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NEURAL COMPUTATION - 
[In OWs$ve-part article, Approachcs to Learning- 
an OVCW~W of biologicul neural networks and 
their relationsh@ to artificial neural nefworks- 
i.c followed by aarninarions of nvurul cornputa- 
tion as it tk evidenced in the functioning of the 
mhel lung rhe hippocuntpus, the neomrtex, anu' 
the o~acfoty  cortex. 1 

Approaches to Learning 

Ncrvous systems arc capable of solving ~xtraordi- 
narily sophisticated computational problems. The 
visual or tactile recognition of an object in a clut- 
tered scene is child's play, but w d l  beyond rhc 
capabiiity of the Eastesr digital computers. Most 
animals can navigatc over tough surfaces with @eat 
agility, hut present-day robots are limited in their 
movemcncs to a very narrow nnge of terrains. 
We can lcarn to use language and to read and 
write, well bcyond anything so Far accomplishcd 
by artificial intelligence We take all of these abili- 
ties for granted bccausc we are so good at thcm; 
trying to duplicate them with machina has made 
their grcat di&culty more apparent. 

Neural computauon is the systematic study of 
the camputational principlcs underlying the func- 
tion of neural systems, from thc level of molecul~ 
mechanisms to the orgmization of brain systems 
(Figure 1 ). lhis computational approach to ncuro- 
science is still in its irkicy (Sejnowski et aI., 1988). 
There has becn a recent ernph& on studying 
neural networks, small groups of highly connected 
neurons, however, as shown in Pi,qurc 1, neural 
n w o r k s  are only one lcvcl of investigation in- 
the ncrvous $ystem, and neural computation de- 
pends on comput;~tiond principlcs at each d these 
levels A few general principles have cmcrged fWm 
the study of abstract modcls of neural systems 
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Figure 1. Structural leveL~ of orpnization in rhc ncrvorts 8ysrcm. Thc sp:ttial 
scalc 3t which anatomical ora~nixnrions can be identified varics ovcr many 
orders of rnag~litudc. 
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that itre Iikcly to be important for the biological 
study of learning and memory. 

Some Principles of Neurd Cornpuration 

In the von Neumann architecture coomlonly used 
in digital computers, thc memory and the pro- 
cessor are physically separated. 'This separation 
gives risc to a bottlcncck in thc flow of infornlation 
bctween thc two. In neural systcms, memory and 
pmccssing arc intcrtwincd; the samc circuits that 
proccss sensory and motor intbrmation are in- 
volvcd in learning and the storage of new informa- 
tion, A unified processor-mcmory sysccm allows 
many circuits to work together in pardlel and, 
iui aconsequcnce, the solutions to many commonly 
occurring problems can bc computed in only a 
few serial steps, The rcprrsentation of sensations 
and memories in such an architecturc is morc difii- 
cult for US to imagine and to use than one in which 
the functions are scgtegated (Churchland and 
Sejnowski, 1992). Thc brain, however, did not 
evolve to makc it easier for us to andyze. 

lacality is an important constraint that arises 
whcn hardware for wtificial neural ncrworks is 
designed (Mad,  1959). Wires are expensive on 
computer chips, just as they are in the brain, so 
only limited connectivity is possible bccween pro- 
cessing elements, The organization of sensory pro- 
cessing into a hicriuchy of maps and the l amin-~  
organization of cortical structurcs is wire-efficient. 
?his also places constraints on the organization 
dlearning systems, which sharc the same circuitry. 
In particular, the decision to storc a piece of intor- 
rnarion at a particular location in the brain is a 
local one that dtpends on clcctrical and chemical 
signals which are spatially and temporally re- 
stricted, f'hc Hebblaa mcchanism (see HEBH, DON- 

ALD) h r  synaptic plasticity that has heen found 
in the hippocampus and neocortex obcys this prim 
ciplc trf locality: The presynaptic releasc of neuro- 
transmitter and thc postsynaptic depolariration 
nccdcd to trigger the long-tcrm potentiation ar 
these synapses arc spatially contiguous, and therc 
iti a brief temporal window during which both 
signals must be prcscnt. Modulatory inIhcnces on 
learning may be morc diffuse and widesprcad. 

