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To my parents, for the courage to set out,

And to Eve, for the courage to move on.
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Thirty spokes share the wheel’s hub;

It is the center hole that makes it useful.

Shape clay into a vessel;

It is the space within that makes it useful.

Cut doors and windows for a room;

It is the holes which make it useful.

Thus profit stems from what is there;

Utility from what is not there.

(Lao Tsu)
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ABSTRACT OF THE DISSERTATION

Optimization of Entropy

with Neural Networks

by

Nicol Norbert Schraudolph

Doctor of Philosophy in Cognitive Science and Computer Science

University of California, San Diego, 1995

Professor Terrence J. Sejnowski, Chair

The goal of unsupervised learning algorithms is to discover concise yet

informative representations of large data sets; the minimum description length

principle and exploratory projection pursuit are two representative attempts to

formalize this notion. When implemented with neural networks, both suggest the

minimization of entropy at the network’s output as an objective for unsupervised

learning.

The empirical computation of entropy or its derivative with respect to

parameters of a neural network unfortunately requires explicit knowledge of the

local data density; this information is typically not available when learning from

data samples. This dissertation discusses and applies three methods for mak-

ing density information accessible in a neural network: parametric modelling,

probabilistic networks, and nonparametric estimation.

By imposing their own structure on the data, parametric density models

implement impoverished but tractable forms of entropy such as the log-variance.

We have used this method to improve the adaptive dynamics of an anti-Hebbian

learning rule which has proven successful in extracting disparity from random

stereograms.
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In probabilistic networks, node activities are interpreted as the defining

parameters of a stochastic process. The entropy of the process can then be calcu-

lated from its parameters, and hence optimized. The popular logistic activation

function defines a binomial process in this manner; by optimizing the information

gain of this process we derive a novel nonlinear Hebbian learning algorithm.

The nonparametric technique of Parzen window or kernel density esti-

mation leads us to an entropy optimization algorithm in which the network adapts

in response to the distance between pairs of data samples. We discuss distinct

implementations for data-limited or memory-limited operation, and describe a

maximum likelihood approach to setting the kernel shape, the regularizer for this

technique. This method has been applied with great success to the problem of

pose alignment in computer vision.

These experiments demonstrate a range of techniques that allow neural

networks to learn concise representations of empirical data by minimizing its

entropy. We have found that simple gradient descent in various entropy-based

objective functions can lead to novel and useful algorithms for unsupervised

neural network learning.
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Chapter I

Introduction

Entropy is equivalent to information as defined by (Shannon, 1948), and

provides a basis for more stringent information measures as well. The represen-

tations constructed by adaptive information processing systems such as neural

networks can be analyzed using such information-theoretic measures.

Unsupervised learning in particular may proceed by optimizing the qual-

ity of representation measured in this fashion when the desired response of the

system is not known. Two generic approaches to unsupervised learning are the

minimum description length principle and exploratory projection pursuit. Both may be

implemented with neural networks, and both make the minimization of entropy

at the network output their objective.

The computation of entropy and its derivative with respect to the weights

of a neural network unfortunately requires knowledge of the probability density,

which is typically not available when learning from empirical data. We here

introduce the three methods for making density information accessible to a neural

network that are further explored in the remainder of this dissertation: parametric

modelling, probabilistic networks, and nonparametric estimation.

1
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I.A Information Theory

As the third millennium draws near, we are entering the age of infor-

mation. In its many guises, a rapidly rising sea of information surrounds us —

perhaps even threatens to drown us. But what is information really? Just what

happens, physically, when we receive a bit of information? We owe the answer

to this question largely to Claude Shannon, who almost singlehandedly created

modern information theory a half-century ago (Shannon, 1948). His work links

information to the physical concept of entropy, well-known from thermodynamics

and statistical mechanics.

I.A.1 Shannon Information and Entropy

In order to develop Shannon’s definition of information, let us first for-

malize the process of its transmission. A message is communicated from a sender
�

to a receiver � by transmitting one out of a set of possible signals. Poker play-

ers for instance communicate with their opponents by giving one of the signals

“raise by � � � ”, “hold” or “fold”. In general the receiver of a communication does

not know in advance which signal will be sent, although she may hold certain

expectations based on past messages from the sender.

From the receiver’s perspective, then, the sender is a random process,

and each message � can be modelled as the instantiation of a random variable
�

with (at least empirically) known distribution � � � � � � 	 
 � � � � . Intuitively, a

measure � � � � of the information in message � should have certain properties:

1. � � � � 
 � . The receipt of a message does not remove any information.

2. � � � � � � � � � � � � � . The receipt of a message that we were certain to receive

anyway does not provide any information.
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3. � � � � � � � � � � � � � � � � if � and � are instances of independent random

variables. Information from unrelated messages is additive.

From these axioms it is straightforward to derive Shannon’s measure of informa-

tion (Shannon, 1948). Axiom 2 indicates that � � � � must depend on the probability

� � � � . From probability theory we know that when � and � are independent, we

have � � � � � � � � � � � � � � � . Axiom 3 therefore translates into the requirement

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � I �

� �

which means that � � � � must be a linear function of the logarithm of � � � � . Axioms

1 and 2 further constrain this function, resulting in Shannon’s definition:

� � � � � � � � � � � � � � � I � � �

where the base of the logarithm is left unspecified. Mathematicians typically

measure information in nats using the natural base � , whereas computer science

prefers the bits obtained by using base two, owing to the predominance of binary

representations in today’s computers.

According to (I.2), the less frequent — and therefore more surprising — a

message is, the more information it contains. Thus while information is conveyed

by the presence of a message, its measure relies on the potential absence of that

message. Or, as Lao Tsu put it some 2,500 years ago (Feng and English, 1972):

Profit stems from what is there,

Utility from what is not there.

Owing to this holistic quality, information must be considered a property of the

entire probability distribution of
�

, rather than individual instances of it. We
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define the average information as the expected value of (I.2) over instances of
�

:

� � � � � � � 
 � � � � � � � � � 
 � � � � � � � � � � �� � � � � � � � � � � � � � I � � �

where � ranges over all possible outcomes of
�

. This definition can be extended

to continuous distributions by replacing summation with integration.

Up to a scaling factor,
� � � � is identical to the entropy of a stochastic

system as known from thermodynamics and statistical mechanics. Entropy is a

measure of the disorder or complexity of a system; according to the second law

of thermodynamics it never decreases in closed systems. Shannon’s insight as to

the equivalence of entropy and information spawned a half-century of extensive

research into information theory, to which (Cover and Thomas, 1991) provide a

comprehensive introduction.

One of the early results of this endeavor were a number of theorems on

the topic of optimal coding that provided further justification for
� � � � as a measure

of information. Put briefly, any reversible code used to communicate instances of
�

must have an average length of at least
� � � � ; several compression algorithms

can asymptotically yield code lengths arbitrarily close to this lower bound. Far

from being just an abstract property,
� � � � thus indicates the minimum amount

of resources (e.g. communication time or storage space) that will be required to

transmit, store, or otherwise handle messages produced by
�

.

I.A.2 Stringent Information Measures

It is both the strength and the Achilles heel of Shannon information that

its definition makes no reference whatsoever to the content or meaning of a mes-

sage. While such a divorce of structure from semantics provides for powerful
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�� ��Sender
�

�

Message� � � �

�� ��Receiver

Kolmogorov complexity

� � � � � � � � shortest program

that implements sender

	 constructive
method for 
 �

Mutual Information
� � � � � � � � � � � � � � � � �

	 reference
message 


Information Gain
� � � � � � � � � � � � � � � �

probabilistic

reaction � � �

Figure I.1: Three ways to measure information content in a more stringent fashion
so as to obtain values lower than the Shannon information

� � � � . Kolmogorov
complexity (top) provides a generic lower bound on information content to com-
plement Shannon’s upper bound but is computationally intractable in its pure
form. Mutual information and information gain measure the Shannon informa-
tion relevant to a given message (center) or task (bottom), respectively.

and general tools of analysis — consider the impact this methodology had on

linguistics for instance — it does not in itself allow us to distinguish signal from

noise, information we care about from that which we do not. Although the en-

tropy
� � � � gives only an upper bound on the amount of relevant information, a

number of more stringent entropy-based information measures can be derived.

We will now describe three alternatives for tightening the definition of infor-

mation at the message, receiver, and sender, respectively; they are summarized

schematically in Figure I.1.

Perhaps the simplest approach is to use a reference message � as our

operational definition of what is relevant, and measure the mutual information

between
�

and � , defined as the sum of individual entropies less the joint entropy:
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� � � � � � � � � � � � � � � � � � � � � � � � I � � �

To get a feeling for how mutual information works, consider the case where
�

and � are in fact identical: since
� � � � � � � � � � � , we have � � � � � � � � � � � ; in

other words, all of the information in
�

is relevant. Now consider the opposite

case, where
�

and � are independent: by Axiom 3 in our derivation of (I.2),

we then have
� � � � � � � � � � � � � � � � and hence � � � � � � � � ; that is, none of

the information in
�

is relevant. Between these two extremes, � � � � � � measures

the amount of information that
�

provides about � (and vice versa), which by

our operational definition is the relevant information. In Chapter IV.C we will

describe an image alignment technique that relies on maximization of mutual

information.

Instead of measuring relevant information with respect to another mes-

sage, we may also do so with respect to a certain reaction required from the

receiver. Let us return to the poker example, where each player must make a

decision between “raise by � � � ”, “hold” and “fold” at her turn. Let’s model a

given player’s choice stochastically with the random variable � . The probability

distribution of � will typically depend (among other factors) on the preceding

player’s decision, which we shall call
�

. We can now measure by how much the

preceding player’s announcement of a particular choice � reduces � � s uncertainty

about her decision, as measured by a reduction in the entropy of � :

� � � � � � � � � � � � � � � � � � � � � � � I �

� �

where we have written � � � � for � � s probability distribution before, and � � � � for

it after the instance � of
�

is observed. We call
� � � � � the information gain of �

caused by � ; it is a measure of the extent to which � makes � more predictable.
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Note that information gain may be negative: we may receive information that

makes us less certain about a decision we face. Chapter III introduces an algorithm

that maximizes information gain with respect to a binary discrimination task.

Mutual information and information gain sidestep the question of how

to distinguish relevant from irrelevant information by measuring information

relative to a message or task that is deemed relevant by fiat. By contrast, a generic

measure of inherent information is the Kolmogorov or algorithmic complexity

proposed independently by (Solomonoff, 1964; Chaitin, 1966; Kolmogorov, 1968).

In essence, the Kolmogorov complexity of a message is the length (that is, entropy)

of the shortest program that can send it. Due to the universality of computation,

this length is independent of the computer platform, up to a constant. See (Cover

and Thomas, 1991, chapter 7) for a detailed treatment of algorithmic complexity.

Note that the Kolmogorov complexity is bounded above by the Shan-

non information, since a program that generates a given message can always be

produced simply by prepending the data with a “print this” instruction, whose

length is fixed and therefore negligible. Some messages, however, can be gener-

ated by far shorter programs: the digits of � or
�

� for instance can be computed

to arbitrary precision with short programs, so they have very low Kolmogorov

complexity. Pseudo-random numbers (Press et al., 1992, chapter 7) are in fact

designed to have very high entropy but low algorithmic complexity.

In its pure form, Kolmogorov complexity is unfortunately not com-

putable: there is no algorithm for finding the shortest program that can generate

a given message. Practical implementations must therefore rely on some sub-

optimal constructive method to find a reasonably short generator for the data in

reasonable time. In the next section we will introduce one road to a tractable ap-

proximation of algorithmic complexity, the minimum description length principle,

as an objective for unsupervised learning algorithms.
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I.B Unsupervised Learning

Adaptive systems that learn from experience play an increasing role in

computer science. We are particularly interested in unsupervised learning, where a

good task-independent representation for a given set of data must be found. Fol-

lowing a brief introduction to neural networks as our adaptive system of choice, we

will describe two approaches to unsupervised learning that can be implemented

with neural networks: the minimum description length principle, and exploratory

projection pursuit.

I.B.1 Learning with Neural Networks

In the years since (Rumelhart et al., 1986b) was published, neural net-

works have become a popular (if not the preferred) framework for machine learn-

ing. A thorough introduction to this topic can be found in textbooks such as

(Hertz et al., 1991; Haykin, 1994); the current state of the art in this very active re-

search area is covered comprehensively in (Arbib, 1995). Here we limit ourselves

to a brief introduction of the basic concepts, techniques and notation used in the

remainder of this dissertation.

