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The functional abilities and parallel architecture of the human visual system are a rich source of ideas
about visual processing. Any visual task that we can perform quickly and effortlessly is likely to have
a computational solution using a parallel algorithm. Recently, several such parallel algorithms have
been found that exploit information implicit in an image to compute intrinsic properties of surfaces,
such as surface orientation, reflectance and depth. These algorithms require a computational architecture
that has similarities to that of visual cortex in primates.

UNTIL recently, the profound difficulty of vision was not fully
appreciated, in part because we humans are so good at seeing.
We can recognize objects in images very fast—within a few
hundred milliseconds—and without appreciable effort. It there-
fore came as a surprise in the 1960s and the early 1970s when
pioneering workers discovered that automated image interpreta-
tion requires an enormous amount of computation and that it
is very hard to find simple features in real images that allow
objects to be separated from one another and recognized” 2.

Recent work in computer vision has been strongly influenced
by two factors. The first is an increased awareness of the architec-
ture of biological visual systems combined with a realization
that parallel processing may be essential for competent vision
systems because the serial architecture of conventional digital
computers is too inefficient to deliver the massive amount of
computation required*’. The second factor is a much better
understanding of how the domain of two-dimensional intensity
arrays is related to the domain of three-dimensional objects. In
an image of an object, each element in the intensity array
depends on the illumination and on the ‘intrinsic’ properties of
the three-dimensional surface patch being imaged, such as its
orientiation relative to the viewer, its orientation relative to
light sources, and its reflectance. When these optical constraints
are combined with plausible assumptions about the nature of
physical surfaces, it is possible to interpret the information that
is encrypted in an intensity array in terms of intrinsic properties
of three-dimensional surfaces®2,

This review discusses a parallel approach to visual computa-
tion and its relevance to visual processing in the cerebral cortex
of primates.

Parallel architectures

The computational problems in vision are best understood at
the early stage of visual processing where the inputs and the
goal of the computation are known. To implement a computa-
tional theory, both the representation of the information and a
well defined algorthm are needed. The hardware of a machine
strongly affects the degree of difficulty in implementing and
running an algorithm. The examples presented here were run
on conventional digital computers simulating parallel machines,
because the flexibility of a general-purpose computer was useful
in exploring a variety of parallel architectures without making
a commitment to any particular one.

Conventional digital computers use von Neumann architec-
ture in which a single central processor performs sequential
operations on data structures (including programs) stored in a
general-purpose memory. Although central processors are very
fast today, their sequentiality seriously limits the rate at which
computations can be performed. The dramatic decrease in the
cost of logic circuits has made parallel architectures attractive
if the problem can be solved with a parallel algorithm.
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In a parallel computer many separate processing units operate
in parallel and exchange information through a communication
network. The parallel architectures that are now being studied
can be broadly classified according to the computational power
of the processing units and the type of information that is
exchanged between them'*'*, The most complex, and the most
difficult to analyse, is ‘message-passing’ parallelism, in which
symbolic messages are passed between units that are as powerful
as von Neumann machines'>,

A much simpler type of parallel architecture is based on
processing units that exchange only approximate real values and
can perform only simple arithmetic using limited memory.
Models of neural networks are frequently of this ‘value-passing’
type, with the average firing rate of a neurone interpreted as
the transmitted value. The power of this architecture lies in its
ability to propagate information simultaneously along private
links between units. However, the required connectivity and the
way the transmitted values are used are different for each
problem, so the flexibility of a general-purpose computer is lost
and a formidable wiring problem is created. In this review we
explore how value-passing parallelism can be applied in vision.