Neurons have limited dynamic range. Unlikc 
digitd systcms, which arc capable of accurately 
reprcwnting very large :md very small numbers, 
the nngc o f  membranc potentials and firing iwcs 

found in neurons is limited. Also, the variability 
in the propcrties of neumns within the same popu- 
Intion is si~nificanl, and the propertics of the same 
neuron can vary with time. The sarnc is true for 
analog VlS l  (vcry-large-scale inte,gration) 
thac are dcsigncd to mimic the procrssing which 
occurs in ncurons (Mead, 1989) '['his variability 
and limited dynamical rangc hxve consequences 
for thc way that information is coded and thc way 
t h a ~  t~eural circuits are dcsigncd. Onc way to prc- 
serve information is to process rrlativc levels, or 
dili'erenccs, rather than absolute Icvcls. Thus, visud 
neurons arc more sensitive to contrast (spatial dif. 
fcrmces j and changes (rcrnporal diflercnces) than 
to absolute intensity levcls. Another n~cchanism 
for preserving information is dynamically altering 
basclinc acriviry in ncurons. Adaptive biochcmicd 
mechanisms inside cclls, such as light adaptation 
in phororeceptors, allow ncurons to rcrnain in their 
most scnsicive rangc. Adaptive mechanisms have 
been found for cdibratily sensorimotor coordina- 
tion, such as slow adaptation of  the vestibulo.ocu- 
lar rcf l~x (VORj to changes in thc magnification 
of rhe lens (Lisberger, 1988). 

Taxonomy of Learning System 

Adaptation to ongoing sensory stimulation does 
not require ,m additionid sourcc of information 
outside the processing stream; this type of learning 
is called umuperoised In contrast, the type of 
adaptation that occurs in responsc to sensorinlotor 
mismatch docs require an outside crror signal; rhis 
is called snrpmisccl learning. In the case of VOK 
lc"uning, the crror signal is the slip of the image 
on thc retina, and the gain of the reflex is changed 
ro reducc rhe sJip. ?'he amount of supervision can 
vary from a crudc goodhad reinforcement signal 
to very detailed fccdback of information about 
complc~ sensory signals fro111 thc cnvironrnent thac 
might bc tcrmed a "tcachcr." Supervised Icarning 
is; sometimes called mw.cowection Imrning. 

It is not nccasary for the error signal t o  come 
from outs id^ the orgmism; important information 
about rhc proper operation of a circuit can be 
provided by another inccrnal circuit, or cven hY 
intrrnal consistency within the same circuit. For 
aarnplr, a setwry area that wi~ trying to predict 
future inputs could compare its prediction against 
the next input to improvc ics performance. Such 
an unsupervised system with a n  internal measure 
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of ermr is tcrrncd ~nnnitored (Churchland and 
Scjnowski, 1992). AS shown in Mgure 2, all possiblc 
cornhinations 01 supcmised and un~upervisrd, 
monitored and unmonitored, learning systems arc 
possible. 

Selected Examples 

An interesting cxarnple of a monitored systcm is 
song learning in the white-crowned sparrow. In 
this specics of sol~gbird, rhc male hem thc local 
dialect alter hatching but does not produce the 
song until the next sprrng. At f u s~  the svng is imper- 
fcct, but with each rcpetftion Pkc details improvc 
until it is a good reproduction of the original song 
he& thc previous year, even though thcre is no 
external "teacher" during dke rcfinernenr. The in- 
ternally scored template is compared with the im- 
pcrfcct song production; the error bctween them 
drives learning mcchanisms to improve the song. 
This learning is monitored bccawe the crror is 
derived from an internal tcmplate of thc desrred 
sound. Wc way use a similar strategy whrn lcarning 
to produce new soi~nds in a foreign Imguage. (See 
ilk0 8IRD SUNG W I N G ;  IANGUAGE LEARNING.) 