Neural network learning techniques apply to any parametrized mapping

whose output is differentiable with respect to the parameters. For the sake of

specificity, however, let us here define feedforward neural networks to be weighted,

directed, acyclic graphs; a few small examples are shown in Figure I.2. Each node
�

in the network has an associated scalar activity � � , computed as a function � of

the weighted sum (or net input) � � of the activity of other nodes:

� � � � � � � � , where � � � �� � � � � �
� � I � � �
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Figure I.2: Three examples of small neural network architectures.

It is assumed that nodes are activated in topological order, beginning with a set

of input nodes whose activity is set explicitly to represent external input to the

network. Activity then propagates through the network until its response to the

input can be read off a set of output nodes. The internal nodes that have neither

input nor output function are called hidden nodes. Nodes are often grouped into

layers as a matter of convenience.

Neural networks are typically trained by gradient descent methods so as

to minimize an objective function � (also called error or loss function) that measures

the network’s performance. In its simplest form, gradient descent adjusts each

weight � � � in the network in proportion to the derivative of the error with respect

to that weight. We write this as

�
� � � � � �

�
�

� � � � � � I � � �

where � is the learning rate of the network.
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In supervised learning problems, we are given explicit targets � � for each

output node and input pattern. The most popular objective for this situation is

the quadratic error

� � �� �
�

� � � � � � � � � � � � � �
� � I � � �

where
�

ranges over the output nodes, and � over input patterns. The derivatives

of this function with respect to the weights of the hidden nodes can be determined

via the chain rule; this is known as the method of error backpropagation (Rumelhart

et al., 1986a).

In some situations, however, there may be no targets available to tell the

network what to do. For instance, we may want to find a representation for the

given data that allows us to then rapidly learn a variety of tasks. Or we may want

to analyze an unknown data set without having any particular task in mind. In

the absence of a teacher, what should the network’s objective be? The progress

of these unsupervised networks must be evaluated in a task-independent manner,

using general principles of efficient coding. This is the domain of information

theory, and we can therefore derive objective functions for unsupervised learning

from information-theoretic arguments.

I.B.2 The Minimum Description Length Principle

The minimum description length or MDL principle (Rissanen, 1989; Li and

Vitanyi, 1993) can be understood as an attempt to put the idea of Kolmogorov

complexity into practice. Its starting point is William of Occam’s famous dictum:

Causes shall not be multiplied beyond necessity.
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�

Figure I.3: The minimum description length communications model:
�

is en-
coded into � by an adaptive device that has learned to minimize the cost of
communication, which comprises the cost

� � � � of sending the code, the cost� � � � of sending the decoder, and the cost
� � � � of sending the residual errors so

as to achieve full reconstruction of
�

. Large savings in communication cost are
possible since the decoder � has to be sent only once for the entire data set.

In other words, the simplest explanation (or sufficient description) for a set of

empirical observations is the most likely one. This principle, commonly referred to

as Occam’s Razor, has guided scientific inquiry for centuries; it has been formalized

as universal probability in algorithmic complexity theory (Cover and Thomas, 1991,

page 160).

MDL elaborates Shannon’s communications model in order to reduce

the total length of a set of messages to be sent; please refer to Figure I.3 for

a schematic illustration. Suppose we are to transmit � instances of a random

variable
�

. According to the optimal coding theorem (Shannon, 1948) the total

cost of this communication would be at least � � � � � . Provided that
�

has low

Kolmogorov complexity, however, MDL suggests a better strategy: learn to model

the structure of the generator for
�

, then use this model to compress the messages.
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What is the cost of communication under this scheme? Instead of the

messages
�

we now transmit codes � of (hopefully) shorter length
� � � � . Unless

the encoding is lossless, we also need to transmit the residuals � in order to

allow the receiver to fully recover the data, at an additional cost of
� � � � per

message. Finally, we must transmit the data model � — in essence, a description

of the decoder needed by the receiver to reconstruct the messages. Since the same

model is used for all � messages, however, we need to send its description just

once, at a total cost of
� � � � .

This means that the overall cost of sending � messages can be reduced

to the extent that the model � captures structure shared by all messages. MDL

proposes to learn such a model with an adaptive device that seeks to minimize

the total description length

� � � � � � � � 
� � � � � � � � � � � � I �

� �

If MDL succeeds in learning a good model of
�

, this cost will be lower than

� � � � � , the cost for naive transmission of the data.

It is common to find partial implementations of MDL where only some

of the cost terms are minimized while the others are kept fixed. The schematic in

Figure I.3 for instance shows only the residual error used to adjust the adaptive

encoder/decoder. It must be pointed out that such simplified approaches do not

fully realize the MDL principle.

MDL does not tell us how to infer a good model for a given set of data; it

merely provides a framework and objective for existing learning algorithms. The

perfect inference engine would recover the generator for
�

with an algorithmic

model, and could then communicate the entire set of messages at a cost equal to

the Kolmogorov complexity of
�

. In practice it is far more feasible, however, to
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use the MDL principle in order to optimize much simpler but tractable models.

(Zemel, 1993; Zemel, 1995) has explored the use of neural networks for this

purpose; we note here that when
�

is encoded with a neural network, the MDL

objective demands that the entropy at the network’s output be minimized.

I.B.3 Exploratory Projection Pursuit

Projection pursuit (Huber, 1985) is a statistical method that condenses

high-dimensional data by projecting it into a low-dimensional subspace before

further processing. This facilitates subsequent analysis by methods that would

be unmanageable in the original high-dimensional environment, assuming that

the structure of interest in the data was not lost in the projection process. Since

the weighted summation performed by a neural network node amounts to a one-

dimensional projection of the data, there is a close relationship between projection

pursuit and neural network techniques. Variants of projection pursuit have been

developed for tasks such as regression and density estimation; its unsupervised

realization is known as exploratory projection pursuit (Friedman and Tukey, 1974).

Like other approaches to unsupervised learning, exploratory projection

pursuit must address the question of what to learn when there is no teacher. What

objective function — in this context also known as projection index — characterizes

informative, useful projections? In their original work on this topic, (Friedman

and Tukey, 1974) suggested maximizing the expected probability density � 
 � � � � �
of the normalized projected data. This is equivalent to maximizing the integrated

squared density function, resulting in a preference for sharply peaked distribu-

tions which are intuitively interesting.

While the Friedman-Tukey index is entirely adequate for many practical

purposes (see Figure I.4 for a simple example), a better theoretical argument
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Figure I.4: A simple example of exploratory projection pursuit. On the left, a
random 2-D projection of the 4-D data set of vowel formant frequencies due to
(Peterson and Barney, 1952). On the right, a 2-D projection of the same data set that
has been optimized by exploratory projection pursuit, using the Friedman-Tukey
projection index.

can be made for entropy as a projection index: (Diaconis and Freedman, 1984)

have shown that most low-dimensional projections of high-dimensional data

are approximately normally distributed. Ab-normal (that is, far from Gaussian)

distributions are comparatively rare, and thus according to (I.2) more informative.

We can search for these unusual projections by maximizing some measure of

deviation from the Gaussian density. A defining characteristic of the normal

distribution is that it has the maximum entropy for a given variance (Haykin,

1994, page 450). Instead of explicitly comparing the density of the projected data

to a Gaussian reference, we can therefore simply minimize its entropy in order to

find ab-normal projections.

I.C Entropy Optimization in Neural Networks

When implemented with neural networks, both the minimum descrip-

tion length principle and exploratory projection pursuit suggest the minimization
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of entropy at the network’s output as an objective for unsupervised learning. This

raises a fundamental problem: the computation of this entropy, and of its deriva-

tive with respect to the network’s weights, both require explicit knowledge of the

probability density at the output. Since neural networks learn from just empirical

data samples, however, this kind of density information is not normally available

to them.

In order to optimize entropy by gradient descent in a neural network, we

must therefore first find a way to make its output probability density explicitly

available. This dissertation identifies three basic approaches to addressing this

problem: parametric modelling of the density, the use of probabilistic networks,

and nonparametric density estimation. Below we briefly motivate and introduce

these techniques; in subsequent chapters each of them in turn is then elaborated

and applied to the development of novel algorithms for unsupervised neural

network learning.

I.C.1 Parametric Models

One popular method for obtaining a probability density from empirical

data is by fitting a parametric density model to the data. For instance, a com-

mon simplification is to assume that the data is normally distributed. Since the

Gaussian (normal) density is fully characterized by its mean and variance, its

entropy is also a function of just those two parameters. The entropy of the model,

as opposed to that of the data, is then easily optimized by gradient descent. To

the extent that the model is true to the data, this will approximately optimize the

entropy of the empirical data as well.

In fact, one does not even have to assume a particular shape for the

density in order to set up a parametric model for entropy optimization: let
�

be
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a continuous random variable with density � � � � � � 	 
 � � � � , and let � be the

linear function � � � � � � . Since the density of � is given by

� 	 
 � � � � � � � � � � � � � � � � � � � I �

� � �

its entropy is consequently

� � � � � � � 
 � � � � � � � � � � � � � � � � � �

� � � 
 � � � � � � � � � � � � �

� � � � � � � � � � (I.11)

That is, regardless of the shape of � � � � , the entropy of a linear function of
�

scales with the log of the variance. Matching � � � � to empirical data with a linear

transformation thus changes the model’s entropy in proportion to the log-variance

� � � � of the data. Instead of entropy, we could therefore simply minimize the

log-variance of the output of our neural network.

Such simplified data models, however, inevitably impose their struc-

ture upon the data, thus implementing rather impoverished notions of entropy.

Nonetheless, even the log-variance approach has its benefits: in Chapter II we

use it to improve the dynamics of feedforward anti-Hebbian learning in networks

that learn to characterize the invariant structure of a data set.

I.C.2 Probabilistic Networks

Another way to make density information explicit in a neural network

is to use probabilistic nodes. The net input to such a node determines its probability
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of being active rather than its level of activation. The distribution of states in a

stochastic network of these nodes can be calculated with models from statistical

mechanics by treating the net inputs as energy levels. Since the distribution is

analytically available, information-theoretic objectives such as the entropy of the

network can be optimized directly. A well-known example of this type of network

is the Boltzmann Machine (Ackley et al., 1985; Hinton and Sejnowski, 1986); the

Helmholtz Machine (Dayan et al., 1995) is an interesting recent development in

this field.

Note that networks of probabilistic nodes need not necessarily be stochas-

tic though: we may use a stochastic model to compute the output probability of

a node but then prefer to use that probability directly as a deterministic input

for the next stage of processing. The softmax activation function (Bridle, 1990) for

instance models a multinomial stochastic system: the net inputs � � to a layer of �
nodes are interpreted as energy levels; the output probability � � for each node is

then given by the corresponding Gibbs distribution

� � � � � � � �
�� � � � � � �

� I �

�
� �

where � ranges over all � nodes in the layer, and
� � � is an analog of temperature.

Although this system models a stochastic choice for one out of the � nodes, it is

typically used as a deterministic activation function.

Probabilistic networks allow us to optimize entropy directly — but it is

the entropy of the network (a stochastic process modulated by the data) rather

than that of the data itself. The result of entropy optimization in such a system

therefore depends on the nature of the stochastic model. In Chapter III we develop

a learning algorithm that maximizes the information gain of a binary decision

modelled probabilistically with the popular logistic activation function.
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I.C.3 Nonparametric Estimation

Although parametric models and probabilistic networks lead to inter-

esting learning algorithms in their own right, neither approach can optimize the

entropy of the output density of a neural network in general: one is limited to

distributions that its parametric model can represent, while the other optimizes

an objective that is only indirectly related to the data.

We therefore turn to another alternative: Parzen window (or kernel) den-

sity estimation (Duda and Hart, 1973, chapter 4.3). This nonparametric technique

assumes that the output density is a smoothed version of an empirical sample

rather than any particular functional form — in a way, the data sample itself is

used as a model. Specifically, the density � � � � is estimated with a sum of radial

(e.g. Gaussian) kernel functions � centered on the data points in a sample � :

�� � � � �
�

�
�

� �
� � � �

� � � � � � � � � I �

� � �

This density estimate
�� � � � can now be used to approximate the empirical entropy

from another data sample
�

:

�� � � � � �
�

� � � �
� � � �

� � � �� � � � � (I.14)

� �
�

� � � �
� � � �

� � � �
� � � �

� � � � � � � � � � � �
�
�

�

This entropy estimate is differentiable and can therefore be optimized in a neural

network, allowing us to avoid the limitations encountered with parametric models

and probabilistic networks. In Chapter IV we will discuss the resulting algorithm

in more detail, and report its successful application to image alignment problems

in computer vision.



