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Foreword 

Neural Pulse Coding 

Terrence J. Sejnowski 

Neurons use action potentials to signal over long distances, as summarized 
in Chapter 1 by Gerstner. The all-or-none nature of the action potential 
means that it codes information by its presence or absence, but not by its 
size or shape. In this respect, an action potential can be considered a pulse. 
This is an important fact about how brains are built, but it is equally impor- 
tant as a theoretical challenge to understanding the function of the brain. 
How do action potentials represent sensory states? How is information 
contained in the firing patterns of action potentials stored and retrieved? 
These are old questions that have been the focus of much research, but re- 
cent advances in experimental techniques are opening new ways to test 
theories for how information is encoded and decoded by spiking neurons 
in neural systems [Rieke et al., 19971. The papers in the collection provide 
a window into the current state of theoretical and computational thinking 
based on spikes. 

Spike Timing 

The timing of spikes is already well established as a means for coding in- 
formation in the electrosensory system of electric fish [Heiligenberg, 19911, 
in the auditory system of echolocating bats [Kuwabara, 19931, and in the 
visual system of flies [Bialek et al., 19911. The relative spike timing be- 
tween auditory inputs to the brain can be used to determine the location 
of a sound source [AgmonSnir, Carr and Rinzel, 19981 and Chapter 14 by 
Gerstner et al. provides a model for how the pulse timing could be learned. 
There are many possible ways that spike timing could be used in the ner- 
vous system, and papers in the collection explore some of the theoretical 
possibilities. Does the timing of spikes mean anything in cerebral cortex? 
If so, then there must be a sophisticated system in the cortex to organize 
the coding and decoding of spike timing. 

Although some of the earliest theoretical models of neural networks, such 
as the McCulloch-Pitts model based on binary units, captured the all-or- 
none character of signaling by action potentials, many of the recent net- 
work models rely on continuous variables such as the average firing rate 
and input-output functions such as sigmoids. Although the average firing 
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rate for a single neuron is well defined under stationary conditions and 
over a long enough time period to achieve statistical significance, none 
of these conditions obtain in the brain during most behaviors. Visual ob- 
ject recognition takes around 100 ms and the motor system has an even 
faster time scale. As the time interval for averaging gets shorter, the cod- 
ing becomes discrete and a more general statistical framework is needed 
that takes into account joint probability distributions in the population of 
neurons. One exciting possibility is that the timing of the spikes in a popu- 
lation of neurons represents the probability distributions directly [Ander- 
son, 1994; Zhang et al., 1998; Zhang and Sejnowski, 1999; Hinton, personal 
communication]. A concrete example will be given below for neurons in 
the rat hippocampus. 

Another issue that is closely tied to spike coding is the issue of spike re- 
liability. Averages of spike trains are presented because of the variability 
observed in recordings from neurons in the central nervous system. For 
example, the spike trains of sensory neurons elicited by the same stimulus 
presented repeatedly display a high degree of variability [Schiller et al., 
1976; Britten et al., 1993; O'Keefe et al., 1997; Gur et al., 19971. For cortical 
neurons, the intervals between spikes has an approximately Poisson dis- 
tribution in response to a constant stimulus [O'Keefe, Bair and Movshon, 
19971. The Poisson firing rate can itself be a stochastic variable and may 
vary rapidly on the scale of the interspike interval [Sejnowski, 1976; Bu- 
racas et al., 19981. This modulated Poisson model is a good compromise 
between models that are entirely based on average quantities like the fir- 
ing rate and spike timing variables. 

There is growing evidence that the variability observed in cortical spike 
trains cannot be attributed to unreliability in spike initiation [Mainen and 
Sejnowski, 1995; Berry et al., 1997; Nowak et al., 1997; Tang, 1997; de 
Ruyter van Steveninck et al., 19971. Another possible explanation is that 
the variability reflects fluctuation in the inputs. This might occur if the 
dynamic operating point of a neuron is kept near its threshold, which is 
a region where a neuron is most sensitive to input correlations. This con- 
dition can be maintained by balancing the excitatory and inhibitory in- 
puts to the neuron [Amit and Tsodyks, 1992; Tsodyks and Sejnowski, 1995; 
Shadlen and Newsome, 1994,1998; van Vreeswijk and Sompolinsky, 19961. 
When the inputs to a neuron are balanced, its firing rate can be increased 
by increasing- the variance of the fluctuations without increasing the net 
excitation to the neuron. 

