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Transformations that preserve the uniqueness
of the differential form for Lorenz-like systems
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ABSTRACT

Differential equations serve as models for many physical systems. But, are these equations unique? We prove here that when a 3D system of
ordinary differential equations for a dynamical system is transformed to the jerk or differential form, the jerk form is preserved in relation to
a given variable and, therefore, the transformed system shares the time series of that given variable with the original untransformed system.
Multiple algebraically different systems of ordinary differential equations can share the same jerk form. They may also share the same time
series of the transformed variable depending on the parameters of the jerk form. Here, we studied 17 algebraically different Lorenz-like
systems that share the same functional jerk form. There are groups of these systems that share the jerk parameters and, therefore, also have
the same time series of the transformed variable.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156237

When experimental data are fit with a set of ordinary differential
equations (ODEs), the question arises whether this representa-
tion is unique, and how many equivalent systems exist. In Ref. 1,
we showed that models may not be unique when a single time
series is reconstructed as systems of ODEs. All those recon-
structed systems that share the time series of one of its variables
have the same differential or jerk form in common. This form is
unique. As a consequence, any transformations of the system of
ODEs with regard to the unobserved variables do not change the
differential form and, therefore, the time series of the observed
variable.

I. INTRODUCTION

The pioneering works by Takens,2 Packard et al.,3 and
Sauer et al.4 provide the theoretical background for reconstruct-
ing the phase portrait from recorded scalar time series. Crutch-
field and McNamara5 used such reconstructed phase space to find
global models built on delay or derivative coordinates. Principal

components can also be used for reconstruction as introduced by
Broomhead and King.6 Gibson et al.7 showed that the relationships
between delays, derivatives, and principal components consist of
rotations and rescalings under certain conditions. These coordi-
nate sets are, therefore, equivalent, although a set may sometimes
be superior to another for numerical reasons.

Here, we use derivative embeddings as differential or jerk mod-
els to compare systems of ODEs. In physics, jerk is the rate at which
acceleration changes. The idea behind jerk models was already dis-
cussed in 1980 by Packard et al.3 (p. 714). They mentioned that
the Rössler equations “are sufficiently simple that one can explicitly
obtain a new set of three ordinary differential equations describing
the dynamics of the state space comprised of a coordinate along with
its first and second derivatives.” Gouesbet8,9 then started investigat-
ing under which conditions it was possible to reconstruct the vector
field (X, Y, Z) = (x1, ẋ1, ẍ1) from a single measurement X = x1 of an

original vector field (x1, x2, x3). A detailed summary of the further
development and applications of this idea can be found in the review
by Aguirre and Letellier10 (p. 10ff).
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The main motivation for jerk models is that a system of three
ODEs in the variables (x1, x2, x3) can be rewritten as a single higher
order differential equation in the variables (X, Y, Z), called the stan-
dard, jerk, or differential form. For the sake of clarity, we limit the
presentation to the case of 3D systems and, in particular, to the 17
Lorenz-like systems introduced in Ref. 11.

The significance of jerk forms in the analysis of physical sys-
tems has been underscored in various studies within the literature.
For instance, the author of Ref. 12 discussed the utilization of jerk
forms in the thermal convection model by Moore and Spiegel, as
well as in understanding the motion of an ionization zone within a
star. In Ref. 13, the jerk form has been used to check diffeomorphical
equivalence of the Sprott systems.

The paper is organized as follows. Section II shows the general
transformation from a system of ODEs to the jerk form. In Sec. III,
we investigated the connections between the 17 Lorenz-like systems
as introduced in Ref. 11. We present tables of systems that share
the same time series and systems that can be transformed into each
other. In Sec. IV, we show the uniqueness of the jerk form under
transformations of the variables of the system. Section V shows an
example of such a transformation that leads to coexisting attractors
and numerical instabilities. Section VI is the conclusion.