Relaxation

The goal of many problems in vision is to find the optimal
interpretation of an image consistent with known optical and
geometrical constraints. The difficulty is that an enormous num-
ber of constraints must be simultaneously satisfied. One way to
solve such large optimization problems is to implement the
constraints as excitatory and inhibitory links between processing
units and to allow the units, whose values represent the physical
properties of objects, to iteratively approach a self-consistent
solution'%-23,

The classical problem of finding the shape of a soap film
bounded by a non-planar wire hoop illustrates how a global
solution can be achieved through successive local interactions.
Imagine that the soap film is viewed from above and that its
height is represented by a number in each cell of a two-
dimensional array. The wire hoop fixes the heights around the
edge, but an interior height is only constrained by being equal
to the average of its neighbours. Regardless of the initial assign-
ment of the interior heights, the correct shape of the soap film
can be computed by iteratively assigning to each interior cell
the average of its neighbours, a process called relaxation.

Just as the balance of forces acting on a piece of soap film
act as physical constraints on the solution, so the optical con-
straints of image formation and the general nature of the surfaces
causing the image restrict the plausible solutions that are con-
sistent with the intensity array. The boundary condition for the
computation is the raw input—that is, the whole intensity
array—just as the height of the wire hoop is the boundary
condition for the soap-film problem. The soap-film analogy is
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helpful in conveying the general idea behind value-passing com-
putation, but as we shall see, parallel visual computation can
differ from the soap-film example in important ways.

Surface orientation

The goal of early visual processing is to recover intrinsic proper-
ties like surface orientation®2* Such properties cannot be
deduced from the local intensities alone because there are
infinitely many possible combinations of orientation, reflectance
and lighting that could explain any single intensity value. So, in
addition to the optical constraints that relate image intensities
to combinations of intrinsic parameters, the interpretation pro-
cess must also use plausible assumptions about the world that
constrain the intrinsic parameters at neighbouring locations. For
example, the orientation and reflectance of a surface at one
point strongly affect its probable orientation and reflectance at
neighbouring points, though they do not definitely rule out any
of the possibilities.

Because it must use constraints that are plausible but not
definitive, the interpretation process in early vision has the form
of a massive best-fit search whose objective is to find sets of
intrinsic parameters that are compatible with the optical con-
straints and satisfy as well as possible the plausible assumptions
that link intrinsic parameters at neighbouring points.

Horn’s analysis of the recovery of surface orientation from
the shading in an image is one of the earliest examples of how
the physics of imaging can constrain the three-dimensional inter-
pretation of an image®*?*, If the reflectance function of the
surface and the direction of illumination are known, then an
iterative ‘shape from shading’ algorithm can fill in the most
likely surface when given the surface shape along the boundary
of the object (Fig. 2). The result of the computation is an intrinsic
image; that is, a map of an intrinsic property (in this case surface
orientation) in register with the imageS. The same type of
algorithm can also be used to compute the intrinsic image of
local velocity®®, as shown in Fig. 1.
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Stereo fusion

In addition to being able to recover the surface orientation from
the shading of a bounded surface, the human visual system can
recover the relative depth of surface markings by fusing
binocular images. Julesz has demonstrated that when each eye
is presented with the same pattern of random dots, except that
one region in one eye is horizontally displaced, then this dis-
placed region is perceived as a surface with a different depth
from its surround?’. Because all the dots look the same, it is
difficult to decide which dot in one image corresponds to which
dot in the other image, but this correspondence must be decided
to perceive depth.

In the Marr—Poggio cooperative algorithm for stereopsis, each
unit stands for a hypothesis about the correspondence of a
particular pair of dots, and it therefore represents a patch of
surface at a particular depth®®, There are excitatory interactions
between neighbouring units with the same depth to ensure
continuity of surface, and inhibitory interactions between units
that represent different depths at the same image location to
ensure that depth assignments are unique; if the sum of all the
inputs to a unit from the two images and from local interactions
is above a threshold, the value of the unit is set to 1, and
otherwise to 0. During the relaxation various combinations of
depth assignments are tried and the network eventually ‘locks’
into a consistent solution in a way that resembles our Berceptual
experience when we fuse a random-dot stereogram?’.