Chapter II

Anti-Hebbian Learning of Invariants

Although the detection of invariant structure in a given set of input

patterns is vital to many recognition tasks, connectionist learning rules tend to

focus on directions of high variance (principal components). The prediction paradigm

is often used to reconcile this dichotomy; here we suggest a more direct approach

to invariant learning based on an anti-Hebbian learning rule. An unsupervised

two-layer network implementing this method in a competitive setting learns to

extract coherent depth information from random stereograms.

Simple negation of the learning rate in Hebb’s rule, however, causes

problems with weight normalization and differentiation. The stereogram experi-

ments used ad-hoc solutions to work around these difficulties; we subsequently

discuss a more comprehensive approach: by treating anti-Hebbian learning as an

entropy optimization problem we are able to derive learning rules with appropri-

ate weight normalization and differentiation characteristics.

19
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II.A Learning Invariant Structure

II.A.1 Motivation

Many unsupervised learning algorithms share with principal component

analysis (Jolliffe, 1986) the strategy of extracting the directions of highest variance

from the input. A single Hebbian node, for instance, will come to encode the

input’s first principal component (Oja and Karhunen, 1985); various forms of

lateral interaction can be used to force a layer of such nodes to differentiate and

span the principal component subspace (Földiák, 1989; Sanger, 1989; Oja, 1989;

Kung and Diamantaras, 1991; Leen, 1991). The same kind of representation also

develops in the hidden layer of backpropagation autoassociator networks (Cottrell

and Munro, 1988; Baldi and Hornik, 1989). Since the entropy of a probability

density scales with its log-variance, these techniques can also be viewed as a

special (linear) case of the maximum information preservation or Infomax (Linsker,

1988; Bell and Sejnowski, 1995) strategy.

A comprehensive approach to unsupervised learning, however, must

also take the cost of representing the data into account. From this perspective

maximum information preservation is not always appropriate: when stimuli are

clustered, for instance, the efficiency of representing each cluster with just a proto-

type may well outweigh the increased reconstruction error this entails. Similarly,

when the data manifold is very high-dimensional, it can be more efficient to rep-

resent its null space instead — that is, to encode those aspects of the stimulus that

vary the least.

For illustration, let us assume that the stimuli to be learned lie on a

two-dimensional plane in three-dimensional space, as depicted in Figure II.1. To

represent this manifold in the conventional (information-preserving) sense, two
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Figure II.1: A plane may be characterized by either spanning (
�
 ,

��
) or normal (

�� )
vectors. Points in the plane have an invariant (null) projection onto the normal
but a maximally variant one onto the spanning vectors.

spanning vectors
�
 and

��
are required. By contrast, the single normal vector

�� is sufficient to characterize the same manifold in an invariant (information-

reducing) manner. In general, a representation in terms of invariant rather than

variant directions is more efficient whenever the number of constraints obeyed

by the stimulus is smaller than the number of dimensions in which it can vary.

Given that almost all unsupervised neural network learning algorithms

are based on the variance-maximizing Hebb rule, one may wonder whether it is

possible at all to learn invariant structure within this framework, and how this

might be achieved. In fact several methods exist that reconcile this dichotomy

obliquely; we briefly review these before turning to our own, more direct ap-

proach.

II.A.2 Previous Approaches

In (Földiák, 1991), spatial invariance is turned into a temporal feature

by using transformation sequences within invariance classes as a stimulus. For

translation-invariant object recognition, for instance, short sequences of images

of objects translating across the input array are presented to the network. A built-
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in temporal smoothness constraint then enables Hebbian nodes to pick up on the

close temporal association of images of a particular object at different locations,

and hence learn to detect this object regardless of location. Although this is an

efficient and neurobiologically attractive strategy for learning invariant structure,

its application is limited by the strong assumptions made about the temporal

structure of the input.

A more general approach is to make information about invariant struc-

ture available in the error signal of a supervised network. The most popular way

of doing this is to require the network to predict the next patch of some struc-

tured input from the preceding context, as in (Elman, 1990); the same prediction

technique can be used across space as well as time (Fontaine and Shastri, 1993).

It is also possible to explicitly derive an error signal from the mutual information

between two patches of structured input (Becker and Hinton, 1992); this approach

has been applied to viewpoint-invariant object recognition by (Zemel and Hinton,

1991).

II.A.3 Anti-Hebbian Feedforward Learning

In most formulations of Hebbian learning it is tacitly assumed that the

learning rate be positive. By reversing the sign of this constant in a recurrent au-

toassociator, Kohonen constructed a “novelty filter” that learned to be insensitive

to familiar features in its input (Kohonen, 1989). More recently, such anti-Hebbian

synapses have been used for lateral decorrelation of feature detectors (Barlow and

Földiák, 1989; Földiák, 1989; Leen, 1991) as well as — in differential form — re-

moval of temporal variations from the input (Mitchison, 1991).

We suggest that in certain cases the use of anti-Hebbian feedforward

connections to learn invariant structure may eliminate the need to bring in the
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heavy machinery of supervised learning algorithms required by the prediction

paradigm. Specifically, this holds for linear problems, where the stimuli lie near

a hyperplane in the input space: the weight vector of an anti-Hebbian node will

move into a direction normal to that hyperplane, thus characterizing the invariant

structure.

Hebbian feature detectors attain maximal activation for the class of stim-

uli they represent. Since the weight vectors of anti-Hebbian invariance detectors

are normal to the invariance class they represent, membership in that class is

signalled by a zero activation. In other words, linear anti-Hebbian nodes signal

violations of the constraints they encode rather than compliance. As they remove

rather than extract the variance within a stimulus class, anti-Hebbian nodes thus

present a very different output representation to subsequent layers: instead of

maximum information preservation, they perform maximum information reduc-

tion.

II.B Random Stereogram Experiments

We applied feedforward anti-Hebbian learning to the task of unsuper-

vised extraction of stereo disparity from random stereograms. Note that stere-

ograms of a given disparity lie on a hyperplane whose dimensionality is half

that of the input space plus the disparity in pixels. This is readily appreciated

by considering that given, say, the left half-image and the disparity, one can pre-

dict the right half-image except for the new pixels shifted in at the left or right

edge. Thus stereo disparities that are small compared to the receptive field width

can be learned equally well by Hebbian and anti-Hebbian algorithms; when the

disparity approaches receptive field width, however, anti-Hebbian nodes have a

distinct advantage.
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Figure II.2: Sample input stereogram with disparity 1.823.

II.B.1 Experimental Setup

Our goal was to obtain disparity tuning by having a layer of anti-Hebbian

nodes compete for invariance to stereo stimuli with a range of disparities. A

training set consisting of 5,000 stereograms of one-dimensional frontoparallel

surfaces was created as follows: Each surface was given a brightness profile

by densely covering it with Gaussian features of random location, width, and

brightness. Parallel projection was then used to generate left and right half-

images at a uniformly random stereo disparity of up to � � �

�
pixels. To allow

for sub-pixel disparity acuity, the half-images were discretized by integrating

brightness over pixel bins. A typical example of the stimuli resulting from these

operations is shown in Figure II.2.

To provide a positive membership signal for a given invariance class (i.e.

a given disparity), we used bell-shaped activation functions at the outputs. That

is, our layer of anti-Hebbian nodes mapped input vectors
�� to outputs � � via

� � � � � � �� , where � � � �

� � �
�� � � II �

� �

Soft competition (Nowlan, 1990) between the nodes in the layer was then im-

plemented by interpreting the � � as class membership probabilities, normalizing

them by dividing through their sum, then using them to scale the amount by

which the weight vector
�

� � is adjusted:
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Figure II.3: Sliding window average response of first-layer nodes after presenta-
tion of 50,000 stereograms as a function of stimulus disparity: strong disparity
tuning is evident. Each point plotted in Figures II.3, II.6 and II.8 is the average of
a data point and its 250 closest neighbors along the � -axis.

� �

� � � � � � � � � ��
�� � � �

� II � � �

where � is the learning rate, and � ranges over all nodes in the layer. Finally, to

prevent weight vectors from shrinking to zero we explicitly normalized weight

vectors to unit length in the � � (Euclidean) norm after each weight adjustment.
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I N P U T bias
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Figure II.4: Weights of an anti-Hebbian node tuned to disparity -1.

II.B.2 Single Layer: Local Disparity Tuning

Figure II.3 shows that a single cluster of five anti-Hebbian nodes with soft

competition develops near-perfect tuning curves for local stereo disparity after

10 sweeps through the training set. This disparity tuning is achieved by learning

to have corresponding weights (at the given disparity) be of equal magnitude but

opposite sign, so that any stimulus pattern at that disparity yields a zero net input

and thus maximal response (Figure II.4).

Note, however, that this type of detector suffers from false positives:

input patterns that happen to yield near-zero net input even though they have

a different stereo disparity. Although the individual response of a tuned node

to an input pattern of the wrong disparity is therefore highly idiosyncratic, the

sliding window average shown in Figure II.3 is far more well-behaved. This

indicates that the average activity over a number of patterns (e.g. in a “moving

stereogram” paradigm) — or, alternatively, over a population of nodes tuned to

the same disparity — would allow for discrimination of disparities with sub-pixel

accuracy.
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Figure II.5: Architecture of the two-layer network.

II.B.3 Two Layers: Coherent Disparity Tuning

In order to investigate the potential for hierarchical application of anti-

Hebbian learning, we extended the network to two layers, using the architecture

shown in Figure II.5. The two first-layer clusters with non-overlapping receptive

fields extract local stereo disparity as before; their output is monitored by a

second-layer cluster. Note that there is no backpropagation of derivatives: all

three clusters use the same unsupervised learning algorithm. The difficulty of the

task is increased further by allowing each first-layer node connections to only a

randomly chosen five out of seven inputs per half-image.

This network was trained on coherent input, i.e. stimuli for which the

stereo disparity was identical across the receptive field boundary of first-layer

clusters. As shown in Figure II.6, the second layer learns to preserve the first

layer’s disparity tuning for coherent patterns, albeit in in somewhat degraded

form. Each node in the second layer learns to pick out exactly the two corre-
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Figure II.6: Sliding window average response of second-layer nodes after pre-
sentation of 250,000 coherent stereograms as a function of stimulus disparity:
disparity tuning is preserved in degraded form.

sponding nodes in the first-layer clusters, again by giving them weights of equal

magnitude but opposite sign (Figure II.7).

However, the second layer represents more than just a noisy copy of

the first layer: it meaningfully integrates coherence information from the two

receptive fields. This can be demonstrated by testing the trained network on

non-coherent stimuli which exhibit a depth discontinuity between the receptive

fields of first-layer clusters. The overall response of the second layer is tuned

to zero discontinuity, i.e. the coherent stimuli that the network was trained on

(Figure II.8).
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Figure II.7: Weights of a coherence-tuned node in the second layer.
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Figure II.8: Sliding window average of total second-layer response to non-
coherent input as a function of stimulus discontinuity: second layer is tuned
to coherent patterns.
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II.C An Anti-Hebbian Objective Function

Unfortunately it is not sufficient to simply negate the learning rate of

a layer of Hebbian feature detectors in order to turn them into working anti-

Hebbian invariance detectors: although such a change of sign does superficially

achieve the intended effect, many of the subtleties that make Hebb’s rule work

in practice do not survive negation of the learning rate intact. In the stereogram

experiments we were able to work around the problems thus introduced; we now

describe a more comprehensive approach based on the optimization of entropy.

II.C.1 The Weight Differentiation Problem

A simple Hebbian node � � �

�
� �� maximizes the variance of its output

through stochastic approximation gradient ascent (Oja and Karhunen, 1985):

� �

� �
�

� �

�
�
�

�
� � � � �� � � II � � �

where � � � is the learning rate. The magnitude of a weight change is thus pro-

portional to that of the output � , which itself is maximized by Hebbian learning.