In thinking about the distinctions between rate codes and pulse codes, it is 
important to keep in mind that the time a spike occurs can be used both to 
represent external time-varying stimuli and internal states. Often, many 
trials are presented and the poststimulus time (PST) histogram is com- 
puted to average out the variability, a form of ensemble averaging. On any 
given trial, however, the precise timing of a spike is an additional degree 
of freedom that could be used for many different purposes. For example, 
spike timing could be used to encode additional information about the sen- 
sory stimulus [Dan et al., 1997; Berry et al., 1997; de Ruyter van Steveninck 
et al., 19971. 
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The relative timing of spikes in a population of neurons could also encode 
information in addition to that conveyed by each spike train independently 
[Ritz and Sejnowski, 19971. It has been suggested that the synchronous 
firing of neurons in a population can carry information about the global 
significance of the stimulus for the animal [Gray et al., 19891 or to organize 
information together in packets [Jeffreys, Traub and Whittington, 19961. 
Learning may also depend on relative spike timing [Stopfer et al., 19971. 
Changing the relative timing of presynaptic and postsynaptic spikes in a 
cortical neuron by as little as 10 msec can determine whether a synapse 
is potentiated or depressed [Markram et al., 19971. This suggests that the 
relative timing of spikes may be highly regulated in order to control the 
conditions when synaptic plasticity occurs. 

A neural coding strategy that depends on precise temporal coincidences 
requires precise mechanisms for decoding the temporal code. The bio- 
physics of neuronal spike integration, especially in dendrites, is therefore 
as important as the neural coding [Murthy et al., 1994; Mel, 19921. Local 
computation in dendritic trees is accomplished by active membrane con- 
ductances. Cortical neurons receive information at thousands of synapses 
at rates ranging from zero to several hundred hertz (Hz). It has been sug- 
gested that a neuron performs computations involving smaller numbers of 
synaptic inputs on localized regions of its dendritic tree [Mel, 19921. Cor- 
relations between sets of afferent spike trains could also play an important 
role in generating responses. For example, sets of afferents with highly 
synchronized action potentials might be particularly effective at generating 
a postsynaptic response [Murthy et al., 19941. Short-term synaptic depres- 
sion could make a postsynaptic neuron more sensitive to correlated inputs 
by reducing the impact of the average firing rates of the inputs [Markram 
and Tsodyks, 1996; Abbott et al., 19971. Furthermore, single synapses can 
be quite unreliable, since on average an excitatory synapse in the cortex or 
hippocampus releases less than a single vesicle in response to a stimulus. 
Thus, decoding schemes are likely to be probabilistic. The consequences 
of synaptic unreliability for pulse coded systems is explored by Maass and 
Zador in Chapter 12. 

Population Codes 

A sensory stimulus gives rise to action potentials in a large number of cor- 
tical neurons, which represent different aspects of the stimulus. The central 
question how different aspects of the stimulus are represented in the pop- 
ulation of responding neurons [Lehky and Sejnowski, 1990; Konishi, 1991; 
Seung and Sompolinsky, 1993; Foldiak, 1993; Abbott, 1994; Salinas and 
Abbott, 1994; Sanger, 1996; Abbott and Dayan, 1999; Zhang et al., 19981. 
New experimental techniques, such as simultaneous recordings from the 
spike trains of over 100 neurons [Gray et al., 1995; Meister, 19961, provide a 
glimpse of the large-scale population codes in different parts of the brain. 
The goal is to decipher the coding schemes by recording spike trains from 
a large number of neurons and try to reconstruct from those spike trains 
physical and psychological properties of the stimulus. In the case of the 
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motor system, the goal is to predict the movement of the animal from the 
pattern of spikes recorded from the motor system. 

