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Abstract

Visual perception of depth change can be mediated monocularly by looming the apparent
size increase of an approaching object. In Manduca sexta we recorded intracellularly from cells
that detect both approach and retreat of an object. The cells compute looming in two
fundamentally different ways: class | ncurons measure the change of perimeter/edge length of
the object; class 2 neurons respond to expansion/contraction flowficlds. We created a network
model incorporating anatomical and physiological properties of class | neurons to understand
the underlying computational principles for looming detection. - 2001 Elsevicr Science B.V.
All rights reserved.
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1. Introduction

Depth perception is a key fcature in vision. It is used to detect and avoid objects,
and to maintain distance from targets. Animals employ different strategies like
stereopsis, vergence, occlusion, motion parallax and looming; [1-6] to compute
depth. Most insects, however, have to rely on monocular mechanisms like motion
parallax [7-10] and looming [ 11-13], because their eyes are fixed m the head, have
fixed lenses, and are very close together.
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Looming, the detection of an apparent size increase in an approaching object, is
a simple and reliable strategy to measure the change of distance between an observer
and an object. On its own it cannot define a 3-D map of a scene, but it can reliably
detect changes in depth. In contrast to occlusion and motion parallax, looming doces
not involve background features or self-motion of the observer, but only requires that
the object is different from the background to be detectable. Looming sensitive
neurons are found throughout the amimal kingdom including sphingids {13], grass-
hoppers [14], pigeons [15], and macaque monkeys [16].

2. Methods

We used standard intracellular recording techniques with subsequent dye filling
(Neurobiotin) and processing [137], visual stimuli were generated by a software
package (VisionWorks) and presented on a fast computer monitor (refresh rate of
160 Hz). The models were simulated with custom software using MATLAB.

3. Results
3.1. Physiology and anatomy in Sphingids

Visual stimuli representing looming or receding objects can be characterized by
four parameters: change in luminance; increase or decrease of area; increase or
decrease of object perimeter length; and motion of the object’s perimeter or edge.
Intracellular recordings reveal visual interneurons in the optic lobes of M. sexta that
are selectively activated by some of these parameters.

Wicklein and Strausfeld (2000) identified two classes of wide-field neurons that
respond selectively to looming and receding stimuli. The two types of looming
sensitive neurons in M. sexta usc different mechanisms to detect the approach or
retreat of an object. They proposed that change of perimeter length may be detected
by class 1 neurons and expansion or contraction visual flowfields by class 2 neurons.
In both cell classes changes in luminance have no role in the detection of looming or
anti-looming and both classes are further subdivided into neurons that are excited by
image expansion (looming cells) or by image contraction (anti-looming cells).

3.2. Modeling

We created a conceptual model for a “change in edge length” detector and
implemented this model of class | neurons in MATLAB. To assess the validity of the
model we tested both the model and the neurons with the same stimuli; the model
should match the output strength of the neuron over a wide range of visual stimuli
and be consistent with the known anatomy. The stimuli were presented to the input
layer of the model, which projects to edge detectors whose output was summed
spatially over the whole or parts of the input ficld, followed by a time derivative. We
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Fig. 1. Reconstructions of Golgi impregnated small-ficld neurons in the optic lobes of M. sexta that are
presumed to be in the looming network. lo: lobula, lop: lobula plate, me: medulia, TmI{w): wide trans-
medulla cells, Tmi(s): small transmedulla cells, T4, TS: bushy T-cells. The bar indicates 100 pm. Modified
after Wickiein and Strausfeld [13).

used available anatomical data, Golgi studies on small ficld cells and reconstructions
of type 1 cells [13], to further constrain the model, so that it includes most of the
anatomical properties of the looming-sensitive cell and the network underlying the
class | neurons. Fig. 1 shows reconstructed small ficld cells in the visual system of M.
sexta that are possible inputs to class 1 looming sensitive neurons. In Fig. 2, optical
neuropiles are illustrated with their main layers and small ficld cells with their input
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Fig. 2. Schematic diagram of the arrangement of small field elements in relation to the input areas of a type
I neuron (gray areas). The small field cells proposed as inputs to type | cells are: Tm1, T4, T5 and Y cells.
Tml cells have arborizations in the innermost medulla layer and provide input to TS neurons, which
project to the lobula plate. Y cells have arborizations in the innermost medulla layer and provide inputs to
both the lobula and the lobula plate. T4 cells connect the innermost medulla layer with the lobula plate.

and output regions which we relate to input areas of class 1 looming sensitive cells
(gray areas) as described in Wicklein and Strausfeld (2000). Class 1 looming sensitive
neurons have inputs in the innermost medulla layer, the outermost lobula layer and
throughout the lobula plate. There are several small field ncuron types that could
serve as inputs to these layers. Considering the architecture and known direction of
information flow through the visual system of insects [ 17] we can predict in which
order the visual neuropiles receive information. Information is passed from the retina
to the lamina and the outermost medulla layers through short and long visual fibers.