Nodes that already respond well to a particular input will therefore outpace their

competitors in learning to respond even better to that stimulus. Where multiple

targets (i.e. directions of high variance) are present, a mild competitive interaction

is therefore sufficient to ensure that nodes will differentiate to pick up distinct

targets.

When anti-Hebbian learning is implemented simply by negating the

learning rate in (II.3) above, the situation is reversed: those nodes that best encode

a given invariant will have the smallest output and therefore experience the least
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Figure II.9: Path of a single anti-Hebbian node through three-dimensional weight
space in response to a mixture stimulus with invariant solutions 
 � � � � � � � � � � � � .
Stochastic trajectories are shown for 100 restarts from random initial positions;
each plots the first two components of the normalized weight vector every 100th
weight update. On the left, (II.3) with � � � � � � �

results in a compromise between
the two targets. On the right, (II.5) with � � � � � �

and �
� � � � � � results in a choice

between the two targets.

change in weights, since anti-Hebbian weight vectors learn to be normal to the

stimuli they represent.

Why should this be a problem? After all, in supervised learning it is

commonplace to minimize a quadratic objective. The critical difference is that

in a supervised network, each output node has a given target, and very efficient

gradient descent techniques exist for approaching this target given a quadratic

error function (Battiti, 1992). In an unsupervised network, on the other hand,

there is no obvious assignment of targets to nodes: a node may have to select

among multiple targets, or multiple nodes may compete for the same target. In

such situations nodes tend to differentiate from each other only if those close to a

target learn faster than those further away.

To give a concrete example, consider the set of three-dimensional input
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vectors
�� that obey the constraint � � � � �

� � � , with � � and � � independently

drawn from a uniform random density. In other words, the inputs lie on the two

intersecting, slanted planes defined by the normal vectors
�� � 
 � � � � � � � � � � � � .

Can anti-Hebbian nodes find these normal vectors?

Figure II.9 plots the path of a single anti-Hebbian node through weight

space for 100 restarts from random initial positions. Weight vectors are normal-

ized to unit length, and only the first two components are shown. When (II.3)

with a negative learning rate is used (left side), the node consistently converges on

the midpoint between the two invariant solutions. This tendency to compromise

rather than differentiate between targets is a direct consequence of the convexity

of the quadratic objective function.

This would suggest that the weight differentiation problem may be ad-

dressed by introducing a concave objective function for anti-Hebbian learning. In

what follows, we derive just such an objective from information-theoretic con-

siderations. When the resulting weight update (II.5) is used in our test problem,

the node consistently picks one of the two invariants as its preferred solution

(Figure II.9, right side).

II.C.2 Anti-Hebbian Learning by Entropy Minimization

Recall that invariant representations can be thought of as performing

maximum information reduction. A node may learn such representations, then,

by minimizing the entropy of its output � , since that is an upper bound on the

transmitted information. The minimization of entropy in a general (nonpara-

metric) sense is unfortunately rather complex; we will discuss it in detail in

Chapter IV. For now we note that the entropy of a given distribution scales with

its log-variance, and are content to simply minimize the log-variance of � . In
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Figure II.10: The proposed anti-Hebbian objective function (II.5) plotted with
values of 1 (solid), 0.1 (dashed) and 0 (dotted) for the noise parameter � .

analogy to (II.3) we form the stochastic approximation gradient ascent rule

� �

� � �
�

� �

�
�
� � � � �

� � � �
��
� � II � � �

Note that for this objective, the magnitude of weight changes is now inversely

related to the average magnitude of � . Nodes closer to an invariant solution will

have smaller average output and therefore adapt faster, thus solving the weight

differentiation problem.

Unfortunately this inversion of magnitude presents a new problem: near

an invariant solution, � will tend to zero, and (II.4) consequently diverges. This

can be prevented by removing the pole from the objective function. We achieve

this by assuming that � is contaminated by independent noise with variance �
�
,

which must therefore be added to the objective:
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� �
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�

� � �
�

�
�

� �
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� �
� � � � II �

� �

Figure II.10 shows the resulting objective for various values of � . Observe how

at
�
�

� � � the steepening logarithmic slope is abandoned in favor of a convex

quadratic function around the minimum. We will now explore how to determine

a value for � that turns this quadratic bowl into a near-optimal trapping region

for simple gradient descent.

II.C.3 A Method for Setting Epsilon

The introduction of � was necessary only because weights are adapted in

discrete steps rather than by true (infinitesimal) gradient descent. This suggests

that � reflect noise introduced by the adaptation process itself, and that an appro-

priate value for it may be derived from the step size of this process. Specifically,

consider the change in � caused by a weight update according to (II.5):

� � � �
�

� � � � � � � � �

� �
� � � �

�
� �

� � � II � � �

To trap the weight vector around � � � we require
�� �

� �
�

�
�

�
; to do so without

oscillations we would prefer
�� �

� � �
�

�
. The latter gives us

�
�

� �
� 
 � � �� � �

� � II � � �

where � � � denotes the � � (Euclidean) norm. We could enforce this condition by

actually setting

� � � � � � 	 � � � � �� � �
� � � 
 � II � � �
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for each input pattern, but this would involve a rather inordinate amount of

computational effort. Instead we note that near an invariant solution �
�

tends to

zero, and suggest using the same value

� � �
� � � where � � �� � � 
 � �� � � II �

� �

for all input patterns. The upper bound � on the input vector length may be

estimated in advance or adapted online; note that outliers of length up to
�

� �
can be tolerated as they result in oscillations but not yet divergence.

II.D Anti-Hebbian Weight Normalization

Whereas Hebb-type learning rules require some form of weight normal-

ization to prevent weight vectors from diverging to infinity, anti-Hebbian learning

requires it to prevent weight vectors from collapsing to zero. As was the case for

the objective function, simply reversing the sign of conventional weight decay

schemes is not sufficient. In what follows we derive a weight growth rule appro-

priate for anti-Hebbian learning from a maximum entropy objective, and discuss

a recent multivariate extension due to (Bell and Sejnowski, 1995).

II.D.1 Conventional Weight Decay Schemes

The popular multiplicative weight decay subtracts a small, fixed propor-

tion of each weight from it. Thus large weights experience a lot of decay but small

ones very little. In combination with Hebbian (variance-maximizing) learning

rules, this results in a balance at intermediate weight sizes. When the learning
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rate is negated, however, the corresponding multiplicative weight growth tends

to diverge: large weights will grow larger ever more rapidly, whereas small ones

experience very little growth and will therefore be extinguished by anti-Hebbian

learning. Clearly a more appropriate scheme must be found.

One could of course avoid this problem by explicitly normalizing weight

vectors, as we did in our stereogram experiments. However, computation of the

weight vector length is nonlocal, and therefore neurobiologically implausible and

computationally unattractive. (Oja, 1982) has developed an “active decay” rule

that locally approximates explicit weight normalization:

� �

� � � � � �� � �
� �

� � � II �

� � �

Here the first term in parentheses represents the standard Hebb rule, while the

second is the active decay. Unfortunately this rule diverges even faster for neg-

ative learning rates (�
� � ), as the active decay is not only proportional to the

size of the weight, but also to the squared output, which scales with the squared

weight vector size. Thus Oja’s rule can not be used in anti-Hebbian nodes either,

and we are forced to develop a non-divergent weight growth scheme ourselves.

II.D.2 Weight Growth by Entropy Maximization

A weight normalization rule should on the average balance the effect of

the given learning algorithm. To derive a weight growth suitable for combination

with our anti-Hebbian weight update (II.5), we therefore use the negation of that

objective as a starting point. We formulate the maximization of output entropy

(log-variance) as
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where � �
�

denotes averaging over input patterns, and
�

is an (as yet unknown)

rate constant. Note that no “noise” is needed here since the pole at � �
� � � � now

serves as a repellor rather than an attractor.

In order to cancel the effect of (II.5) on the size of the weight vector

without affecting its direction, we now assume that the input distribution is

isotropic, so that all directions in weight space become equivalent. At an input

variance of � �
, this gives us

� �
� � � � � �

�
� �� � � �� � �

� � � � �

�
� � �� �� � � �

� � � � � �

� � �
� � II �

�
� �

Since that leaves no structure in the input that could be picked up by (II.11), the

weight growth no longer affects the direction of the weight vector:

� �

� � �� � � �� �� � �

� � �

� � � � �
� � � �

�� � � � � II �

� � �

The proper balance between anti-Hebbian learning (II.5) and weight

growth (II.13) must now be achieved by setting the growth rate
�

appropriately.

To prevent weights from growing inordinately large, we demand that the increase

in � due to weight growth on the average be less than its decrease (II.6) due to

anti-Hebbian learning whenever the output is large already. Thus we require

� � �

� � � � � � � �� � �

� �
� � � � II �

�
� �

Since for large � the noise term �
�

is negligible, this simplifies to
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� �
� � II �

� � �

By definition we have � � �� � � � � � � �
, where � is the number of inputs (i.e. the

dimensionality of
�� ). Condition (II.15) can therefore be satisfied in expectation by

setting
� �

� � .

On the other hand, the weight growth must be strong enough to prevent

a collapse of the weight vector to the point where the node spends most of its time

in the quadratic trapping region given by
�
�

� � � . After all, this would defeat the

entire purpose of having a concave objective function for anti-Hebbian learning.

Noting that the gradient of (II.5) is largest just at the edge of the trapping region,

let us assume that indeed
�
�

� � � for all input patterns. Now set
�

so that in this

worst-case scenario the weight growth still just balances the average anti-Hebbian

gradient:

� � �

� � � � � � �� � � �
� � � � II �

� � �

or simply
� � � � � � , exactly half the upper bound that (II.14) gave us before.

One remaining difficulty is that (II.13) involves � �
, which is typically not

known. However, note that from (II.9) we have

�
� 
 � � � �� � � � � � � � � � � � � �

� � II �

�
� �

In other words, with �
�

we already have an upper bound on the constellation of

rate factors found in the numerator of (II.13). If we have some idea of how tight

a bound that is, it becomes relatively easy to decide on some fixed fraction (less

than a half) of �
�

to use for
� � �

.
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Finally, note that while (II.13) guarantees that the weight vector cannot

collapse to zero length, it does not necessarily prevent it from growing arbitrarily

large. Although (II.14) ensures that large weight vectors can be expected to

shrink in response to isotropically distributed inputs, this does not extend to

arbitrary collections of stimuli. However, that shortcoming is easily corrected

with a conventional multiplicative weight decay, applied at a low rate so as not

to interfere with the anti-Hebbian learning and weight growth terms.

II.D.3 Bell’s Weight Matrix Conditioner

Bell has recently proposed an algorithm for the blind separation and

deconvolution of signals that is based on information maximization (Bell and

Sejnowski, 1995). His derivation includes a multivariate version of entropy maxi-

mization that is capable of conditioning an entire weight matrix. Here we present

this technique for a linear network, and briefly discuss its advantages and limita-

tions.

Consider the linear mapping
�� � � �� , where � is a square matrix. The

probability density at the output can be written as

� � �� � � � � �� � � � � �
� � II �

�
� �

where
�

is the Jacobian of the mapping — in our linear case this is just the

determinant of the weight matrix. Note that � � � � is also the volume of output

space that a unit hypercube in input space is mapped to by � , and that � � � � � �
for any degenerate weight matrix.

A multivariate weight growth scheme can be obtained by maximizing

the joint entropy at the output, which is
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�
� � � �

�
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 � � � � � �� � � � � II �

� � �

For any given input density � � �� � , � � �� � can thus be maximized by gradient ascent

in � � �
�
� � � �

�
. It can be shown that

�
� � � � �

�
� � � �

� �
�
� � � � �

� � II � � � �

that is, the inverse of the transpose of the weight matrix.

Bell’s blind separation algorithm combines this weight growth with an

anti-Hebbian term. Since the characteristic size of (II.20) scales inversely with

that of � itself, it will establish an equilibrium in which weight growth and

anti-Hebbian learning are balanced. Furthermore, since any degeneracy in �
is a repellor for (II.20), this technique serves to improve the conditioning of the

weight matrix, and ensures that it always has full rank.

Unfortunately this desirable behavior is bought at a hefty computational

price: the inversion of the weight matrix for each weight update. Its cost may be

reduced by incremental methods for directly updating the weight matrix inverse,

but there is no escaping the fact that this method is entirely non-local: the update

for each weight must depend on all other weights in the matrix.