There are important qualitative differences between the
shape-from-shading problem and stereo fusion. Like the soap-
film problem, the shape-from-shading algorithm searches a
space that has the character of a single hill because each step
brings the system closer to a unique solution, so that convergence
is guaranteed. In contrast, the stereo-fusion algorithm has a
search space that resembles a mountain range: even if the search
can be made to climb towards progressively better interpreta-
tions, the final solution may be only a local optimum rather
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Fig. 2 Demonstration of an algorithm that generates both the shape of an object and the direction of illumination given only a shaded image
of the object. The input to the algorithm is the image shown on the left. The output of a relaxation algorithm that was used to compute the
shape is shown in the centre. During the computation the current estimate of the surface normals was used to compute an estimate for the
direction of illumination in a two-dimensional space of direction units (right). The direction with highest activation in turn was used to obtain
a better estimate of the surface narmals, and the process was repeated until the estimates converged®®. (Courtesy C. M. Brown.)

Fig. 3 The image of a Rubik cube
(top left) mapped into two global
feature spaces: colour space (top
right) and line space (bottom right).
In the colour space, a transformation
was performed from each point in
the colour image to a three-
dimensional space of units whose
axes represent three colour com-
ponents. The colour of each unit is
the colour it represents, and only the
units with the highest activity levels
are shown. Clusters of units are acti-
vated by all the faces of the Rubik
cube with roughly the same colour
value. Note, however, that the tex-
tured background activates many
units in colour space. In the line
space, local edges were first detected
in the image by finding the position
where the intensity was changing the
fastest (bottom left). Note that many
of the edges are incomplete and
other edges are obscured by noise in
the background. Long lines in the
image can be detected by allowing
colinear edges to support each other.
This may be done by using another
two-dimensional space (line space)
in which each point represents an
infinite line parameterized by the
line’s perpendicular distance from
the origin (rho) and the angle with
the x-axis made by the perpendicular
to the line from the origin (theta).
Each local edge unit provides input
to all the global line units in line space
with which it is consistent. Edge units
may be inaccurate and incomplete,
but lines in the image appear in line
space as the units with the highest
activation (white clusters)>3¢7,
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than a global one. This difference in the character of the search
space is partly due to the fact that stereo fusion involves discrete
choices between alternative correspondences for each dot,
whereas the shape-from-shading computation involves gradual
changes of continuous parameters, though in general there may
be local optima even with continuous parameters.

The relative simplicity of the search space for the shape-from-
shading algorithm disappears if it is generalized to cases where
the locations of object boundaries are not known in advance
and can only be decided by using assumptions about the smooth-
ness of surfaces. In the more general problem, choices of values
for continuous variables like the local surface orientation must
interact with choices of values for discrete variables like the
presence or absence of an edge. Search spaces that contain many
local optima may well be unavoidable when designing algorithms
that make both kinds of choices.

A search procedure based on statistical mechanics has recently
been introduced that can escape from the local optima at which
simple hill-climbing algorithms would be trapped*®*. If noise
is added to the decision rule, so that each unit sometimes adopts
a state which is less consistent with the current states of the
other units, the system relaxes to different global configurations
with different probabilities. After sufficient time the probability
of finding it in a global configuration depends only on how
consistent that configuration is, with more consistent configur-
ations having higher probabilities. This kind of search is effective
in situations in which the correct interpretation is much more
consistent than any other, and this may well be typical of normal
vision®.

Representations

The performance of an algorithm depends on what information
in the image is explicitly represented by the units and how that
information is coded. In the Marr-Poggio algorithm the depth
of a surface patch is represented by activating one of a set of
units, each of which is ‘tuned’ to a different depth. This type of
representation is qualitatively different from an analog rep-
resentation in which the firing rate of a single unit directly
encodes the value of a physical variable.

By dividing the range of a continuous variable into discrete
intervals, each unit becomes, in effect, a hypothesis about the
existence of a feature in the image, and the firing rate can then
be used to encode the probability of the hypothesis being correct
rather than the value of the physical parameter®>->*, This type
of ‘interval encoding’ makes it easier to implement searches in
spaces that contain both continuous and discrete variables,
because it treats continuous variables in the same way as discrete
ones.

