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NEURAL COMPUTATION

[In this five-part article, Approachcs to Learning—
an overview of biological neural networks and
their relationship to artificial neural networks—
ix follotved by examinations of neural computa-
tion as it is evidenced in the functioning of the
cerebellum, the bippocampus, the neocortex, and
the olfactory cortex.) :

Approaches to Learning

Nervous systems arc capable of solving extraordi-
narily sophisticated computational problcms. The
visual or tactile recognition of an object in a clut-
tered scene is child's play, but well beyond the
capability of the fastest digital computers, Most
animals can navigatc over rough surfaces with gfeat
agility, but present-day robots are limited in their
- movements to a very narrow range of terrains.
We can learn to use language and to read and
write, well beyond anything so far accomplished
by artificial intelligence. We take all of these abili-
ties for granted because we are 5o good at them;
trying to duplicate them with machincs has miade
their great difficulty more apparcent.

Neural computation is the systematic study of
the computational principles underlying the func-
tion of ncural systems, from the level of molecutar
mechanisms to the organization of brain systems
(Figure 1). This computational approach to ncuro-
science js still in its infuticy (Sejnowski et al., 1988).
There has been a recent emphasis on studying
neural networks, small groups of highly connected
neurons; however, as shown in Figure 1, neural
nectworks are only one level of investigation in
the nervous system, and ncural computation de-
pends on computational principlcs at each of these
levels. A few general principles have cmerged from
the study of abstract modcls of neural systems
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Figure 1. Structural levels of organization in the nervous system. The spatial
scalc at which anatomical organizations can be identified varics over many
orders of magnitude,




460 Ncural Computation: Approaches to Learning

that are likely to be important for the biological
study of learning and. memory.

Some Principles of Neural Computation

In the von Neumann architecture commonly used
in digital computers, the memory and the pro-
cessor are physicually separated. This separation
gives rise to a bottleneck in the flow of informatjon
berween the two. In ncural systems, memory and
processing are intertwined; the same circuits that
process sensory and motor information are in-
volved in learning and the storage of new informa-
ton, & unified processor-memory systern allows
many circuits to work together in parailel and,
as a consequence, the solutions to many commonly
occurring problcms can be computed in only a
few serial steps. The representation of sensations
and memories in such an architecturce is more diffi-
cult for us to imagine and to use than one in which
the functions are scgregated (Churchland and
Sejnowski, 1992). The brain, however, did not
evolve to make it easier for us to anatyze.
Lacality is an important constraint that arises
when hardware for artificial neural nerworks is
designed (Mead, 1989). Wires are expensive on
computer chips, just as they are in the brain, so
only limited connectivity is possible between pro-
cessing elements. The organization of sensory pro-
cessing into 2 hicrarchy of maps and the laminar
organjzation of cortical structures is wirc-eflicient.
This also places constraints on the organization
of learning systems, which share the same circuitry.
In particular, the decision to store a piece of infor-
mation at a particular focation in the brain is a
local one that depends on clectrical and chemical
signals which are spatially and temporally re-
stricted, The Hebbian mechanism (see HEBB, DON-
ALD) for synaptic plasticity that has been found
in the hippocampus and neocortex obeys this prin-
ciple of locality: The presynaptic release of neuro-
transmitter and the postsynaptic depolarization
nceded to trigger the long-term potentiation at
these synapses are spatially contiguous, and therc
is 2 brief temporal window during which both
signals must be present. Modulatory influcnces on
learning may be morc diffuse and widespread.
Neurons have limited dynamic range. Unlike
digital systems, which are capable of accurately
representing veey large and very small numbers,
the range of membranc potentials and firing rates

found in neurons is limited. Also, the variability
in the properties of neurons within the same popu-
lation is significant, and the propestics of the same
necuron can vary with time. The same is true for
analog VISI (very-large-scale integration)) circuits
that are designed to mimic the processing which
occurs in ncurons (Mead, 1989). ‘This variability
and limited dynamical range have conscquences
for the way that information is coded and the way
that neural circuits are designed. One way to pre-
serve information is 1o process relative levels, or
differencces, rather than absolute lcvels, Thus, visuxd
neurons arc more sensjtive to contrast (spatial dif-
ferences) and changes (temporal differences) than
to absolute intensity levcels. Another mechanism
for preserving information is dynamnically altering
baselinc activity in acurons. Adaptive biochemical
mechanisms inside cells, such as light adaptation
in photoreceptors, allow ncurons to remain in their
most scnsitive range. Adaptive mechanisms have
been found for calibrating sensorimotor coordina-
tion, such as slow adaptation of the vestibulo-ocu-
lar reflex (VOR) to changes in the magnification
of the lens (Lisberger, 1988).

Taxonomy of Learning Systems.