Transmedulla cells (Tm-cells) then convey the information from the outer medulla
to the inner medulla, from there the information flows into the lobula and the lobula
plate via T4, Tm!1 or Y cells. Considering the architecture of the type 1 cells it can be
deduced that the visual information arrives first in the arborizations that reside in the
outermost medulla layer and that there should be a considerable delay before the
same information arrives in the arborizations in the lobula and lobula plate. The delay
in information flow could be due to additional cable length required to reach the
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Fig. 3. The mode! consists of an input layer (retina), with retinotopic projections to a layer of edge
detectors. The output of each edge detector (ED) is relayed by interneurons retinotopically to the inputs of
the type 1 neurons, where they are spatially summed. Each edge detector connects to two interneurons that
relay to the type 1 cell. We propose that the connection to the medulla is direct; the connection to the lobula
and lobula plate is delayed by longer cable or an additional synapse. For a looming detector the direct
connection to the type | neuron would be excitatory, whereas the delayed connection would be inhibitory.
An expanding object excites edge detectors and that excitation is transmitted through both the excitatory
and inhibitory interneurons to the type 1 cell. Due to the different delays in the excitatory and inhibitory
pathway, the information in the inhibitory pathway at time ¢ = 1 coincides with the excitatory information
of time t = 1 + n at the inputs of the type 1 neuron. This results in a sustained increase in excitation in the
type | neuron for an expanding object. A contracting object on the other hand will lead to a decrease of
number of edge detectors and therefore the inhibitory delayed input to the type 1 neuron will always be
greater than the direct excitatory input, thus leading to a decrease in excitation in the type ! cell. The open
symbol indicates an excitatory synapse; the full circle indicates an inhibitory synapse.

lobula and lobula plate (Tm1-cells), or an additional synapse that is required (T4, TS
and Y cells) or both. Fig. 3 shows the model for an edge length detector network
including these considerations. We assumed an input area with an edge detector layer
that is connected to two types of interneurons per column, which in turn project onto
the type 1 looming neuron. In the model excitatory connections were made to the
arborizations residing in the medulila, and inhibitory connections to the lobula and
lobula plate arborizations to looming cells. For an anti-looming cell connections to
the medulla should be inhibitory and connections to the lobula and lobula plate
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Fig. 4 . Results from a model simulation ol a “looming neuron™ plotted for different stimuli. The responses
show an initial response when the stimulus is presented and a steady state response. The initial responses
are excitating for all the stimuli, which decline to the sustained levels. The model shows no steady state
response to moving edges {squares) or bars (circles). An expanding object (triangles) leads to a positive
model response, a contracting object (diamonds) to a negative model response. The arrow indicates the start
of the stimulation.

excitatory. The time delay introduced by the architecture of the class 1 neurons itself
would provide the time delay necessary for the comparison of edge length over time
and therefore the detection of a growing edge (expanding object) versus shrinking edge
(receding object).

The numerical output of the model is compared to the instantaneous spike fre-
quency of the neuron under the same stimulus condition corrected by the resting spike
frequency. Hence, a zero output represents the resting activity level of the neuron;
a positive output an increased firing activity, a negative output a reduced firing
activity relative to the resting activity level.

Comparing the output of the model simulation with the recordings from class 1
neurons (Fig. 4), the model captures many of the essential properties of the physiolo-
gical data. The model showed strong transient initial responses and sustained steady-
state responses that were positive to looming and negative to anti-looming stimuli. No
responses were elicited by moving single bars, edges or gratings (Fig. 4). However, the
model showed a highly pronounced initial response that is not present or at least is
much reduced in the neurons. This could be due to either temporal or/and spatial
averaging in the network preceding the neuron or the neuron itself. For objects of
different size the initial responses scaled with edge length but steady-state responses
did not change. The only parameter that influenced the level of steady-state responses
was the rate of expansion/contraction: the responses grow with expansion/
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contraction speed. No change is observed for edges, bars or gratings moving with
different velocities.

4. Discussion

The model predicts that class 1 cells should be insensitive to the size of expand-
ing/contracting objects, the spatial frequency and velocity of moving gratings, but be
sensitive to the velocity of expansion or contraction. Invariance of response with
respect to object size would allow the cells to detect change of edge length equally well
for different object sizes and thus allow the animal to hover in front of and forage on
flowers of different corolla sizes. The model predicts that the neuronal response would
code for the rate of expansion/contraction, which in turn would transiate into the
approach or retreat speed of the flower. In a behavioral context, a flower that is moved
rapidly toward or away from the moth by a wind gust would elicit a larger response
then a slowly moving flower. To avoid collisions with fast approaching flowers the
moth would have to change its motor output faster and put more force into the
movement. The increased neuronal response might decrease the delay of the motor
response and increase its strength. These predictions regarding different object sizes,
stimulus velocities and rates of expansion/contraction are being tested in experiments
in both cell types by measuring tuning curves for these parameters.

Due to the fixed delays between the medulla input and the lobula/lobula plate
inputs the model should be sensitive to the spatio/temporal properties of the stimulus
similar to motion detector models like the Reichardt detector (see Ref. [18]). Further
experiments will further constrain important model parameters such as the time delay.
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