Transformations between t w ~  populations of 
neurons can be learned with Hebbim mcchanisms 
at the synapse% bctween tbe input fibers and thc 
output ncurons. Thepnctrrn dactiviry on rhc input 
fiber+ is matched with thc desired pattcrn on the 
output neurons. In some models of thc cerebellum, 
for example, associadve motor 1c;lming is mediatcd 
by climbing tibcrs, which providc a teaching blgnal 
to the output Purbnje cells. By including feedback 

projectiotls of the output neurons hack onto thcni- 
selves, a putkd input cue can regcncrace rhr cntire 
stored pattern. In this mode, the systcm is unsupcr- 
vised bec:tusc the desired output pattern of activity 
during Icarning is the s:mr a. the input pattcrn. 
Such content-addressable recurrent n e m o r b  have 
bccn suggested as models for the piriform cortcx 
and m a  CAS of the hippocampus. Some properties 
such as  memory capacity of associative networks 
of simplified processing units have been well stud- 
ied; the analysis of networks based on model new 
mns with more complcx properties is jutst begin- 
ning. 

Irarning mechmisms have also bccn used to 
model the development of cortical systems. One 
of the best-mplorcd areas of unsupervised learning 
in artificial neworks is eompctitive learnins, in 
which incoming scnsory information is used to 
organizc the internal connccuons of a sensory map. 
Pvr example, the formation of ocular dominancc 
columns in visual cortex of cats and monkcys dur- 
ing dwclvpmenr (see NEWHTICAL PWFTICI'IY) de- 
pmds on competitive synaptic mechanisms. The 
dcvclopment of ocular dominance columns can 
bc mirniclred in a computer lnodcl that uses Heb- 
bian learning in thc spatially restricted terminal 
arbors of amns projecting to thc cortex from thc 
lateral gniculate nuclcus (Miller et al., 1989). Sim- 
ilar mechanisms can also be used in, neural systems 
to learn more complrx fcatures that distinguish 
among dserent typcs of sensory inputs (Kohonen, 
1.964). It is also likely that other lcarning meclha- 
nisrns arc uscd to discover invariants of sensory 
patterns, which are often a.s important in pattcrn 
recognition as  the distinctive features &kt scpacate 
chscs (Churchland and Scjnowski, 1992). 

FEEDBACK MODES 

SUPERVISED 
(EXTERNAL) 

UNSUPERViSED 
(NO EXTERNAL) 

UNMONITORED MONITORED MONITORED UNMONITORED 
(NO INTERNAL) (INTERNAL) (INTERNAL) (NO INTERNAL) 

Figure 2. '1';uronomy of learning procz.clrrrts. Supervised lcarning occurs 
whcn there is fecdback on ~ h c  pcrformancc of thc syfitatrr from rhc c7itcmal 
cnviranmeni. I f  thc fccdhack. is a sc'tlar reward, k is called reinhrccrncnr 
Icuning. The learning is called monitored if  the systcm has an internd mcmurc 
OF error, 
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As computers grow more powerful, it will be- 
come possihlt: to simulatc more complex mo,dcl~ 
of tieural systems; howevcr, men chcsc simulations 
will kill short of the richncss tdreal ncuml systcms 
and thc con~plcx environments that confrollt bio- 
logical crcaturcs. I~lardwarc crnulations that intcr- 
act with the rcal world in rcal rime would greatly 
irnprc)vc our ability to test hyporhcses about the 
organization aE neural systcms (Mead, 1989). Ulti-  
nxrtely we wjJl nccd to study complete modd sys- 
tem in order to understand the mulliple lcvcls 
of adaptation and learning that provide flexlbijity 
and stability in a changing world. 
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