Many neurons in the motor cortex of the monkey fire at rates that are cor- 
related with the direction of arm reaching [Schwartz et al., 19881. The av- 
erage firing rate of a given neuron is maximal when the arm movement is 
in a particular direction known as the preferred direction for that neuron. 
A popular reconstruction method is called the population vector scheme, 
which estimates the direction of arm movement by summing the preferred 
direction vectors weighted by the firing rate of each neuron (Georgopoulos 
et al., 19881. A similar coding strategy has been found among the interneu- 
rons responsible for the bending reflex of the leech (Lewis and Kristan, 
1998; Abbott, 19981. A more general approach to reconstruction is to al- 
low the neurons to represent more general basis functions of the physical 
variables [Girosi and Poggio, 1990; Pouget and Sejnowski, 1997; Zhang et 
al., 19981. Each neuron contributes a basis function in this space of vari- 
ables whenever it fires, and the best estimate of the physical variables can 
be computed from the sum of these functions weighted by the number of 
spike occurring in each neuron during a time interval. 

An alternative method for decoding a population code is based on Bayesian 
reconstruction and maximum likelihood estimation. These are probabilis- 
tic methods that take into account prior probabilities and attempt to recon- 
struct the entire probability distribution. Instead of adding together the 
kernels, as in the basis function method, the probabilistic approach multi- 
plies them, assuming that the spikes in each neuron are independent. This 
method can be used to establish limits on the accuracy of a neural code. 
The Fisher information, which is the variance of the maximum likelihood 
estimate of a stimulus, sets a limit for any unbiased estimator of a stim- 
ulus based on the neural responses it evokes [Paradiso, 1988; Seung and 
Sompolinsky, 1993; Abbott and Dayan, 1999; Zhang et al., 19981. 

Although these reconstruction methods may be useful for telling us what 
information could be available in a population of neurons, it does not tell 
us what information is actually used by the brain. In particular, it is not 
clear whether these reconstruction methods could be implemented with 
neurons. Pouget [Pouget et al., 19981 show how maximum likelihood de- 
coding can be performed using the highly recurrent architecture of cortical 
circuits, and thus establishes that the theoretical limit corresponding to the 
Fisher information is achievable. Zhang [Zhang et al., 19981 show how 
a feedforward network with one layer of weights could in principle read 
out a Bayesian code. Thus, optimal decoding is well within the capabil- 
ity of the network mechanisms known to exist in the cortex. However, an 
explicit readout of a population code may not be needed until the final 
common pathway of the motor system since projections between cortical 
areas may simply perform transformations between different population 
codes. 



Foreword xvii 

X Position 

Population - 7% - , - -  - - . r - :e. :-- Vector !,I : .. ;-* a:* - ; ; LC. ;:. . : -  - .  _ - -  . . - - .  - 
15 sec 

Y Position 

15 sec 

Figure 1. Tme X and Y positions of a rat running on an elevated figure-8 maze 
as compared with the positions reconstructed by different methods using 25 place 
cells and a sliding time window of 0.5 sec. The same 60-second segment is shown 
in all plots. The probabilistic or Bayesian methods were especially accurate, and 
the erratic jumps in the reconstructed trajectory were reduced by a continuity con- 
straint using information from 2 consecutive time steps. By contrast, the population 
vector method often yielded implausible positions. From [Zhang et al., 19981. 

Hippocampal Place Fields 

An example of how the timing of spikes in a population of neurons can 
be used to reconstruct a physical variable is the reconstruction of the lo- 
cation of a rat in its environment from the place fields of neurons in the 
hippocampus of the rat. In the experiment reported here, the firing pat- 
terns of 25 cells were simultaneously recorded from a freely moving rat 
[Zhang et al., 19981. The place cells were silent most of the time, and they 
fired maximally only when the animal's head was within restricted region 
in the environment called its place field [Wilson et al., 19931. The recon- 
struction problem was to determine the rat's position based on the spike 
firing times of the place cells. 
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Figure 2. All reconstruction methods became more accurate when more cells were 
used, shown here for a rat running on a rectangular maze. Each data point repre- 
sents the mean error of 40 repetitive trials in which a subset of cells were drawn 
randomly from the whole sample. The shaded region represents reconstruction er- 
rors excluded by the Cram&-Rao bound based on Fisher information. From [Zhang 
et al., 19981. 