Several variables in the visual cortex are represented by
broadly-tuned neural mosaics that seem to be a form of multi-
dimensional interval encoding (Fig. 4). For example, disparity-
sensitive neurones in primate visual cortex fall into three groups:
those that are tuned to the plane of focus and those that respond
to visual stimuli that are either convergent or divergent®*. The
same neurones also respond preferentially to oriented edges
and line segments; these are broadly tuned over 20-40° and
their range of sensitivities overlap considerably®>~*®. The broad-
ness of the tuning need not imply imprecision, since we have,
for example, only three types of cone photoreceptors with
broadly-tuned spectral sensitivities, but we are nonetheless cap-
able of fine colour discrimination.

An important practical issue that arises when implementing
a relaxation algorithm is the spatial resolution of the units that
represent intrinsic properties. With high resolution, fine
irregularities may introduce noise, but with low resolution
important discontinuities may be smoothed out. Experience has
shown that having a range of resolutions is most effective®” ™,
and experiments indicate that a range of resolutions is also used
in the nervous system***'*2, For example, in 1979 Marr and
Poggio proposed an improved model of stereopsis that incorpor-
ated multiple spatial resolutions*>**, Matching between the right
and left images was first performed on the largest channel, which
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has the least ambiguity, and this helped matches at pro-
gressively finer scales. The issue of exactly what primitive
features should be used to perform the matching is not yet
resolved*>™".

Visual maps and feature spaces

Our visual system is capable of computing surface orientation
from shading and depth from binocular images, but we do not
yet know how these computations are organized. We do know
that an important organizing principle in the early stages of
visual processing is the orderly mapping and remapping of the
visual field. Twelve maps of the visual field have been found in
the primate cerebral cortex so far*®*?, and there are also many
subcortical maps.

In retinotopic maps, neighbourhood relationships between
nearby positions of the visual field are retained, while through
convergence and local interactions the response properties of
cells are modified. Already at the level of a retinal ganglion cell,
light falling on surrounding positions inhibits the central
response, a combination that is well known to enhance contrast
information®. In cortical maps higher-order combinations are
used to compute orientation and directional selectivity®®.
Extraction of these features has proven to be very effective in
preprocessing images for computer vision.

Most of the neurones in extrastriate visual maps receive their
major visual input either directly or indirectly from the striate
cortex, the first area of cerebral cortex to receive visual input,
and they have larger receptive fields and less topographic order
than neurones in striate. The proportion of cells sensitive to a
particular property is different in the various maps. For example,
the cells in an area called MT appear to be particularly sensitive
to the direction of stimulus motion®'** and their responses are
selectively influenced by motion of the background®* (Fig. 5).
In the inferior temporal cortex the receptive fields of some
neurones cover most of the visual field and their preferred
stimulus is often not an oriented edge®>*°. The functions of
most of these visual maps remain obscure®.

Parts of an object can often be identified as a whole by
common properties, such as colinearity of edges, colour and
direction of movement, even though the object is partially
obscured by other objects. Barlow®” has pointed out that an
economical way to link up parts of an image having a common
feature is to collect that information in a single location irrespec-
tive of where it came from in the image. Neighbouring locations
in this new space represent neighbouring values along a non-
spatial dimension rather than neighbouring positions in the
image; two examples of such non-retinotopic feature spaces are
shown in Fig. 3.

The first use of a transformation from an image to a non-
retinotopic feature space was made by Hough®®, who patented
a machine based on this principle in 1962. Hough found that
noisy particle tracks in bubble chamber photographs could be
efficiently analysed by transforming the data into a line space
in which each point represented an infinite line with a particular
slope and perpendicular distance from the origin, as explained
in Fig. 3. Each detected edge ‘votes’ for all the lines in line-space
that are consistent with it. Even though each piece of evidence
is noisy, a line that is present in an image will receive many votes.

