD signal from both tissue and vessels in
large voxels (Menon et al. 1993; Zhang et al. 2012; Yu et al. 2016;
He et al. 2018). Although different vessel voxels may present
cardiorespiratory noises, e.g., the respiratory volume change
(Birn et al. 2006; Birn et al. 2008) or the heartbeat variability
(Shmueli et al. 2007; Napadow et al. 2008), a recent simultaneous
fMRI and fiber-optic calcium recording study showed a strong
correlation of the major ICA vascular component of the rs-fMRI

signal fluctuation (Fig. 1) with the calcium signal oscillation
(He et al. 2018). Also, these global hemodynamic signal changes
are directly correlated with the calcium signal fluctuation
through the whole cortex based on optical imaging (Du et al.
2014; Ma et al. 2016; Schwalm et al. 2017; Chen et al. 2020). Thus,
the global fMRI signal fluctuation detected from individual
vessels represents changing brain states, and not the non-
physiological confounding artifacts uniformly distributed

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/31/2/826/5906906 by U

niversity of C
alifornia, San D

iego Libraries user on 19 April 2021



838 Cerebral Cortex, 2021, Vol. 31, No. 2

Figure 7. Differences of RNN scores and global signal variance as indicators of intrinsic DMN activity. (A) Prediction score histograms of the 5% best (light gray) and worst
(dark gray) predicted sessions contrasted with prediction scores of signals with top 5% highest (blue) and lowest (red) variance. Variance levels are not conclusive of
GRU’s performance. Top right: same data with top and bottom groups merged. (B) Mean PSDs of V1 signals from sessions with the top 5% highest (blue) and lowest (red)
global signal variance. Shaded areas show standard deviations. The low power difference is more profound than in the RNN score based case (Fig. 4B). (C) Histogram

of variance-based (red and blue) and GRU-based (gray) group variance values. Variances of signals having high or low prediction scores are distributed across the
whole range of variance values. (D) Global signal variance and its logarithm of all trials plotted against mean correlations of DMN voxels. Shaded areas cover the top
and bottom 2% (dark), 5% and 10% (light) of all scores. (E) Global signal variance and its logarithm of all 4012 trials averaged in 2% bins and plotted against mean
correlations of DMN voxels. At low variance values the DMN correlations decrease breaking the trend. (F) Flattened cortical maps showing the difference between the
mean DMN-ICA seed-based correlation maps of the 5% “top” and “bottom” groups based on GRU scores and global signal variance values. DMN ROIs are marked by
white borders. Nodes in which the differences were insignificant are masked. The intrinsic DMN signals show significantly reduced connectivity with DMN areas.

through the brain, e.g., the respiration-induced B0 offset (Van
de Moortele et al. 2002; Pais-Roldán et al. 2018) or other sources
(Murphy et al. 2013; Caballero-Gaudes and Reynolds 2017). In
comparison to the voxel-wise or ROI-based time courses from
low-resolution EPI images or signals extracted from the biggest
major vessels (Tong et al. 2018; Colenbier et al. 2020), the single-
vessel rs-fMRI signal provides highly selective datasets for the
supervised RNN training to encode brain-state dependent global
fMRI signal fluctuations.

The GRU prediction has been analyzed in a great detail from
rodent to human rs-fMRI data. The predictions from the trained
GRUs vary across vessels as well as across trials. To validate this
measurement, we used surrogate controls designed using the

IAAFT method (Schreiber and Schmitz 1996). For every vessel,
we generated an artificial signal showing a similar frequency
power profile (Supplementary Fig. 2) to its corresponding single-
vessel rs-fMRI time course, but with randomized phases of
complex Fourier components. It has been shown that high-
frequency EEG power profiles are highly correlated to the low-
frequency EEG signal fluctuation, i.e., phase-amplitude coupling
(PAC), in both cortical and subcortical regions for a variety of
brain states (Bragin et al. 1995; Steriade et al. 2001; Vanhat-
alo et al. 2004; Canolty et al. 2006; Fell and Axmacher 2011;
Pais-Roldan et al. 2019). This feature has also been used for the
correlation analysis of the concurrent EEG and rs-fMRI signal
recordings from animals and humans (Goldman et al. 2002;
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Goense and Logothetis 2008; He et al. 2008; Shmuel and Leopold
2008; Scholvinck et al. 2010; Magri et al. 2012; Murta et al. 2017).
Our analysis confirms that the phases of the slow oscillatory rs-
fMRI signal carry critical dynamic brain state features (Muller
et al. 2018). By randomizing the phases, the surrogate control
excludes dynamic brain features but preserves a high similarity
in terms of the signal amplitude/power spectral distribution and
autocorrelation structure for the verification of the RNN encod-
ing. Also, the spectral characteristics of the GRUs demonstrate
different preference maps in terms of the center frequency and
the bandwidth depending on the training data from either rat or
human data (Supplementary Fig. 5). These training data showed
differences in frequency power profiles given the inter-species
diversity (de Zwart et al. 2005) and the presence of anesthetics
(Du et al. 2014; Ma et al. 2016; Akeju and Brown 2017; Mateo et al.
2017; He et al. 2018; Wu et al. 2019).