II. TRANSFORMATION TO THE JERK FORM

Let us consider a time-continuous dynamical system in
R

3(x1, x2, x3) = R
3(x),

ẋ1 = f1(x),

ẋ2 = f2(x),

ẋ3 = f3(x),

(1)

and let s = h(x) be an observed scalar signal where h : R
3 → R is a

smooth function. Note that in this paper, we will set s = h(x) = x1.
The Lie derivative Lfh(x) of the function h(x) with respect to f(x) is
defined as

Lfh(x) =
3
∑

k=1

fk(x)
∂h(x)

∂xk

(2)

and recursively L
j

fh(x) = Lf(L
j−1
f h(x)) for the higher order Lie

derivatives. Using successive Lie derivatives, system (1) can be
rewritten as model in the differential space R

3(X, Y, Z)

X = s = h(x) = x1,

Y = Lfh(x) = ẋ1
∂X

∂x1
+ ẋ2

∂X

∂x2
+ ẋ3

∂X

∂x3
= ẋ1,

Z = L2
f h(x) = ẋ1

∂Y

∂x1
+ ẋ2

∂Y

∂x2
+ ẋ3

∂Y

∂x3
= ẍ1.

(3)

Solving these equations for x1,2,3 and inserting them into Ż = L3
f h(x)

the differential or jerk form

Ẋ = Y,

Ẏ = Z,

Ż = F(α, X, Y, Z)

(4)

can be obtained where the α’s are the parameters. Note that system
(4) is equivalent to the single higher order differential equation

...
x 1 = F(α, x1, ẋ1, ẍ1) (5)

expressed in only one variable of system (1). This provides us with
the opportunity to compare two systems in the form of Eq. (1): If two
3D ODE systems yield exactly the same jerk form (the same func-
tional form and same parameters α), the time series of X = x1 of
both systems need to be the same.

III. LORENZ-LIKE SYSTEMS

The general Lorenz-like system as introduced in Ref. 11 is

ẋ1 = a1,1 x1 + a1,2 x2,

ẋ2 = a2,1 x1 + a2,2 x2 + a2,6 x1 x3,

ẋ3 = a3,0 + a3,3 x3 + a3,4 x2
1 + a3,5 x1 x2,

(6)

where the terms a3,0 and a3,4 x2
1 were added to the original Lorenz

system14

ẋ1 = −σx1 + σx2,

ẋ2 = Rx1 − x2 − x1x3,

ẋ3 = −b + x1x2.

(7)

Equation (3), also called direct standard transformation in Ref. 15,
then reads

X = x1,

Y = a1,1 x1 + a1,2 x2,

Z = a1,2

(

a1,1 + a2,2

)

x2

+
((

a2,6x3 + a2,1

)

a1,2 + a2
1,1

)

x1.

(8)

This yields the inverse standard transformation

x1 = X,

x2 = Y − Xa1,1

a1,2
,

x3 =
(

a1,1a2,2 − a1,2a2,1

)

X −
(

a1,1 + a2,2

)

Y + Z

a1,2a2,6X

(9)

and with

Ż = a1,2a2,6a3,4 x3
1 + a1,2a2,6a3,5 x2 x2

1

+ (2a1,2a1,1(a2,6x3 + a2,1)

+ a1,2(a2,6((a2,2 + a3,3)x3 + a3,0)+ a2,1a2,2)

+ a3
1,1) x1 + a1,2(a1,2(a2,6x3 + a2,1)

+ a2
1,1 + a2,2a1,1 + a2

2,2) x2,
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TABLE I. Lorenz-like systems: Terms present in Eq. (6) are indicated with a “?”.

a1,1 a1,2 a2,1 a2,2 a2,6 a3,0 a3,3 a3,4 a3,5 Reference

1 ? ? ? ? ? ? ?

2 ? ? ? ? ? ? ?

3 ? ? ? ? ? ? ? ?

4 ? ? ? ? ? ?

5 ? ? ? ? ? ? ?

6 ? ? ? ? ? ?

7 ? ? ? ? ? ? ?

8 ? ? ? ? ? ? ? 16
9 ? ? ? ? ? ? ? ?

10 ? ? ? ? ? ?

11 ? ? ? ? ? ? ?

12 ? ? ? ? ? ? ?

13 ? ? ? ? ? ? ? ?

14 ? ? ? ? ? ? ? 14, 17
15 ? ? ? ? ? ? ? ?

16 ? ? ? ? ? ? ? ?