Bayesian reconstruction was used to estimate the position of the rat in the 
figure-8 maze shown in Figure 1 [Zhang et al., 19981. Assume that a pop- 
ulation of N neurons encodes several variables (xl , x2, . . .), which will be 
written as vector x.  From the number of spikes n = ( n l ,  n2, . . . , n,v) fired 
by the N neurons within a time interval T,  we want to estimate the value 
of x using the Bayes rule for conditional probability: 

assuming independent Poisson spike statistics. The final formula reads 

where Ic is a normalization constant, P ( x )  is the prior probability, and f i ( x )  
is the measured tuning function, i.e., the average firing rate of neuron i for 
each variable value x.  The most probable value of x can thus be obtained 
by finding the x that maximizes P(xln) ,  namely, 

I 

jt = arg max P(xln)  (3) 
X 

By sliding the time window forward, the entire time course of x can be 
reconstructed from the time varying-activity of the neural population. 

A comparison of several different reconstruction methods is shown in Fig- 
ure 1. The Bayesian reconstruction method was the most accurate. As the 



Foreword xix 

number of neurons included in the reconstruction is increased, the accu- 
racy of all the methods increased, as shown in Figure 2. The best mean 
error was about 5 cm, in the range of the intrinsic error of the infrared 
position tracking system. There are thousands of place cells in the hip- 
pocampus of a rat that respond in any given environment. However, it is 
not known how this information is used by the rat in solving navigational 
problems. 

There is evidence for information in the relative timing of neurons in the 
rat hippocampus. As a rat moves through the preferred place of a hip- 
pocampal neuron, the timing of the spikes relative to a background 4-6 Hz 
theta rhythm changes from phase lag to phase lead [O'Keefe and Recce, 
1993). Thus, the relative timing of spikes in the population of hippocam-, 
pal place neurons carry information about relative location (Chapter 5 by 
Recce provides more details about this form of phase coding). Hopfield 
[Hopfield, 19961 has suggested a general method by which vectors can be 
encoded by the relative timing of impulses and decoded by neurons using 
time delays. 

Hardware Models 

The technology that makes possible digital computers can also be used for 
implementing large networks of spiking neurons. Several of the chapters 
in this book illustrate how very large scale integrated (VLSI) technology 
can be used to emulate the integration in dendrites (Chapter 5 by North- 
more and Elias) and recurrent cortical networks (Chapter 6 by Whatley, 
Deiss and Douglas). Scaling up from a single chip to a system of chips 
requires a complex communications system that corresponds to the major 
tracts that connect different brain areas. Most of the brain volume is com- 
posed of fiber bundles called white matter, which are composed of axons 
that carry spikes over long distances. Even within the neuropil of the cor- 
tex, a significant fraction of the volume is taken up with axons used for 
local communication. Thus, it should be expected that any hardware sys- 
tem based on the brain would make a major commitment of resources to 
communication. 

Computing with spikes is not easy. The precision of the hardware re- 
quired for most spike timing codes is much greater than that required for 
schemes based on average firing rates. Another important consideration 
is the amount of power required to generate pulses and charge up long 
wires. Finally, the high precision must be maintained over varying condi- 
tions which, in the case of the cortex, means a range of temperatures and 
ionic concentrations. Homeostatic mechanisms could be used to stabilize 
timing circuits, which suggests that calibration is also an important func- 
tion that needs to be implemented in the cortex 

As more evidence is found for the importance of spike timing in the cortex, 
the question shifts from whether spike timing carries information to how 
it is used. This volume provides a rich source of ideas that will serve as the 
starting point for many research directions. 
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