The global rs-fMRI signal is a critical confound of correlation
analysis with many contributing factors from both physiological
and non-physiological sources. In particular, whether the global
mean fMRI signal should be removed before the analysis, which
can create spurious correlation features, has been debated (Fox
et al. 2009; Murphy et al. 2009; Hahamy et al. 2014; Murphy and Fox
2017; Power et al. 2017; Billings and Keilholz 2018; Xu et al. 2018;
Colenbier et al. 2019). Also, the global rs-fMRI signal can over-
shadow specific intrinsic RSN features, e.g., the anti-correlation
of the DMN and task-positive RSNs (Fox et al. 2005; Hampson
et al. 2010; Chen et al. 2017). One intriguing observation based
on the RNN predictions is that the internal DMN connectivity
is negatively correlated to the prediction scores across trials
(Fig. 6D and E), which is opposite to the positive global corre-
lation observed through the whole brain (Fig. 6A-C). Both the
global signal strength (Wong et al. 2013; Wong et al. 2016) and
the intrinsic DMN correlations (De Havas et al. 2012; Ward et al.
2013) have been tied to arousal mediated brain states and the
RNN scores reflect a gradient on this arousal axis (Fig. 6F-G). It is
noteworthy that while the global signal variance is also tied to
the brain state, its relationship with the internal DMN connec-
tivity is not linear (Fig. 7D) and it stops being a good indicator
for trials with low variance values. Consequently, the variance-
based differential maps show less DMN specificity, but more
widespread differences in the somatomotor cortex (Fig. 7D and
E). Thus, the RNN-based approach reveals brain-state specific
rs-fMRI signal fluctuations in the HCP datasets.

The contrast between internal DMN correlations and whole
brain correlation patterns supports other sources of evidence
that the global signals are dissociated from intrinsic brain net-
work correlations (Turchi et al. 2018). Turchi et al. showed that
the global rs-fMRI signal fluctuation can be directly modulated
by inhibiting the activity of the basal forebrain nuclei, indicat-
ing that arousal leads to global rs-fMRI signals (Turchi et al.
2018). Global rs-fMRI signal fluctuations are also correlated with
whether the eyes are open or closed (Yang et al. 2007; McAvoy
et al. 2008; Bianciardi et al. 2009), pupil dilation (Yellin et al. 2015;
Schneider et al. 2016; Pais-Roldán et al. 2020), subject vigilance
(Wong et al. 2013; Wong et al. 2016) and dynamic brain state
changes that occur during different sleep stages (Fukunaga et al.
2006; Schabus et al. 2007; Horovitz et al. 2008; Spoormaker et al.
2011; Tagliazucchi et al. 2012; Hjelm et al. 2018). Recent fMRI
studies with concurrent astrocytic calcium recordings or optoge-
netics have shown that the rs-fMRI fluctuation can be regulated
by the arousal ascending pathway through the central thalamic
nuclei and midbrain reticular formation (Wang et al. 2018; Wang
et al. 2019), implicating the subcortical regulation of the rs-fMRI

signal fluctuation as previously reported from both non-human
primate and human rs-fMRI studies (Chang et al. 2016; Liu et al.
2018; Turchi et al. 2018). Importantly, we also observed that the
single-vessel rs-fMRI signal is specifically coupled to the global
neuronal signal fluctuation (He et al. 2018), which supports our
single-vessel RNN training scheme to encode the brain-state
specific global rs-fMRI signal fluctuations.

Thus, the RNN-based approach provides a scheme to poten-
tially differentiate brain states based on the global rs-fMRI fluc-
tuation. Given the connection of global signal fluctuations with
both neural activity (Scholvinck et al. 2010) and switching state
dynamics (Gutierrez-Barragan et al. 2019) this method provides
a rs-fMRI analysis approach complementary to previous work
on the switching states. Combining the RNN-based fMRI signal
prediction with EEG in both animal and human brains will
provide direct evidence for the state-dependent features of this
predictive approach in future exploration. Another promising
direction for future work involves applying the proposed method
to study the predictability of slow fluctuations in brain regions
other than sensory cortices and to investigate which factors,
besides arousal-related brain state changes, drive the predic-
tions. Extending the platform to process whole-brain signals
would provide a more synoptic view of regularities present in
brain dynamics in different states. Finally, the method could be
integrated into a real-time fMRI platform to provide feedback
stimuli in a closed-loop control scheme.
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Supplementary material can be found at Cerebral Cortex online.
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