17 ? ? ? ? ? ? ? ? ?

we get the jerk form

Ẋ = Y,

Ẏ = Z,

Ż = α1X + α2X
3 + α3Y

+α4X
2Y + α5

Y2

X
+ α6Z + α7

YZ

X
,

where

α1 = a1,1a2,2a3,3 + a1,2

(

a2,6a3,0 − a2,1a3,3

)

,

α2 = a2,6

(

a1,2a3,4 − a1,1a3,5

)

,

α3 = −
(

a1,1 + a2,2

)

a3,3,

α4 = a2,6a3,5,

α5 = −a1,1 − a2,2,

α6 = a1,1 + a2,2 + a3,3,

α7 = 1.

(10)

Note that Eq. (10) is not valid for X = x1 = 0, which consequently
characterizes a local diffeomorphism, and (x1, x2, x3) = (0, 0, 0) is
an unstable fixed point for R > 1. Therefore, x1 = 0 will never be
visited.

In Ref. 11, 17 systems of ODEs (see Table I) were found that
have the same jerk form (10) as the original Lorenz system,14 and
consequently, some of them may share the same time series of the x1

variable (in the case of the same α’s) as mentioned above.
Here, we will dynamically characterize and classify these 17

Lorenz-like systems and prove that they all have the same jerk form,
despite having different 3D systems of ODEs.

To do a systematic classification of the 17 Lorenz-like systems,
we first checked which systems have matching jerk coefficients (see

Table II). As mentioned as a conclusion of Eq. (5), these are the sys-
tems that share the same x1-time series. To calculate this table, we
follow the same steps as at the beginning of this section and check for
which pairwise models the α’s can be matched. Note that the table
is not symmetric: e.g., system no.6 does not share its x1-time series
with any other systems, while system no.1 can share its dynamics
with system no.6.

When two systems have the same jerk form and the same coef-
ficients the time series of the x1 variables will match, but the unob-
served variables may differ. This also means that the two systems
might have different values for the fixed points of the unobserved
variables. We, therefore, tried to match the fixed points of these
systems to match the unobserved variables as well. This can lead
to one of the other systems in Table II. Table III summarizes such
transformations between the 17 Lorenz-like systems.

In Secs. III A–III C, we will show that, in general, when
comparing the jerk form of two 3D systems,

(i) If the functional form as well as the parameters in jerk form from
the variable X = x1 of two 3D systems match, the time series
x1(t) of these two systems will be the same. However, the time
series of the unobserved variables might be different. Initial con-
ditions for the two systems need to be adjusted to numerically
get the same time series of the observed variable. Systems no.5
and no.14 in Ref. 11 are an example.

(ii) If the parameters in the jerk form from the variable X = x1 of
two 3D systems do not match, the time series x1(t) of these two
systems will never be the same. An example is the Chen and the
Lorenz system.

(iii) For two 3D systems with the same jerk form and coefficients,
matching the fixed points can either lead to the other sys-
tem (systems no.8 and no.14 are an example) or to a different
algebraic form (e.g., transforming no.5 to no.14 yields system
no.11). In the first case, the time series of all variables will
be the same. In the second case, some time series might be
the same. Systems no.8 (Wang system) and no.14 (Lorenz sys-
tem) in Ref. 11 are an example of such an exact transformation
in both directions. For systems no.9 and no.14, the transfor-
mation is only possible from no.9 to no.14 and not the other
way around. Attempting to transform system no.5–no.14 yields
system no.11. In this case, two of the time series match.

(iv) Transformations in the unobserved variables will not change the
time series of the observed variable x1(t) but might result in dif-
ferent numbers of fixed points in the unobserved variables and
coexisting attractors. We show proof that such transformations
result in the same jerk form.

The first three properties will be used to compare the 17 Lorenz-like
systems introduced in Ref. 11. The fourth property on transforma-
tions of the unobserved variables and its consequences will be the
focus of another study.

Note that although two systems may be analytically equivalent
in the sense that one can be transformed into the other, numer-
ical simulations can diverge because digital computers have finite
precision.

In Table III, we list all systems i that can be transformed into
systems j. This refers to item (iii) above.
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TABLE II. Connections between the 17 Lorenz-like systems: Systems i share the time series with systems j.

j

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

4 ? ?