Adaptation to ongoing sensory stimulation does
not requirc an additional source of information
outside the processing stream, this type of learning
is called unsupervised In countrast, the type of
adaptation that 0Ccurs in response to sensorimotor
mismatch does require an outside crror sigoal; this
is called supervised learning. In the case of VOR
lcarning, the crror signal is the slip of the image
on the reting, and the gain of the reflex is changed
to reducc the slip. The amount of supervision can
vary from a crude good/bad reinforcement signal
to very detailed feedback of information about
complex sensory signals from the environment that
might be termed a “tcacher.” Supervised learning
is sometimes called error-covrection learning.

It is not necessary for the error signal to come
from outside the organism; important information
about the proper operation of a circuit can be
provided by another internal circuit, or cven by

“internal consistency within the same circuit. For

example, a sensory area that was trying to predict
future inputs could compare its prediction against
the next input to improve its performance. Such
an unsupervised systerm with 4n interpal measure



of error is termed monitored (Churchland and
Scjnowski, 1992). As shown in Figure 2, all possible
combinations of supcrvised and unsupervised,
mounitored and unmonitored, learning systems arc
possible.

Selected Examples

An interesting cxample of a monitored system is
song learning in the white-crowned sparrow. In
this species of songbird, the male hears the local
dialect after hatching but does not produce the
song until the next spring. At first the song is imper-
fect, but with each repetition the dctails improve
until it is 2 good reproduction of the original song
heard thc previous year, cven though there is no
external “teacher” during the refinement. The in-
ternally stored template is compared with the im-
perfect song production; the error between them
drives learning mcchanisms to improve the song.
This learning is monitored because the error is
derived from aq internal template of the desired
sound. W may use a similar strategy when Icarning
to producc new sounds in a foreign lunguage. (See
2SO BIRD SONG LEARNING; LANGUAGE LEARNING. )
Transformations between twou populations of
neurons can be learned with Hebbian mechanisms
at the synapses between the input fibers and the
output ncurons. The pattern of activity on the input
fibers is matched with the desired pattcrn on the
output neurons. In some models of the cerebellum,
for example, associative motor lcarning is mediated

- by climbing fibers, which provide a teaching signal
. to the output Purkinje cells. By including feedback
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projections of the output neurons back onto theni-
selves, a partial input cue can regencrate the catice
stored pateern. In this mode, the system is unsupcr-
vised because the desired output pattern of activity
during learning is the swne as the input pattesrn,
Such content-addressable recurrent networks have
bcen suggested as models for the piriform cortex
and area CA3 of the hippocampus. Some properties
such as memory capacity of associative nerwaorks
of simplified processing units have been well stud-
ied; the analysis of networks based on madcl neu-
rons with more complex properties is just begin-
ning. :

Learning mechanisms have also been used to
model the development of cortical systems, Onc
of the best-¢xplored areas of unsupcervised learning
in artificial networks is competitive learning, in
which incoming scnsory information is used to
organize the internal connections of a sensory map.
For example, the formation of ocular dominance
columns in visual cortex of cats and monkeys dut-
ing development ($ee NEOCORTICAL PLASTICITY ) de-
pends on competitive synaptic mechanisms. The
devclopment of ocular dominance columns can
bc mimicked in a computer model that uses Heb-
bian learning in thc spatially restricted terminal
arbors of axons projecting to the cortex from the
lateral gepiculate nucleus (Miller etal,, 1989). Sim-
ilar mechanisms can also be used in neucal systems
to learn more complex features that distinguish
among different typces of sensory inputs (Kohonen,
1984). It is also likely that other lcarning mecha-
nisms arc uscd to discover invariants of sensory
patterns, which are often as important in pattcrn
recognition as the distinctive features that scparate
classes (Churchland and Scjnowski, 1992),

FEEDBACK MODES
SUPERVISED UNSUPERVISED
(EXTERNAL) (NO EXTERNAL)

N

UNMONITORED  MONITORED MONITORED  UNMONITORED

(NO INTERNAL)  (INTERNAL)

(INTERNAL)  (NOINTERNAL)

Figure 2. Taxonomy of learning procedures, Supervised Jearning occurs
when there is fecdback on the performance of the system from the external
cnviranment. If the feedback is a scalar reward, it is called reinforcement
learning. The learning is called monitored if the system has an internal measure

of error,
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As computers grow more powerful, it will be-
come possible to simulate more complex models
of neural systems; however, even these simulations
will fall short of the richness of real ncural systems
and the complex environments that confront bio.
logical creatures, Hardware emulations that intce-
act with the real world in real tdme would greatly
improve our ability to test hypotheses about the
organization of neural systems (Mead, 1989). Ulti-
mately we will nced to study complete model sys-
tems in order to understand the multiple levels
of adaptation and learning that provide flexibility
and stability in a changing world. ‘
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