Another limitation of this technique is that it works only for square

weight matrices, since otherwise the determinant is not defined. This all but rules

out the application of Bell’s conditioner in the high-dimensional input domains

commonly encountered in unsupervised learning and projection pursuit. It may

be possible to circumvent this problem by resorting to a pseudo-inverse method,

though Bell has reported negative results with this approach (Bell, personal com-

munication).
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II.E Summary

We have introduced feedforward anti-Hebbian learning as a method for

picking up invariant structure from input data, and demonstrated it on a visual

task: competing anti-Hebbian nodes were able to extract disparity and coherence

information from random stereograms. We found that the negation of the learning

rate introduces subtle but pervasive problems; they can be corrected by deriving

anti-Hebbian learning as an entropy optimization algorithm.

The preceding chapter is in part based on material originally published

in (Schraudolph and Sejnowski, 1992). The dissertation author was the primary

investigator and the dissertation advisor supervised the research for this chapter.



Chapter III

Binary Information

Gain Optimization

We present the information-theoretic derivation of a learning algorithm

that clusters unlabelled data with logistic discriminants. In contrast to meth-

ods that try to preserve information about the input patterns, we maximize the

information gained from observing the output of soft binary discriminators im-

plemented with sigmoid nodes. We derive a local weight adaptation rule via

gradient ascent in this objective and demonstrate its dynamics on synthetic and

real data sets.

Since binary information gain optimization creates distributed represen-

tations, lateral inhibition can not be used to encourage differentiation between

the nodes within a layer. We experiment with decorrelation but find it too re-

strictive and computationally unattractive. We therefore develop an alternative

technique in which competition is based on neural plasticity rather than activity.

Such plasticity-mediated competition extends the computational advantages of

simple inhibition to distributed representations.

42
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III.A Introduction

Unsupervised learning algorithms may perform useful preprocessing

functions by preserving some aspects of their input while discarding others. This

can be quantified as maximization of the information the network’s output carries

about those aspects of the input that are deemed important. (Linsker, 1988)

suggests maximal preservation of information about all aspects of the input.

This Infomax principle provides for optimal reconstruction of the input in the

face of noise and resource limitations. The I-max algorithm (Becker and Hinton,

1992), by contrast, focusses on coherent aspects of the input, which are extracted

by maximizing the mutual information between networks looking at different

patches of input.

This work aims at recoding clustered data with adaptive discriminants

that selectively emphasize gaps between clusters while collapsing patterns within

a cluster onto near-identical output representations. We achieve this by max-

imizing information gain — the information gained through observation of the

network’s outputs under a probabilistic interpretation.

III.A.1 Logistic Discrimination

Consider a node that performs a weighted summation on its inputs
��

and squashes the resulting net input � through a nonlinear function � :

� � � � � � , where � � �

� �
�� � � III �

� �

We would like the output of this node to reflect the probability that some binary

feature � is present in the input, that is, � � � 	 � � � . What is the appropriate

nonlinearity � for this purpose?
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We earlier introduced softmax (I.12) as a probabilistic model for choice

among alternatives. For just a single node, however, there are no alternatives to

choose from, so softmax degenerates into producing a constant output of ‘1’. We

can augment (I.12) with an additional zero-energy state denoting “none of the

above” though:

� � � � � � �
� � � �� � � � �

�

� III � � �

For a single node, this augmented softmax rule reduces to

� � � � �
�

� � � � �
�

�
� � � � � � III � � �

which is known as the logistic activation function with gain � .

This function can also be derived from a Bayesian argument: without

loss of generality, assume that the net input � is 1 if � is present, and -1 otherwise.

(Weights and bias can be adjusted so as to make this true.) Furthermore assume

that on average � is present half the time, and that the net input is corrupted with

additive Gaussian noise of standard deviation � , so that the distribution of � is an

even mixture of the two Gaussian densities

� � � � � �
�

�
�

� �
e

� � � � � � � � � � � � III � � �

We now use Bayes’ Rule to find the posterior probability of � given � :

� 	 � � �
� � � � 	 � �

�
� � � 	 � � �

� 	 � �
�
� � � 	 � � � � � 	 � �

� �
� � � 	 � �

� �

� � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � �
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�
�

�
� � � � � � � � (III.5)

which is the logistic function with gain � � � �
.

The logistic function is thus a natural choice of nonlinearity for perform-

ing “soft” (probabilistic) binary discrimination (Anderson, 1972). We will now

derive a learning algorithm that uses logistic nodes to seek out informative binary

features of the input data.

III.B Mathematical Derivation

Our algorithm uses logistic nodes with unity gain to search for infor-

mative directions in input space by maximizing the information gained about

an unknown binary feature in the input data through observation of a particular

value of a node’s output � . This binary information gain is defined as

� � � � � � � � �� � � � � � � � � III � � �

where
� � � � is the binary entropy of � under the probabilistic interpretation, and

�� is an estimate of � based on prior knowledge. The design of a suitable estimator

offers a flexible way of incorporating prior information and expectations into the

algorithm; we will describe a number of specific choices later. We now derive a

learning algorithm that performs gradient ascent in the binary information gain

objective.
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III.B.1 Conditions on the Estimator

The estimator
�� will always involve some form of temporal averaging

over input patterns, denoted by the � �
�

operator; this may be implemented with

either batch learning or exponential traces.

To simplify (III.12) below we require that the estimator be

� unbiased: � �� � � � � �
, and� “honest”: �� � �� � �� � � �� �

.

The honesty condition ensures that the estimator has access to the esti-

mated variable only on the slow timescale of averaging, thus eliminating trivial

“solutions” such as
�� � � . For an unbiased and honest estimator,

� ��� � �
�

� � � �� � �
�

� � � � � �
� � �� � � � �

� � III � � �

Note that while these conditions will be necessary in order to put our

learning rule into a simple form, our practical experience suggests that it suffices

to use them as design principles for estimators rather than absolute mandates.

For the sake of clarity and efficiency of implementation, we often found ourselves

preferring estimators that technically violate these conditions but nonetheless

worked perfectly well in the experiments described below.

III.B.2 Binary Entropy and its Derivative

The entropy of a binary random variable � as a function of � � � 	 � � � is

given by

� � � � � � � � � � � � � �
� � � � � � � �

� � � � � III � � �
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its derivative with respect to � is

�
� �

� � � � � � � � � � � � � � � � � � � � III �

� �

Since � in our case is produced by the unity gain logistic function

� � � � � � �
�

�
� � � � � � III �

� � �

this conveniently simplifies to

�
� �

� 
 � � � � � � � � � � � � �
�

� � � � � � � � �
� �

� � � � � � � �
� � III �

� � �

III.B.3 Gradient Ascent in Information Gain

We maximize (III.6) by gradient ascent in weight space:

� �

� � �
� �

�
� � � � �

�
� �� �

�
�

�
� � 
 � � �� � � � � � � �

�
� �� � �

� �

� �

� � � ��� � �
�

� ��
� � �� � �

�
� �

� � � � �
� � � � � � �� � � �

� ��� � �
�� � � (III.12)

where estimation of the node’s output � has been replaced by that of its net input � .

Substitution of (III.7) into (III.12) yields the binary information gain optimization
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�� � �� �
� � � � �
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�

Figure III.1: Phase plot of derivative
�� against net input � for the BINGO rule

(III.13). Curves are plotted for
�� � 	 � � � � � � � � � � 


; see text for further discussion.

(BINGO) rule

� �

� � � � � � � �� � � � �� � � � III �

� � �

III.C Discussion of a Single Node

III.C.1 Dynamics of Adaptation

The weight change dictated by (III.13) is proportional to the product of

three factors:

� the derivative of the logistic squashing function,� the presynaptic input vector
�� , and� the difference between actual and anticipated net input.

The dynamical behavior of a single BINGO node is best understood

from a phase plot that graphs the derivative of the objective function (III.6) with

respect to net input — let us call it
�� — against the net input � itself. Figure III.1

shows such a phase plot for seven different values of
�� . The central curve (

�� � � )
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is identical to that of the straightforward Hebb rule for sigmoid nodes: both

positive and negative net inputs are equally amplified until they reach saturation.

For non-zero values of
�� , however, the curves become asymmetric: positive

��

favor negative changes
�� and vice versa. Since

�� attempts to predict � from its

time-averaged behavior, this negative feedback effectively stabilizes the learning

dynamics.

The simplest estimator for a single node is just the average net input,

that is
�� � � �

�
. Since this has the effect of centering net inputs around zero, the

node will converge to a state where its output saturates to one for roughly half of

the input patterns, and to zero for the other half.

It must be noted that such a state is realized by any sufficiently large

weight vector that bisects the data, regardless of its direction. However, simple

gradient ascent is both greedy and local in weight space. Thus if learning pro-

ceeds in incremental steps from small random weights, the node is effectively

biased towards discriminations that can be made confidently with smaller weight

vectors. This is the case whenever the discriminant falls into a gap between two

clusters of data.

To illustrate this behavior we have tested a single node running our

algorithm on a set of vowel formant frequency data due to (Peterson and Barney,

1952). This data set contains a total of 1514 utterances of 10 different vowels

by men, women and children; its most prominent feature is a central gap that

separates front from back vowels. This gap runs nearly parallel to the principal

component direction of the data, however, and thus escapes detection by standard

Hebbian learning rules.

Figure III.2 shows (from left to right) the initial, intermediate and final

phase of this experiment, using a visualization technique suggested by (Munro,

1992). Each plot shows a set of three lines superimposed on a scatter plot of the
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� �

Figure III.2: A single BINGO node discovers the distinction between front and
back vowels in an unlabelled data set of 1514 multi-speaker vowel utterances due
to (Peterson and Barney, 1952). Superimposed on scatter plots of the data are
lines indicating the state of the node in the (from left to right) initial, intermediate,
and final phase of learning. In each set of lines, the central one is the pre-image
of zero net input to the node, delineating its binary decision boundary. The two
lines flanking it are pre-images of � � �

�
� � in input space, indicating the size of

the weight vector. The discovered feature lies in nearly orthogonal direction to
the principal component of the data.

data. The central line in each set is the pre-image of zero net input to the node;

it marks the binary decision boundary between outputs closer to one and those

closer to zero. The two lines flanking it are the pre-images of � � �
�

� � in input

space; they delineate the non-saturated region where the node has significant

plasticity � � � � � . They also provide an indication of weight vector size: the larger

the weight vector, the smaller the region of plasticity, and vice versa.

As demonstrated in this figure, our algorithm is capable of proceeding

smoothly from a small initial weight vector that responds in principal compo-

nent direction to a solution which uses a large weight vector in near-orthogonal

direction to successfully discriminate between the two data clusters.
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III.C.2 Plasticity-Weighted Estimator

Using just the average as prediction introduces a strong preference for

splitting the data into two equal-sized clusters. While such a bias is appropriate

in the initial phase of learning, it fails to take the nonlinear nature of (III.13) into

account: if the most salient binary features divide the input data unevenly, BINGO

should be allowed to learn them nonetheless. This can be achieved by basing the

estimator
�� only on input patterns within the node’s region of plasticity, so that

the balance of patterns for which the node saturates at zero or one no longer

affects learning.

We therefore discount input in the saturation regions of � by weighting

the average net input by the node’s plasticity:

�� � � � � � � � � � �
� � � � � � �

� � � � III �

�
� �

where � is a very small positive constant introduced to ensure numerical stability

in the limit of zero plasticity. With this plasticity-weighted estimator, the bias for

splitting the data evenly is gradually relaxed as the network’s weights grow and

data begins to fall into the saturation regions of � .

III.C.3 Related Work

By maximizing the difference of actual from anticipated response, the

BINGO algorithm makes binary discriminations that are highly informative with

respect to clusters in the input. The weight change in proportion to a difference in

activity is reminiscent of the covariance rule (Sejnowski, 1977):

� �

� � � �� � � �� � � � � � � �
� � � � III �

� � �



52

Note that the presynaptic normalization by � �� �
is not essential since

� � �� � � � � � �
� � � � � �� � � � � � �

� � � � �� � � � �
�

� � �
� � � � � � III �

� � �

The BINGO algorithm is a generalization of the covariance rule (without

presynaptic normalization) in two important respects:

� it incorporates a nonlinearity that introduces the plasticity � � � � � , and� the estimator
�� need not necessarily be the average net input � �

�
.

