
ELSEVIER Ncurocomputing 38-40 (2001) 1595-1602 
w ~ ~ ~ w . e I s e v i c s . c o ~ n / l o c a t c l ~ ~ e ~ ~ c o ~ ~ ~  

Perception of change in depth in the hummingbird 
hawkmoth Murzdctca sextn (Sphingidne, Lepidopter-a) 

M. Wickleina9*, T.J. ~ejnowski"."  
"Co/~r/)rr/n/io~rrtl :Vc,rrrohiolog~~ l,rrhor~~/o~:v. Hottvrd H~cglres Mrclictrl /tr.s/i/~r/c,. S~rlli I I I .S /~ /~ I /L , .  

10010 N Tot.rq. Pirtc..~ Rd. Lri Jolln CA '12037. US.4 
t '~c~l)(~t~ttr tct t t  o/'Biolo,y~,, Ur t i r~ r . .~ i t j~  of Cu/i'~%r~ri(i, &it7 Diego, Lo . / o l / ~ ~ ,  C ' . 4  '120M, ULS.d 

Abstract 

Visual perception of depth change can be mediated monocularly by looming the apparent 
size increase of an  approaching object. In hlcrrid~rcrr se.~ta we recorded intraccllularly from cells 
that detect both approach and rctrcat of an object. The cells compute looming in two 
fundamentally difl'ercnt ways: class I neurons measur-c the change of perir~~eter/edgc length of 
the object; class 2 neurons respond to expansion/contraction llowfields. We created a network 
model incorpor-ating anatomical and physiological propcrtics of class 1 neurons to understand 
the underlying computational principles for looming detection. :(:. 1001 Elscvicr Science B.V. 
All rights reserved. 
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1. Introduction 

Depth perception is a key feature in vision. I t  is used to detect and  avoid objccts, 
and to  maintain distance SI-0111 targets. Animals employ dilfcrent strategies likc 
stercopsis, vergence, occlusion, motion parallax and looming; [I-61 to c o m p ~ ~ t e  
depth. Most insects, however, have to rely on monocular mechanisms like motion 
parallax [7-10) and looming [ I  1-13], because their eyes ase fixed in the head, have 
fixed lenses, rind are very close together. 
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Looming, the detection of an apparcnt size increasc in a n  approaching object, is 
a simple and reliable strategy to measure t11c changc of distance bctwccn a n  observcr 
and a n  object. On its own i t  cannot dcfinc a 3-D map of a scenc, but i t  can reliably 
detect changes in depth. I n  contrast to occlusion and motion parallax, looming docs 
not involve background features 01- self-motion of tlic obscrver, but only rcquircs that 
the object is diflerent from the background to bc detectable. Looming sensitive 
ncurons are found tliroughout the animal kingdom including spliingids 11 31. grass- 
hoppers [14], pigcons [15], and lnacaquc monkeys 1161. 

2. Methods 

We used standard intracellular recording techniques with s~~hscquen t  dye filling 
(Neurobiotin) and processing [13], visual stimuli were generated by a software 
package (Visionworks) and prcsentcd on n fast computcr monitor (refresh rate of 
160 Hz). The models were simulated with custom software using MATLAB. 

3. Results 

Visual stimuli representing looming or reccding objects can be cliaracterized by 
four parameters: change in luminance; incrcase or decrease of area; increase or 
decrease of object perimeter length; and motion of tlie object's perimeter or edge. 
Intsacellular recordings reveal visual interncurons in the optic lobes of M. smia tliat 
are selectively activated by some of these parameters. 

Wicklein and Strausfeld (2000) identified two classes of wide-field neurons that 
respond selectively to looming and receding stimuli. The two types of looming 
sensitive neurons in M. sexiu use dil'resent mechanisms to detect the approach or  
retreat of an  object. They proposed that change of perimeter length may be detected 
by class 1 neurons and expansion or contraction visual flowfields by class 2 neurons. 
In  both cell classes changes in luminance have no role in the detection of looming or 
anti-looming and both classes are furthcr subdivided into neurons tliat are excited by 
imagc expansion (looming cells) or by image contraction (anti-looming cells). 