Hough transforms have been generalized in several ways.
First, the feature space need not be simply related to the local
features computed in intrinsic images®”; second, the units in the
feature space may themselves interact and even feed back to
the intrinsic images®®. For example, in the computation of sur-
face orientation from shading, the direction of the light source
had to be specified as a boundary condition. The two angles
that specify the direction of illumination are global variables
and can be computed from the intensity array and from a very
approximate intrinsic image of the surface orientation. The new
direction of illumination can then be used to refine the intrinsic
image. The coupled algorithms converge to an intrinsic image
of the object’s surface and the direction of the light source®,
as shown in Fig. 2.
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a b

Fig. 4 Schematic drawings of two ways that a two-dimensional
space of features (such as orientation angle and disparity) can be
represented by populations of units. a, Each unit is assigned to a
tile of the mosaic and jointly represents the intervals given by its
position in the mosaic. b, Each unit is assigned to an interval of
one variable and is insensitive to the other. If the features of two
different objects are simultaneously present, then in representation
a two units are activated, but in representation b four units are
activated, as indicated by the Xs. Note that in the latter case there
is an ambiguity in which pair of features go together since the
same units would also be activated by ‘ghost’ objects whose features
are indicated by the Os.

Although extrastriate maps have an overall hierarchical
organization, forward projections are generally accompanied by
reciprocal feedback connections. The function of these feedback
connections is unknown, but one possibility is to enhance or
‘focus attention’ on the parts of the image having a common
feature®”. A more general function of feedback, suggested by
Fig. 2, is to link two cortical areas for the purpose of joint
interdependent computation.

Neural representations

The map of surface orientation is an important intermediate
step in building a three-dimensional interpretation of an image.
Evidence has not yet been found for neurones in the visual
cortex sensitive to surface orientation, but the appropriate
stimuli have probably not yet been used to look for them. This
is not an easy task given the variety of cues that could be used
to generate images of surfaces and the large number of visual
areas. Although computer vision may offer suggestive hints, it
should be emphasized that algorithms are not unique solutions
to problems; the example of stereopsis, for which we have
several working models, illustrates that further evidence from
psychophysics as well as physiology will be necessary to constrain
possible explanations?247.

Enough neurones exist in the visual cortex to represent
explicitly many features of natural images to which the human
visual system is sensitive®'. Beneath every square millimetre of
cortex there are ~10° neurones; in the striate cortex this is
about the size of a hypercolumn that contains all the machiner
needed to analyse a single patch the size of one receptive field*“.
Most neurones in the visual cortex respond best only when two
or more features are simultaneously present. Even though the
number of neurones in the visual cortex seems comfortably
large, there is a finite limit to the number of features that can
be explicitly represented, and it is particularly costly to represent
all possible conjunctions of properties. For example, if enough
neurones were provided to represent all possible combinations
of values of edge orientation, disparity, velocity, spatial
frequency, colour, etc., the number required would increase
exponentially with the number of dimensions. With a resolution
of 10 intervals on each dimension, the 10° neurones in a hyper-
column could only cover a five-dimensional feature space®®.

One solution to the exponential explosion is to give up on
making all conjunctions explicit and to represent different
features in different maps™. The price of this compromise is a
possible confusion in the correspondence between pairs of
features in different maps that are simultaneously activated by
several objects (Fig. 4). In fact, when coloured letters are briefly
presented to human observers, incorrect matches between the
colours and the letters are quite often reported in certain condi-
tions, a phenomenon called illusory conjunctions®’.
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Fig. 5 Selective influence of a moving background of random
dots on the response of a directionally-selective neurone in area
MT of the owl monkey. The maximum firing rate occurs when a
bar is moving in its preferred direction at its optimum velocity™*.
Left, firing rate (normalized to the maximum rate) to a bar moving
against a stationary background as a function of velocity. Right,
response of the bar moving at its optimum velocity as a function
of the velocity of the background. The response is inhibited if the
background moves in the same direction as the bar with the
maximum inhibition occurring when the background moves at the
same velocity as the bar. The area of the visual field influencing
the response to the bar was about 20,000 square degrees, 60 times
the area of the classical receptive field. In V4, another area of
extrastriate cortex, the responses of some cells to coloured stimuli
are strongly influenced by the colour of the surrounding
illumination70:71, and these long-range effects may be mediated
by a recently identified colour pathway originating in striate cor-
tex’2. The discovery that the surround is as selectively tuned as
the classical receptive field may lead to a better understanding of
the algorithms used in the visual system to compute intrinsic images
such as that of optical flow and reflectance. (Courtesy J. M. Allman.)