Both of these are critical improvements: the first allows the node to

respond only to inputs in its non-saturated region, and hence to learn local features

in projections other than along the principal component direction. The second

provides a convenient mechanism for extending the algorithm by incorporating

additional information in the estimator.

We share the goal of seeking highly informative, bimodal projections of

the input with the Bienenstock-Cooper-Munro (BCM) algorithm (Bienenstock et al.,

1982). In our notation, the BCM learning rule according to (Intrator, 1990, 1991a,

1991b, 1992) is

� �

� � � � � � � ��
�

�
�

� �
� � � �

� � �
� � III �

�
� �

Whereas in the derivation of BINGO some of the nonlinearities cancel

(III.11), yielding a relatively straightforward learning rule, here they compound

into a rather complicated polynomial. The phase plot (Figure III.3) shows that the

adaptive baseline � � � �
stabilizes the dynamics of BCM in the same manner as the

estimator does for BINGO. A fundamental difference, however, is that our algo-

rithm makes symmetric binary discriminations whereas BCM learning is clearly
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�� � �� � BCM
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Figure III.3: Phase plot of
�� against � for BCM learning with � � � � � 	 � � � � � � � � �

� 

.

Note the asymmetry of BCM in comparison to the BINGO dynamics (Figure III.1).

asymmetric, learning preferentially from patterns that produce a moderately pos-

itive net input. Indeed BCM tends to produce highly selective nodes that are

active for only few inputs each, resulting in a sparse recoding of the input.

III.D Extension to Multiple Nodes

A learning algorithm for just a single node has of course only limited

utility. To extend BINGO to a layer of nodes, some form of competitive interaction

is required for the nodes to differentiate and efficiently complement each other in

finding binary features.

Lateral inhibition is the simplest competitive mechanism: the most active

nodes suppress the ability of their peers to learn, either directly or by depressing

their activity. Since inhibition can be implemented by diffuse, nonadaptive mech-

anisms, it is an attractive solution from both neurobiological and computational

points of view. However, inhibition can only form either localized (unary) or

sparse distributed representations, in which each output has only one state with

significant information content.

For fully distributed representations, schemes to decorrelate (Barlow
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and Földiák, 1989; Leen, 1991) and even factorize (Schmidhuber, 1992; Bell and

Sejnowski, 1995) node activities do exist. In what follows, we introduce a decor-

relating estimator, and discuss its limitations. We then suggest an alternative

competition mechanism based on neural plasticity that extends the advantages

of lateral inhibition to distributed representations. Finally, we establish a close

relationship between the plasticity and the entropy of a logistic node that pro-

vides an intuitive interpretation of plasticity-mediated competitive learning in

this context.

III.D.1 Decorrelating Estimator

Fortunately our framework is flexible enough to accommodate lateral

differentiation in a less intrusive manner: by picking an estimator that uses the

activity of every other node in the layer to make its prediction, we force each node

to maximize its information gain with respect to the entire layer. To demonstrate

this technique we use the linear second-order estimator

�� � � � � � �
� �� �� �

� � � � � � � � � � � � � III �

�
� �

to predict the net input � � of the
� � �

node in the layer, where the � �
�

operator denotes

averaging over a batch of input patterns, and � � � is the empirical correlation

coefficient

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �

�

� III �

� � �

Alternatively, this may be written in matrix notation as

��� � �� � � � �� � � � � � �� � � �� � � � � III � � � �
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� �

Figure III.4: Layer of three decorrelating BINGO nodes (Equations III.13 & III.20)
adapts to a mixture of three Gaussian clusters. The final state (on the right) for
the experiment shown was a local minimum in which each node split the input
data evenly. See Figure III.5 below for an alternative outcome.

where � �� is the autocorrelation matrix of
�� , and � the identity matrix.

Figure III.4 shows a layer of three such nodes adapting to a mixture of

three Gaussian distributions, with each node initially picking a different Gaus-

sian to separate from the other two. After some time, all three discriminants

rotate in concert so as to further maximize information gain by splitting the in-

put data evenly. Note that throughout this process, the nodes always remain

well-differentiated from each other.

For most initial conditions, however, the course of this experiment is that

depicted in Figure III.5: two nodes discover a more efficient way to discriminate

between the three input clusters, to the detriment of the third. The latecomer

repeatedly tries to settle into one of the gaps in the data, but this would result

in a high degree of predictability. Thus the node with the shortest weight vector

and hence most volatile discriminant is weakened further, its weight vector all

but eliminated.
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� �

Figure III.5: Most initial conditions for the experiment described in Figure III.4
lead to a minimal solution involving only two nodes, as is the case in the outcome
shown here. The weakest node is “crowded out” in an instance of Occam’s razor,
its weight vector reduced to near-zero length.

III.D.2 Limitations of Decorrelation

Unfortunately the autocorrelation matrix � �� is computationally expen-

sive to maintain; in connectionist implementations it is typically approximated

by weighted lateral anti-Hebbian connections whose adaptation must occur on

a faster time scale than that of the feedforward weights for reasons of stability

(Leen, 1991). In practice this means that feedforward learning must be slowed

rather dramatically. Performance considerations aside, the capability of biological

neurons to implement decorrelation seems questionable.

In addition, decorrelation can be inappropriate when nonlinear objec-

tives are optimized — in our case, note that two prominent binary features may

well be correlated. Consider the “three cigars” problem illustrated in Figure III.6:

the decorrelating predictor (left) forces the two nodes into a near-orthogonal ar-

rangement, interfering with their ability to detect the parallel gaps separating

the data clusters. For the BINGO algorithm, decorrelation is thus too restrictive

a constraint: all we require is that the discovered features be distinct. In what

follows, we describe a gentler form of competition that we have devised.
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Figure III.6: In the “three cigars” problem, elongated data clusters are separated
by two narrow, parallel gaps. On the left, a two-node BINGO network using
decorrelation (Equations III.13 & III.20) fails to separate the three clusters. On the
right, the same network using plasticity-mediated competition (Equations III.14
& III.21) succeeds.

III.D.3 Plasticity-Mediated Competition

We can extend the advantages of simple inhibition to distributed rep-

resentations by decoupling the competition from the activation vector. This is

achieved by using neural plasticity — the derivative of a logistic activation func-

tion — instead of activity as a medium for competition. Plasticity is low for both

high and low activation values but high for intermediate ones (Figure III.7); dis-

tributed patterns of activity may therefore have localized plasticity. If competition

is controlled by plasticity then, simple competitive mechanisms will constrain us

to localized plasticity but allow representations with distributed activity.

Since a node’s plasticity is inversely related to the magnitude of its net

input and hence its confidence in making a binary discrimination, lateral excitation
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Figure III.7: Activity � and plasticity � � of a logistic node as a function of its net
input � . Vertical lines indicate those values of � whose pre-images in input space
are depicted in Figures III.2–III.6.

rather than inhibition is the appropriate competitive interaction. Thus we revert to

the simple predictor of Equation III.14 while adding a global, plasticity-mediated

excitation factor to the weight update:

� �

� � � � � � � � � �� � � � � �� � � �� � � � � � � � III � �
� �

As Figure III.6 (right) illustrates, this arrangement solves the “three cigars” prob-

lem.

To test this algorithm in a more challenging, high-dimensional envi-

ronment, we applied it to the database of 1200 handwritten digits described in

Figure III.8. We wanted to find out how much information about the identity of

the digits would be preserved if a BINGO network was used to radically com-

press the database. Note that four bits are required at a minimum to specify one

of the ten digit classes. Each BINGO node is capable of providing up to one bit of

information, so the smallest network that could in theory preserve digit identity

has four nodes.
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Figure III.8: A sample of the handwritten digit database due to (Guyon et al.,
1989). The digits have been segmented, normalized, sampled at 16x16 pixel
resolution, thresholded to one bit per pixel, and labelled. The database contains
ten instances of each digit written by each of 12 people, for a total of 1200 images;
shown here is the first instance for each writer (across) and digit (down).

We therefore gave the digit images — though none of the labels providing

the identity of the writer or digit — as input to a four-node BINGO network with

plasticity-mediated competition (Equations III.14 & III.21). This unsupervised

network developed binary feature detectors of a distinctly “digit-like” character

(Figure III.9). In fact, the learned weights resemble contrapositions of two distinct

prototypical digits — exactly what one might expect a binary feature in this

domain to look like.

The remaining conditional entropy over digit identity given the trained

network’s four-bit binary output was found to be 1.67 bits. Since it takes about
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Figure III.9: Weights found by a four-node network running the plasticity-
mediated BINGO algorithm (Equations III.14 & III.21) on the handwritten digit
database described in Figure III.8. Although the network is unsupervised, its
four-bit output preserves half of the information necessary to identify the digits.

twice as much information (namely, � � � � � � � � � � � bits) to identify a digit a priori,

the BINGO network has learned to preserve about half of the information that

would be needed for perfect recognition of the digits in this database. Given that

it has compressed each image by a factor of 64 (from 256 bits down to 4 bits) at

the same time, we find this result encouraging for an unsupervised network.

III.D.4 Plasticity and Binary Entropy

It is possible to establish a relationship between the plasticity � � of a

logistic node and its entropy that provides an intuitive account of plasticity-

mediated competition as applied to BINGO. Consider the binary entropy

� � � � � � � � � � � � � �
� � � � � � � �

� � � � III � � � �

A well-known quadratic approximation is

�� � � � � �
� � � �

� � � � � � � � � III � � � �
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Now observe that the plasticity of a logistic node

� � � � � �
�

� �

�

�
� � � � � � � � � � � �

� � � � III � � � �

is in fact proportional to
�� � � � — that is, a logistic node’s plasticity is in effect

a convenient quadratic approximation to its binary output entropy. The overall

entropy in a layer of such nodes equals the sum of individual entropies less their

redundancy:

� � �� � � ��
� � � � � � � � �� � � III � �

� �

The plasticity-mediated excitation factor in (III.21),

�� � � � � � � � ��
�� � � � � � � III � � � �

is thus proportional to an approximate upper bound on the entropy of the layer,

which in turn indicates how much more information remains to be gained by

learning from a particular input. In the context of BINGO, plasticity-mediated

competition thus scales weight changes according to a measure of the network’s

ignorance: the less it is able to identify a given input in terms of its binary features,

the more it tries to learn doing so.
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III.E Summary

Logistic nodes can be thought of as making a probabilistic binary dis-

crimination. By maximizing the information gain of this process we have derived

BINGO, a nonlinear Hebbian learning rule that is able to make discriminations

far from the principal component direction. Seeking to extend this algorithm to

multiple nodes, we have introduced a decorrelating estimator, and discussed its

limitations.

We then suggested plasticity-mediated competition as an alternative

technique which extends the advantages of lateral inhibition to the fully dis-

tributed representations produced by the BINGO algorithm. Finally, we have

established a relationship between the plasticity and binary entropy of a logistic

node, providing a link between the competitive and feedforward aspects of our

objective.

The preceding chapter is based on material originally published in

(Schraudolph and Sejnowski, 1993) and (Schraudolph and Sejnowski, 1995). The

dissertation author was the primary investigator and the dissertation advisor

supervised the research for this chapter.



Chapter IV

Nonparametric Entropy

Optimization

We derive a family of differential learning rules that optimize entropy

by way of Parzen window density estimation. In contrast to the preceding chap-

ters, this nonparametric approach assumes that the data density is a regularized

version of the empirical sample rather than a particular functional form. We

implement an efficient maximum likelihood technique for optimizing the regu-

larizer, and address problems associated with quantized data and finite sample

size.

Parzen window density estimates are similar to those obtained from a

histogram, but are smooth and differentiable. This makes the derived entropy

estimate amenable to optimization by gradient descent. The resulting weight up-

date is a surprisingly simple and efficient batch rule that operates on pairs of input

samples; its implementation can be tuned for data-limited or memory-limited op-

eration. Finally, we describe a highly successful application of nonparametric

entropy optimization to the pose alignment problem in computer vision, due to

(Viola, 1995).

63
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IV.A Nonparametric Density Estimation

Parametric models are constructed by fitting the parameters of a given

functional form to the empirical sample. This is commonly done by the maximum

likelihood method, which picks the model that has the highest probability of recre-

ating the sample. Nonparametric methods, by contrast, use the sample points

directly to define the model.