We created a conceptual model for a "changc In cdge length" dctector and 
~mplcmented tlus model of class 1 ncurons In MATLAB. T o  assess the validity of the 
model we tested both the niodel and the neurons w ~ t h  the same stimuli; tlie model 
should match the output strength of the ncuron over a w ~ d e  range of visual stlmulr 
and be consistent with the known anatomy. The stmu11 were presented to the ~ n p u t  
laycr of the model, which projects to edge dctcctors whose output was sumtncd 
spatially over the whole or parts of tlic ~ n p u t  ficld, followed by a time dcrivativc. We 
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Fig. I .  Reco~lstructio~is of Golgi impl-cgnatcd small-ticld ncurons in the optic lobcs of 1!4 s e . ~ / o  that a!-c 
presumed to hc in rhc looming network. lo: lobula. lop: lohula plate. me: ~ncdulla. Tml(w): wide trans- 
~ncdulla cclls. Tml(s):  small transmedulla cclls. T.4. TS: bushy T-cells. Thc 1x11- intlicatcs 100 p m .  Modifcd 
after Wicklcin and Strausfckl 1131. 

used available anatomical data, Golgi studies on small ficld cclls and reconstructions 
of type 1 cells [13], to f i~rthcr constrain the modcl, so that it includcs nlost of the 
anatomical properties of the looming-sensitive cell and  thc network underlying the 
class 1 neurons. Fig. 1 shows rcconstructed small field cclls in the visual system of M. 
sevicr that are possible inputs to class 1 looming sensitive ncurons. In  Fig. 2, optical 
neuropilcs are illustrated with their main layers and small field cclls with their input 
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Fig. 2. Schematic diagr-am of thc arrangement of small field elcnients in relation to the input arcas o f a  type 
1 neuron (gray areas). The small field cells proposed as inputs to type 1 cclls arc: Tni I ,  T4. T5 and Y cclls. 
T m l  cells have arborizations in the inncrmost riledulla layer and provide inpiit to T5 ncurons, which 
pr-ojcct to the lobula plate. Y cells have arborizations in the innermost rnedulla laycr and providc inputs to 
both the lobula and the lobula plate. T 4  cells connect the innermost medulla laycr with the lobula plate. 

and output regions which we relate to input areas of class 1 looming sensitive cells 
(gray areas) as described in Wicklein and Strausf'eld (2000). Class 1 looming sensitive 
neurons have inputs in the innermost medulla layer, the outermost lobula layer and 
throughout the lobula plate. There are several small field ncuson types that could 
serve as inputs to these layers. Considering the architecture and known direction of 
information flow through the visual system of insects [17] we can predict in which 
order the visual neuropiles receive information. Information IS passed from the retina 
to the lamina and the outermost lnedulla layers through short and long visual fibers. 

Transmedulla cclls (Tm-cells) then convey the information fsom the outer medulla 
to the inner medulla, from there the information flows into the lobula and the lobula 
plate via T4, Tm1 or  Y cells. Considering the architecture of the type 1 cells it can be 
deduced that the visual information arrives first in the arborizations that reside in the 
outermost medulla layer and that there should be a considerable delay before the 
same information arrives in the arborizations in the lobula and lobula plate. The delay 
in information flow could be due to additional cable length required to reach the 
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Fig. 3. The model consists of an input layer (retina), with retinotopic projections to a layer of edge 
detectors. Thc output of each edge detector (ED) is I-elayed by interneurons retinotopically to the inputs of  
the type 1 neurons, where they are spatially summed. Each edge detector connects to two interneurons that 
relay to the type 1 cell. We propose that the connection to the medulla is direct; the connection to the lobula 
and lobula plate is delayed by longer cable or an additional synapse. For a loorning detector the direct 
connection to the type 1 neuron would be excitatory. whereas the delayed connection would be inhibitory. 
An expanding object excites edge detectors and that excitation is transmitted througli both the excitatory 
and inhibitory intcrneul-ons to the type 1 cell. Due to the dill'erent delays in the excitatory and inhibitory 
patliway, the information in the inllibitory pathway at time I = 1 coincides with the excitatory information 
of time t = 1 + r l  at the inputs of the type 1 neuron. This results in a sustained increase in excitation in the 
type 1 neuron f01- an  expanding object. A contracting object on the other hand will lead to a decrease of 
numbel- of edge detectol-s and therefore the inhibitory delayed input to the type 1 neuron will always be 
Sreater than the ciil-cct excitatory input, thus leading to a decrease in excitation in the type I cell. The open 
symbol indicates a n  excitatory synapse; the full circle indicates an inhibitory synapse. 