Another way to cover a feature space of high dimension with
a limited number of units is to assign them to large, overlapping
regions. A single point in feature space is then represented not
by activity in a single unit, but by the joint activity of many
units. Hinton®? has recently shown that accurate information is
not lost by these coarsely tuned units; the information has simply
been distributed over a population of units. Moreover, far fewer
units are required to achieve the same accuracy. For binary
units that respond only when a feature falls within their region
of feature space, the number of units required to achieve a given
accuracy is proportional to 1/r*™V, where r is the radius of the
region and k is the dimensionality of the space. Thus, the relative
efficiency of coarse coding increases with the dimensionality of
the space being covered.

Although coarse coding efficiently encodes single features,
two nearby points in feature space that are simultaneously
excited may be confused. The sparseness of the features that
occur in any one image therefore sets an upper bound on the
allowable coarseness of the coding.

Future directions

It is generally thought that at the later stages of visual processing
the features of an object are represented relative to a frame of
reference based on the object rather than in a frame relative
to the retina'®. By imposing an appropriate frame of reference
on an object, and recoding features relative to this frame, the
visual system can generate ‘object-based’ features that are
independent of viewpoint and therefore represent the invariant
shape of the object. Algorithms that use 6generalized Hough
transforms in coarsely coded feature spaces®*** have been pro-
posed for choosing the object-based frame and generating the
object-based features. Thus, the same type of parallel relaxation
algorithm that was used in early visual processing might also be
useful for higher levels. This would be consistent with the similar
cytoarchitectonic organization found throughout the cerebral
cortex, from primary sensory to higher associational areas®>°®,
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Despite the power of parallel computation, some problems
in vision clearly require sequentiality. Consider, for example,
the role of eye movements in building up a detailed internal
representation of a complex object, such as a face. The integra-
tion of sequentially acquired information raises issues about the
nature of visual working memory and the central control of
processing. Parallel models of these aspects of vision are being
explored but are beyond the scope of this review.

We have described a recent trend within computer vision
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Turbulent dissipation and shear in
thermohaline intrusions
Nordeen G. Larson & Michael C. Gregg

Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington 98105, USA

Laterally coherent patches of turbulence were discovered on the upper and lower boundaries of thermohaline intrusions.
The ratio €/J, is used to compare the relative importance of turbulence produced by Reynolds stress and that produced by
the buoyancy flux of double diffusion. Velocity profiles show near-inertial motions through the intrusions.

FRONTAL regions in the ocean are characterized by the frequent
occurrence of 5-30 m thick interleaving lenses of water, which
are referred to as intrusions. The horizontal and vertical trans-
ports of heat and salt by intrusions may be major factors in
the flux balances of fronts. Therefore, determination of the
mechanisms by which the intrusions are formed and the rates
of subsequent mixing is essential to understand frontal
dynamics.
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During the past year, we have used the Advanced Microstruc-
ture Profiler (AMP)' to take many sets of closely spaced profiles
through intrusions in the Bahamas, in a warm-core Gulf Stream
ring, and in the California Current. Velocity microstructure
measurements were used to determine ¢, the rate of viscous
dissipation of turbulent kinetic energy. Observations of tem-
perature-salinity {Ts) fine structure were used to estimate J,,
the buoyancy flux across interfaces believed to be sites of double
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