IV.A.1 Basic Parzen Window Method

The nonparametric technique of Parzen window (or kernel) density esti-

mation (Duda and Hart, 1973, chapter 4.3) assumes that the probability density

is a smoothed version of the empirical sample. Its estimate
�� � � � of a density

� � � � � � 	 
 � � � � is simply the average of radial kernel functions � centered on the

points in a sample � of instances of � :

�� � � � �
�

�
�

� �
� � � �

� � � � � � � � � IV �

� �

This Parzen density is an unbiased estimate for the true density of � corrupted

by noise with density equal to the kernel (or window) function � . We assume

that this is a Gaussian

� � � � � � e � � � � � � � � �

�
�

� �
� IV � � �

with a given variance � �
. Other choices such as Cauchy kernels are possible but

will not be pursued here.

Although Parzen window density estimation does suffer from the curse
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Figure IV.1: Parzen window density estimate
�� � � � for 100 points (shown as vertical

bars) randomly sampled from a uniform distribution over the interval [0.3,0.7].
Depending on the kernel width � ,

�� � � � may be underregularized (dotted line),
overregularized (dashed line), or “just right” (solid line).

of dimensionality (that is, the required sample size grows exponentially with di-

mensionality), it is quite applicable to multivariate distributions of moderate

dimensionality. For this purpose we utilize the multivariate Gaussian kernel

function

� � � �� � � e � ��
�� � � � � ��

� � � � �
�

� � � �� �
� IV � � �

where � is the dimensionality of
�� , and

�
the � � � covariance matrix of the kernel.

It can be shown that under the right conditions
�� � � � will converge to

the true density � � � � as
�
�

�
� � . For our Gaussian kernels, these conditions

can be met by letting the variance of the kernel shrink to zero slowly enough
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as the sample size approaches infinity. The variance � �
(or covariance matrix

�
,

respectively) of the kernel is an important regularization parameter in any event,

as it controls the smoothness of the Parzen density estimate. In the following

section we address the question how to set this parameter optimally.

IV.A.2 Maximum Likelihood Kernel Shape

Figure IV.1 illustrates that the Parzen window density estimate is highly

dependent on the width � of the kernel function, which serves to regularize the

estimate. When � is too small (dotted line),
�� � � � overly depends on the partic-

ular sample � from which it was computed: the estimate is underregularized.

Conversely, when � is too large (dashed line),
�� � � � is overregularized: it becomes

insensitive to � , taking on the shape of the kernel function regardless of the true

density � � � � . Between these extremes, the kernel that best regularizes the density

estimate (solid line) can be found via the maximum likelihood method.

The maximum likelihood kernel is the one that makes a second sample
�

drawn independently from � � � � most likely under the estimated density
�� � � �

computed from the first sample, � . For numerical reasons it is preferable to

optimize the log-likelihood
�
� , defined as

�
� � � � � �

� � � �
�� � � � � � �

� � � �
� � � �� � � � � � � IV � � �

Note that the right-hand side of (IV.4) has the form of an empirical entropy.

Indeed we have

�
� � �

� � � �� � � � � � IV �

� �

where
�� � � � is the empirical entropy of � computed from the Parzen density

�� � � � .
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The optimization of
�� � � � , albeit with respect to a different set of parameters, is

indeed the central goal of this chapter, and we shall return to it later. For now, let

us note that maximizing the likelihood is equivalent to minimizing the empirical

entropy with respect to kernel shape.

With the Parzen density estimate (IV.1) installed, (IV.4) becomes

�
� � �

� � � �
� � � �

� � � �
� � � � � � � � � �

� � �
� � �

�
�

�
� � IV � � �

In the multivariate version, the derivatives of
�
� with respect to the elements of

�
are unfortunately rather complicated. We simplify the situation by assuming

that
�

is diagonal, with diagonal elements � �
� , where � � �

� � � � � � � . In that case we

have

�
� � �

� � � �� � �
�

� �
� 
 �� � �

�

� �
�

�
� � � � � �� � � � IV � � �

where the 
 � � � operator extracts the � th element of a vector. The gradient of
�
� with

respect to � � is therefore

�
� � �

�
� � �

�� � � �
�
�� � � �

�

� �
� 
 �� � �

�� � � �
�

� �
�

�
� � � � � �� � � � � IV � � �

where

� � � �� � � � � � �� � �
�� �

�
�� � � �

� � � �� � �
�� � � � IV �

� �

is a proximity factor that weighs how close
�� is to

�� � relative to all other points in � .

For Gaussian kernels,
� � is in fact equivalent to the softmax nonlinearity (Bridle,

1990) given in (I.12) operating on the squared Mahalonobis distance (Duda and
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Hart, 1973)

�
� � �� � � �� � � � � �� � � IV �

� � �

Thus if
�� is significantly closer (in the Mahalonobis metric) to

�� � than any other

element of � , the proximity factor
� � � �� � will approach one; conversely it will tend

to zero if there is some other point in the sample that lies closer.

IV.A.3 Efficient Gradient Ascent in Likelihood

The obvious way to maximize the log-likelihood
�
� by gradient ascent

would be to use a recurrence such as

� � � � �
� � � � � � � � � � � � � � � � where � � � � � �

� �
�� � �

����� � � � �
� IV �

� � �

However, this approach has two severe drawbacks. Firstly, the � � may range

over many orders of magnitude, and no single step size parameter � can serve

adequately over such a range. Secondly, there is the danger of stepping to a zero

or negative kernel width, with disastrous results.

Figure IV.2 (solid line) shows
��

(and thus
�
� ) as close to quadratic in

� � � � . This suggests that gradient ascent in
�
� with respect to the � � � � � could be

very effective. This amounts to using the recurrence

� � � � �
� � � � � � � � e � � � � � � � � � � � � � � � � � IV �

�
� �

which indeed optimizes the log-likelihood elegantly and efficiently. For even

faster and more robust convergence we can adapt the step size parameters � � � � �
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via a mechanism akin to the delta-bar-delta algorithm (Jacobs, 1988):

� � � � �
� � �

���
��

� � � � � � if � � � � � � � � � �
� � � � �

� � � � � � � otherwise.
� IV �

� � �

We find that this algorithm reliably converges to the optimal kernel shape in just

a few iterations.

IV.A.4 Quantization and Sampling Issues

Above we have derived an efficient algorithm that optimizes the kernel

shape for the Parzen estimate when given two independent samples from a con-

tinuous density. In practice, empirical data does not conform to these conditions:

we are likely to be given a finite set of quantized data points to work with. Both

quantization and finite sample size severely distort the likelihood estimate
�
� ; we

now introduce techniques that correct for this distortion.

Consider the plot of estimate entropy (proportional to the negated log-

likelihood) vs. kernel width shown in Figure IV.2. The true entropy of the uniform

density we are sampling from is zero, yet the likelihood computed according to

(IV.6) monotonically increases for ever smaller kernel widths (dotted line).

The culprit is quantization: the sample points were given with three

significant digits, that is, quantized into bins of width � � � � � � �
. When several

samples fall into the same bin, they end up being considered exactly the same. In a

real-valued space, such a coincidence would be nothing short of miraculous, and

in an attempt to explain this miracle, maximum likelihood infers that the density

must be a collection of delta functions centered on the sample points. This is of

course unsatisfactory.

We can correct this problem by explicitly adding the quantization noise
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Figure IV.2: Estimated entropy
��

vs. kernel width � for 1,000 points drawn from a
uniform density (true entropy:

� � � ), quantized to 3 decimal places ( � � � � � � �
).

Solid line is the correct estimate, using � � � � � 	 � � 
 and (IV.14) with � � � � � .
Dashed line shows the distortion caused when using � � � �

, failing to omit the
diagonal terms from the double summation in (IV.6). Dotted line results when
� � � is used, reflecting a failure to take the quantization of the data into account.
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back into our quantized sample. That is, for a quantization bin width of � , we

replace (IV.1) with

�� � � � �
�

�
�

� �
� � � �

�
� � � � � � � � �

� � � � �
� � IV �

�
� �

where � can take on one of two values: in a worst-case scenario, the quantized

samples are all � � � from their true location, so the variance of the quantization

noise is given by � � � � � . For the average case, we assume that true sample

locations are distributed uniformly within each quantization bin, resulting in a

third of the worst-case variance, or � � � � �
� .

Figure IV.2 shows that with the addition of quantization noise variance

(dashed line), the likelihood estimate does acquire an optimum. However, it is

located at a kernel width equal to � , so that there is no significant smoothing of

the quantized density. Furthermore, the estimated entropy at the optimum is far

from the true value
� � � . This indicates that another problem remains to be

addressed, namely that of finite sample size.

The maximum likelihood estimate (IV.6) assumes that
�

and � are inde-

pendently drawn samples from the same density. In practice we may be given a

single, large sample from which we subsample
�

and � . However, if this is done

with replacement, there is a non-zero probability of having the same data point

in both
�

and � . This leads to a problem similar to that of quantization, in that

the coincidence of points biases the maximum likelihood estimate towards small

kernel widths. The dashed line in Figure IV.2 shows the case where both samples

are in fact identical, so that the diagonal terms in
�

� � distort the estimate.

This problem can be solved by prepartitioning the data set into two

subsets, from which
�

and � are subsampled, respectively. In a data-limited

situation, however, we may not be able to create two sufficiently large sets of
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samples. In that case we can make efficient use of all available data while still

ensuring
� �

� � � (i.e. no sample overlap) through a technique borrowed from

leave-one-out crossvalidation: for each � � � �
in the outer sum of (IV.6), let the

inner sum range over � � � � � 	 � � 
 . The solid line in Figure IV.2 shows the estimate

obtained with this technique; at the optimum the estimated entropy comes very

close to the true value of zero.

IV.B Optimization of Empirical Entropy

Now that we have developed reliable and efficient techniques for Parzen

window density estimation with optimal kernel shape, we shall use them to cal-

culate and optimize the entropy in the output of an unsupervised neural network.

IV.B.1 Nonparametric Entropy Estimate

Recall that the entropy of a random variable � can be approximated

empirically from a sample
�

of instances of � :

� � � � � �
�

� � � � � � � � � � � � � � �
�

� � � �
� � � �

� � � � � � � � � � IV �

� � �

where � � � � � � 	 
 � � � � is the probability density of � . In a neural network

learning task, � � � � is normally not explicitly available — in general, we are given

only a supply of instances of � . However, we can now use the Parzen window

technique to infer an estimated density
�� � � � from these samples via (IV.1), and

use that to obtain a nonparametric estimate of the empirical entropy of � :
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�� � � � � �
�

� � � �
� � � �

� � �
�� � � � � � �

�

� � � �
� � � �

� � � �
� � � �

� � � � � � � � � � � � �
�
�

�
� � IV �

� � �

Note the close similarity to the empirical likelihood (IV.4) — in fact, the points we

have made there regarding the adverse effects of quantization and finite sample

size, and how to overcome them, equally apply to the estimation and optimization

of
��

here.

IV.B.2 Gradient of Estimated Entropy

Consider the situation where � is in fact produced by a parametrized

mapping � �� from another multivariate random variable
�

, i.e. the � th instance of

� is
�� � � � �� � �� � � . The adaptive mapping � �� might for example be a feedforward

neural network with weights
�

� . Our goal is to manipulate the estimated entropy

of � by adjusting the parameters
�

� . The gradient of
�� � � � with respect to these

weights is

�
� �

�

�� �
� �� �

�� � � � �
�

� � � �
�
� � � �

�
� �

�
� � � �

�
� � � �

� � � � �� � �� � � � � �� � �� � � � (IV.17a)

� �
�

� � � �
�
� � � �

� �
� � � � �� �� � � � �� � �

�� � �
� �

� � � � � � � �� � �
�� � � (IV.17b)

� �
�

� � � �
�
� � � �

�
�
� � � �

� � � �� � �
�

� �

�

�

�
�

� � �� � �
�� � � (IV.17c)

� �
�

� � � �
�
� � � �

�
�
� � � �

� � � �� � � � �� � �
�� � � � � � �

�
� �

�
� �� � �

�� � � (IV.17d)

where
� � is the proximity factor from (IV.9), and

�
� is the squared Mahalonobis

distance given in (IV.10).
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Provided that � �� is differentiable with respect to its parameters, we can

thus lower (or raise) the entropy
�� � � � by gradient descent (or ascent) in

�

� as

prescribed by (IV.17d). Note that the update rule is differential, i.e. it always

operates on the difference between two sample points. Its nature is best summed

up in (IV.17c): the entropy is minimized (maximized) by reducing (increasing) the

Mahalonobis distance between neighboring points, where neighbors are defined

in a soft, probabilistic manner by the proximity factors.