lobula and lobula plate (Tml-cells), or an additional synapse that is required (T4, T5 
and Y cells) or both. Fig. 3 shows the model for an  edge length detector network 
including these considerations. We assumed an input area with an edge detector layer 
that is connected to two types of interneurons per column, which in turn project onto 
the type 1 looming neuron. In  the model excitatory connections were made to the 
arborizations residing in the medulla, and inhibitory connections to the lobula and 
lobula plate arborizations to looming cells. For an anti-looming cell connections to 
the lnedulla should be inhibitory and connections to the lobula and lobula plate 
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Fig. 4 . Results from a model simulation of a "looming neuron" plotted for different stimuli. The responses 
show an  initial response when the stimulus is presented and  a stcady state I-esponse. The  initial responses 
are excitating for all the stimuli, which decline to thc sustained levels. The model shows no steady state 
response to  moving edges (squares) o r  bars (circles). A n  expanding object (triangles) leads to a positive 
model I-esponse, a contracting object (diamonds) to ;I negative model response. Thc arrow indicates the start 
of the stitnulation. 

excitatory. The time delay introduced by the architecture of the class I neurons itself 
would provide the time delay necessary for the comparison of edge length over time 
and therefore the detection of a growing edge (expanding object) versus shrinking edge 
(receding object). 

The nu~nerical output of the inodel is compared to the instantaneous spike fre- 
quency of the neuron under the same stimulus condition corrected by the resting spike 
frequency. Hence, a zero output represents the resting activity level of the neuron; 
a positive output an  increased firing activity, a negative output a reduced firing 
activity relative to the resting activity level. 

Comparing the output of the model simulation with the recordings fsom class 1 
neurons (Fig. 4), the model captures many of the essential properties of the physiolo- 
gical data. The model showed strong transient initial responses and sustained steady- 
state responses that were positive to looming and negative to anti-looming stimuli. No 
responses were elicited by moving single bars, edges or  gratings (Fig. 4). However, the 
model showed a highly pronounced initial response that is not present or  a t  least is 
inucl~ reduced in the neurons. This could be due to either temporal orland spatial 
averaging in the network preceding the neuron or  the neuron itself. For  objects of 
different size the initial responses scaled with edge length but steady-state responses 
did not change. The only parameter that influenced the level of steady-state responses 
was the rate of expansion/contraction: the responses grow with expansion/ 
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contraction speed. No change is observed for edges, bars or gratings moving with 
different velocities. 

4. Discussion 

The model predicts that class 1 cells should be insensitive to the size of expand- 
ing/contracting objects, the spatial frequency and velocity of moving gratings, but be 
sensitive to the velocity of expansion or contraction. Invariance of response with 
respect to object size would allow the cells to detect change of edge length equally well 
for different object sizes and thus allow the animal to hover in front of and forage on 
flowers of different corolla sizes. The model predicts that the neuronal response would 
code for the rate of expansion/contraction, which in turn would translate into the 
approach or retreat speed of the flower. In a behavioral context, a flower that is moved 
rapidly toward or away from the moth by a wind gust would elicit a larger response 
then a slowly moving flower. To avoid collisions with fast approaching flowers the 
moth would have to change its motor output faster and put more force into the 
movement. The increased neuronal response might decrease the delay of the motor 
response and increase its strength. These predictions regarding different object sizes, 
stimulus velocities and rates of expansio~~/contraction are being tested in experiments 
in both cell types by measuring tuning curves for these parameters. 

Due to the fixed delays between the medulla input and the lobula/lobula plate 
inputs the model should be sensitive to the spatio/temporal properties of the stimulus 
similar to motion detector models like the Reichardt detector (see Ref. [18]). Further 
experiments will further constrain important model parameters such as the time delay. 
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