Neural Codes and Distributed Representations Foundations of Neural Computation Edited by <u>Laurence Abbott</u> Terrence J. Sejnowski

Neural Codes and Distributed Representations

Computational Neuroscience

Terrence J. Sejnowski and Tomaso A. Poggio, editors

Methods in Neuronal Modeling: From Synapses to Networks edited by Christof Koch and Idan Segev, 1989

Neural Nets in Electric Fish Walter Heiligenberg, 1991

The Computational Brain

Patricia S. Churchland and Terrence J. Sejnowski, 1992

Dynamic Biological Networks: The Stomatogastric Nervous System edited by Ronald M. Harris-Warrick, Eve Marder, Allen I. Selverston, and Maurice Moulins, 1992

The Neurobiology of Neural Networks edited by Daniel Gardner, 1993

Large-Scale Neuronal Theories of the Brain edited by Christof Koch and Joel L. Davis, 1994

The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries

edited by Idan Segev, John Rinzel, and Gordon M. Shepherd, 1995

Models of Information Processing in the Basal Ganglia edited by James C. Houk, Joel L. Davis, and David G. Beiser, 1995

Spikes: Exploring the Neural Code

Fred Rieke, David Warland, Rob de Ruyter van Steveninck, and William Bialek, 1997

Neurons, Networks, and Motor Behavior edited by Paul S.G. Stein, Sten Grillner, Allen I. Selverston, and Douglas G. Stuart, 1997

Methods in Neuronal Modeling: From Ions to Networks second edition, edited by Christof Koch and Idan Segev, 1998

Fundamentals of Neural Network Modeling: Neuropsychology and Cognitive Neuroscience

edited by Randolph W. Parks, Daniel S. Levine, and Debra L. Long, 1998

Unsupervised Learning: Foundations of Neural Computation edited by Geoffrey Hinton and Terrence J. Sejnowski, 1999

Neural Codes and Distributed Representations: Foundations of Neural Computation edited by Laurence Abbott and Terrence J. Sejnowski, 1999

Neural Codes and Distributed Representations: Foundations of Neural Computation

edited by Laurence Abbott and Terrence J. Sejnowski

A Bradford Book The MIT Press Cambridge, Massachusetts London, England

© 1999 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

Library of Congress Cataloging-in-Publication Data

Neural codes and distributed representations: foundations of neural computation / edited by Laurence Abbott and Terrence J. Sejnowski.

p. cm.—(Computational neuroscience)

"A Bradford book."

Includes bibliographical references and index.

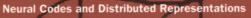
ISBN 0-262-51100-2 (pbk.: alk. paper)

1. Neural networks (Neurobiology). 2. Coding theory. I. Abbott, Laurence. II. Sejnowski, Terrence J. (Terrence Joseph) III. Series.

QP363.3.N4755 1998

612.8'2-dc21

98-14783


CIP

This book was printed and bound in the United States of America.

CONTENTS

Introduction	vii
1 Deciphering the Brain's Codes Masakazu Konishi	1
2 A Neural Network for Coding of Trajectories by Time Series of Neuronal Population Vectors Alexander V. Lukashin and Apostolos P. Georgopoulos	19
3 Self-Organization of Firing Activities in Monkey's Motor Cortex: Trajectory Computation from Spike Signals Siming Lin, Jennie Si, and A. B. Schwartz	29
4 Theoretical Considerations for the Analysis of Population Coding in Motor Cortex Terence D. Sanger	45
5 Statistically Efficient Estimation Using Population Coding Alexandre Pouget, Kechen Zhang, Sophie Deneve, and Peter E. Latham	55
6 Parameter Extraction from Population Codes: A Critical Assessment Herman P. Snippe	85
7 Energy Efficient Neural Codes William B. Levy and Robert A. Baxter	105
8 Seeing Beyond the Nyquist Limit Daniel L. Ruderman and William Bialek	119
9 A Model of Spatial Map Formation in the Hippocampus of the Rat Kenneth I. Blum and L. F. Abbott	129
10 Probabilistic Interpretation of Population Codes Richard S. Zemel, Peter Dayan, and Alexandre Pouget	139
11 Cortical Cells Should Fire Regularly, But Do Not William R. Softky and Christof Koch	167
12 Role of Temporal Integration and Fluctuation Detection in the Highly Irregular Firing of a Leaky Integrator Neuron Model with Partial Reset	
Guido Bugmann, Chris Christodoulou, and John G. Taylor	171
13 Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell Todd W. Troyer and Kenneth D. Miller	187
14 Coding of Time-Varying Signals in Spike Trains of Integrate-and-Fire Neurons with Random Threshold	201
Fabrizio Gabbiani and Christof Koch	∠UI

15 Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey Wyeth Bair and Christof Koch	225
16 Conversion of Temporal Correlations Between Stimuli to Spatial Correlations Between Attractors M. Griniasty, M. V. Tsodyks, and Daniel J. Amit	243
17 Neural Network Model of the Cerebellum: Temporal Discrimination and the Timing of Motor Responses Dean V. Buonomano and Michael D. Mauk	261
18 Gamma Oscillation Model Predicts Intensity Coding by Phase Rather than Frequency Roger D. Traub, Miles A. Whittington, and John G. R. Jefferys	279
19 Effects of Input Synchrony on the Firing Rate of a Three-Conductance Cortical Neuron Model Venkatesh N. Murthy and Eberhard E. Fetz	293
20 NMDA-Based Pattern Discrimination in a Modeled Cortical Neuron Bartlett W. Mel	309
21 The Impact of Parallel Fiber Background Activity on the Cable Properties of Cerebellar Purkinje Cells Moshe Rapp, Yosef Yarom, and Idan Segev	325
Index	341

Foundations of Neural Computation edited by Laurence Abbott and Terrence J. Sejnowski

Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years.

The present volume focuses on neural codes and representations, topics of broad interest to neuroscientists and modelers. The topics addressed include how neurons encode information through action potential firing patterns, how populations of neurons represent information, and how individual neurons use dendritic processing and biophysical properties of synapses to decode spike trains. The papers encompass a wide range of levels of investigation, from dendrites and neurons to networks and systems.

Laurence Abbott is Professor of Biology and Director of the Volen Center for Complex Systems, Brandeis University.

Terrence J. Sejnowski is a Howard Hughes Medical Investigator and Head of the Department of Computational Neurobiology at the Salk Institute for Biological Studies, and a professor at the University of California, San Diego.

Computational Neuroscience series A Bradford Book

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu
jacket design by Jim McWethy

ABBNP 0-262-51100-2