IV.B.3 Data- and Memory-Limited Batch Updates

A straightforward stochastic approximation gradient algorithm to opti-

mize
��

can be implemented by repeating the following three steps:

1. Pick a reference point
�� � � �

from the data and calculate
�� � � � �� � �� � � .

2. Loop through a set of data points
�� � � � � and accumulate the sums of

� � � � � � � �� � �
�� � � , �� �� � � � , and �� �

� � � , respectively.

3. Use the accumulated sums to update
�

� in proportion to (IV.17b), and
�

according to (IV.12).

It is necessary to accumulate statistics over a batch � � of sample points before each

update of the weights
�

� and kernel shape
�

. This is because the updates depend

on the ratio of the accumulated sums, for which in general there is no satisfactory

stochastic approximation.

An important practical issue is how the sets
�

and � � of samples are

generated. We have already mentioned that there must not be any overlap be-

tween them — that is, the reference point
�� � must not be contained in � � . This still

leaves many possible ways of sampling from a supply of data; which one is most

effective will depend on the particular application.
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Consider the case where we only have access to a relatively small, pre-

determined set of data points. To make the best use of this limited supply, all

pairs of samples should enter into each computation of the entropy and likelihood

gradients. This can be achieved by using all available data as set
�

� and setting

� � � � � 	 �� � 
 , i.e. omitting only the reference point from the inner loop. Note that

in order to implement this data-limited approach efficiently, we must be able to

hold all samples in memory at the same time.

The situation is quite different when the supply of data exceeds our

memory capacity. An embedded controller, for instance, may be required to

process an infinite stream of incoming samples with as little memory capacity

as possible. We can accommodate this constraint by recognizing that with the

exception of the reference point, there is no need to ever reuse the same data

sample. A memory-limited implementation can therefore simply pick a fresh

reference point from the data stream for each update, then collect the required

statistics over the next
�
�

�
samples. Memory is required only to store the reference

point and the three sums that are accumulated over the batch.

In practice an implementation may well fall somewhere between these

two extremes. For instance, if the supply of data is large but not cheap, the

best strategy may be to obtain a fresh batch of samples for each update, small

enough to be comfortably held in memory. All pairs of points in this batch can

then be used to compute the update, as in the data-limited case. (Viola, 1995)

has successfully used this approach with batch sizes
�
�

�
ranging from 20 to 50

samples.

This raises a valid question: what is an appropriate size for
�
�

�
in general?

How many points should our statistics be accumulated over before we perform

an update and pick a new reference point? It is well known that the error in

empirical statistics decreases with the square root of the size of the sample. That
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is, the longer we sample before making an update, the more accurate that update

will be. On the other hand, this means that more computation has to be performed

for each update. Moreover, the noise associated with small sample sizes can in

fact be very effective in helping gradient descent escape from local minima.

Simulated Annealing (Kirkpatrick et al., 1983) is a global optimization

technique which gradually progresses from a noisy to a noise-free regime in order

to obtain accurate results while retaining the ability to escape from local minima.

Analogously, nonparametric entropy optimization could be initiated with a small

batch size
�
�

�
that is gradually increased over the course of learning. (Møller, 1993)

has investigated methods to estimate the optimal batch size during optimization

by conjugate gradient techniques; his results may well apply here.

IV.C Application to Image Alignment

(Viola and Wells III, 1995) have applied nonparametric entropy optimiza-

tion to alignment problems in computer vision with great success. In particular,

our technique has proven capable of aligning the pose of a model to an image of

the modelled object without making any specific hypothesis about reflectance or

illumination of the object. We will now briefly describe this important result; a

detailed account can be found in (Viola, 1995).

IV.C.1 The Pose Alignment Problem

In many areas of computer vision, there is a need to find and evaluate

the correct alignment between two images, or between a model of an object and

its image. Suppose we are given a model � of an object and an image
�

of it.

Specifically, let � � �� � be a multi-valued function that describes the local surface
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properties such as orientation, reflectance, transparency, etc. of a point
�� in the

model, while
� � �� � returns the brightness for a given point

�� in the image. Note

that
�� and

�� generally do not range over the same system of coordinates:
�� for

instance might index a set of surface polygons that model a 3-D object whereas
��

might specify a point in a 2-D image in Euclidean coordinates.

The alignment or pose of a model in an image can be defined as a

parametrized transformation
�� � � �� � �� � from model to image coordinates. In

the case of a rigid 3-D object in a 2-D image, the coordinate transform is a per-

spective projection with six pose parameters describing location and orientation

of the object in 3-D space; nonrigid objects require additional pose parameters

to describe their deformation. It is this space of pose parameters
�

� that the best

alignment must be found in.

For a given pose of the object, how do we relate the properties � � �� � of

a given point
�� on the model’s surface to the intensity

� � �� � of the corresponding

point
�� in the image? The formation of an object’s image is governed by the physics

of light reflectance, absorption and retransmittance, which can be summed up in

the imaging equation

� � � �� � �� � � � � � � � �� � �
�
� � � � IV �

�
� �

where
�

is the imaging function that describes the physics of the imaging process.

In addition to the local surface properties � � �� � of the model,
�

also depends on

a vector
�
� of global exogenous parameters such as illumination conditions.

One way of evaluating an alignment would be to use (IV.18) to render an

image of the model at the hypothesized pose, then measure the correspondence

between rendered and given image with a metric such as the integrated squared

intensity difference. However, this approach has proven less than successful for
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a number of reasons:

� Rendering is a computationally expensive process; the cost of the many

renderings required over the course of an optimization may be prohibitive.� The exogenous parameters
�
� are not necessarily known, and are typically

hard to compute from an image. Searching for the correct
�

� and
�
� simulta-

neously is a very difficult optimization problem at best.� The imaging function
�

of the real world may not be known in detail, or

difficult to model in the required detail.� The very assumption of a functional mapping from model � to image
�

may be invalid.

The last problem arises in a number of situations of practical importance, for

instance when the object is partially occluded in the image. Alternatively, the

model may simply not contain sufficient information to fully predict the object’s

visual appearance. This is obviously the case when the rôle of the model is played

by another image of the object, as when aligning images from different sensory

modalities, such as medical scans from CT and MRI machines.

IV.C.2 Mutual Information as a Measure of Alignment

The need for rendering with its associated problems can be eliminated

by directly measuring the mutual information between model and image in order

to evaluate their alignment (Viola and Wells III, 1995). The mutual information �
between two random variables � and � is defined as the sum of their individual

entropies less their joint entropy:

� � � � � � � � � � � � � � � � � � � � � � � � � IV �

� � �
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The mutual information between the model � of an object and its image
�

can

be written as a function of the model pose parameters
�

� as follows:

� � �

� � � � � � � � � �
� � � �� � � � � � (IV.20)

� � � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � �� � � � � � �

where
�

is a random variable over coordinates in the model. By randomly

sampling points from the model, � can be empirically measured and optimized

via gradient ascent with respect to the
�

� , using the techniques we have developed

earlier in this chapter.

Of the three terms on the right-hand side of (IV.20), the first is the entropy

in the model; it is independent of the pose
�

� . The second is the entropy of the part

of the image that the model projects to; it encourages poses that project the model

into complex parts of the image. The third term is the negative joint entropy of

model and image; it encourages poses where the model explains the image well.

A pose that maximizes the last two terms will therefore explain a complex part of

the image well.

The relationship between alignment and joint entropy is illustrated in

Figure IV.3, where image intensity
� � �� � is plotted against one component of the

model � � �� � for a number of data points from an alignment experiment reported in

(Viola et al., 1995). On the left, model and image are misaligned: since there is no

causal relationship between the model surface and object image in this pose, the

points in the scatter plot are spread out, resulting in a relatively high joint entropy.

On the right, model and image are aligned correctly: points with similar model

surface properties now tend to produce similar image intensity, so the distribution

of points in the joint space has sharpened considerably, corresponding to a low
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Figure IV.3: Scatter plot of image intensity vs. one component of the orientation
of the model’s surface. On the left: misalignment produces a joint density with
relatively high entropy. On the right: a well-aligned model results in lower joint
entropy. (Plots courtesy of Paul Viola.)

joint entropy and thus high mutual information between model and image.

The crucial advantage of this approach to image alignment is that no

rendering of the model, and therefore no knowledge of the imaging function
�

or

exogenous parameters
�
� is required. Since it does not depend on the existence of a

unique imaging function, mutual information can measure alignment even when

the object is partially occluded in the image or the model is underspecified. The

right-hand side of Figure IV.3 illustrates such a case: at values of approximately

-0.1 and 0.2 on the � -axis the relationship between model and image is decidedly

non-functional.

IV.C.3 Alignment Experiments

(Viola, 1995) reports numerous experiments with this alignment tech-

nique. For instance, it has been used to align the 3-D model of a skull (consisting

of 65,000 surface points computed from a CT scan) to various 2-D images of the

same skull. Figure IV.4 shows the initial and final pose for one such experiment,
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Figure IV.4: Pose alignment of a 3-D model (rendered with surface points) to the
image of a skull specimen. Left: non-aligned initial pose. Right: pose aligned by
nonparametric entropy optimization. (Images courtesy of Paul Viola.)

with the model superimposed on the image by plotting its visible surface points.

As long as the initial pose is reasonably close to the optimum, nonpara-

metric entropy optimization will generally find the correct alignment, even if the

object is partially occluded and has no sharp edges or occluding contours. Its

ability to align models without rendering them makes this technique not only

more general and versatile than competing methods, but also computationally

far more efficient. For instance, (Viola, 1995) predicts that it should be capable of

tracking the face of a moving person in real time if implemented on a dedicated

signal processor.

Nonparametric entropy optimization can also be used to align images of

the same object directly, without constructing a model of the object. An important

application area where this is required is the registration of medical images such

as CT and MRI scans. Another example is photometric stereo (Horn, 1986), where

two identical views of an object under different lighting conditions are used to
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infer a 3-D model whose pose can then be aligned to novel views. Nonparametric

entropy optimization is capable of directly aligning the novel view with the two

given images, eliminating the costly step of model construction.

IV.D Summary

The optimization of entropy in a neural network requires access to the

density function, which must therefore be estimated empirically. This is com-

monly achieved this by resorting to parametric methods which impose strong

modelling assumptions upon the data. With Parzen window density estimation

we have suggested a nonparametric alternative in which the empirical data di-

rectly defines the model: the estimated density is simply a regularized version of

the sample.

We have described a maximum likelihood approach to optimizing the

shape of the kernel function that performs the regularization, developed efficient

gradient ascent procedures for this purpose, and addressed problems that can oc-

cur when the data sample is finite or quantized. The resulting Parzen density was

then used to estimate and optimize the entropy at the output of a parametrized

mapping such as a neural network. This resulted in a simple and efficient batch

learning rule that operates on pairs of input samples. We have given data-limited

and memory-limited implementations for this nonparametric entropy optimiza-

tion method, and described its successful application by (Viola, 1995) to problems

in computer vision.



Chapter V

Conclusion

We have motivated entropy as an objective for unsupervised learning

from the minimum description length and projection pursuit frameworks. Its

optimization in a neural network is nontrivial since entropy depends on the

probability density, which is not explicit in an empirical data sample. We have ex-

amined three approaches to this problem and described our experiences in using

them to develop novel learning algorithms for unsupervised neural networks.

While we have found parametric density models and probabilistic net-

works to be interesting techniques in their own right, they cannot optimize the

entropy at the output of a neural network in a general sense. We have therefore

developed an entropy optimization algorithm based on nonparametric density

estimation. This technique does not suffer from the limitations of the other two

approaches, and has already proven highly successful in a computer vision appli-

cation. Further work is needed to develop this promising unsupervised learning

algorithm, and to open up other application areas for it.
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Földiák, P. (1989). Adaptive network for optimal linear feature extraction. In
International Joint Conference on Neural Networks, volume 1, pages 401–405,
Washington 1989. IEEE, New York.
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