5 ? ? ? ? ? ? ? ? ? ? ? ? ?

6
7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

8 ? ? ? ? ? ? ? ? ? ? ? ?

9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

10 ? ?

11 ? ? ? ? ? ? ? ? ? ? ? ? ?

12 ? ?

13 ? ? ? ? ? ? ? ? ? ? ? ? ?

14 ? ? ? ? ? ? ? ? ? ? ? ?

15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

16 ? ? ? ? ? ? ? ? ? ? ? ? ?

17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

We will now show examples of matching jerk coefficients and
transformation between systems. To be more specific, we show the
details of how to match time series of the different Lorenz-like sys-
tems, and how the transformation between systems via fixed points
is done.

A. Systems no.14 (Lorenz) and no.8 (Wang)

System no.8 is

ẋ1 = a8,1,1 x1 + a8,1,2 x2,

ẋ2 = a8,2,2 x2 + a8,2,6 x1 x3,

ẋ3 = a8,3,0 + a8,3,3 x3 + a8,3,5 x1 x2,

(11)

which is the Wang system16 with a8,1,1 = −p, a8,1,2 = p, a8,2,2 = −1,
a8,2,6 = −1, a8,3,0 = RaW1, a8,3,3 = −1, and a8,3,5 = 1. The coeffi-
cients α in Eq. (10) are

α8,1 = a8,1,2a8,2,6a8,3,0 + a8,1,1a8,2,2a8,3,3,

α8,2 = −a8,1,1a8,2,6a8,3,5,

α8,3 = −
(

a8,1,1 + a8,2,2

)

a8,3,3,

α8,4 = a8,2,6a8,3,5,

α8,5 = −a8,1,1 − a8,2,2,

α8,6 = a8,1,1 + a8,2,2 + a8,3,3,

α8,7 = 1.

(12)

System no.14 is

ẋ1 = a14,1,1 x1 + a14,1,2 x2,

ẋ2 = a14,2,1 x1 + a14,2,2 x2 + a14,2,6 x1 x3,

ẋ3 = a14,3,3 x3 + a14,3,5 x1 x2,

(13)

which is the original Lorenz system14 with a14,1,1 = −σ , a14,1,2 = σ ,
a14,2,1 = R, a14,2,2 = −1, a14,2,6 = −1, a14,3,3 = −b, and a14,3,5 = 1.
The coefficients α for this system are

α14,1 =
(

a14,1,1a14,2,2 − a14,1,2a14,2,1

)

a14,3,3,

α14,2 = −a14,1,1a14,2,6a14,3,5,

α14,3 = −
(

a14,1,1 + a14,2,2

)

a14,3,3,

α14,4 = a14,2,6a14,3,5,

α14,5 = −a14,1,1 − a14,2,2,

α14,6 = a14,1,1 + a14,2,2 + a14,3,3,

α14,7 = 1.

(14)

To match the time series of both systems, the α’s of both sys-
tems have to be the same, α8,j = α14,j and j = (1, 2, . . . , 7). These
equations then yield the equalities

a8,1,1 = a14,1,1,

a8,2,2 = a14,2,2,

a8,3,0 a8,1,2 a8,2,6 = −a14,1,2 a14,2,1 a14,3,3,

a8,3,3 = a14,3,3,

a8,3,5 a8,2,6 = a14,2,6 a14,3,5.

(15)
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TABLE III. Systems i can be transformed to systems j yielding the other system exactly.

j

i 1 2 3 4 10 12 5 11 13 8 14 16 9 15 17 7 6

1 ? ?

2 ? ?

3 ? ?

4 ? ?

10 ? ?

12 ? ?

5 ? ?

11 ? ?

13 ? ?

8 ? ?

14 ? ?

16 ? ? ?

9 ? ? ? ? ? ? ? ? ? ? ? ? ?

15 ? ? ? ? ? ? ? ? ? ? ? ? ?

17 ? ? ? ? ? ? ? ? ? ? ? ? ?

7
6

To match the dynamics of the Wang system with the Lorenz system,
we need to solve Eq. (15) for a8,?,?’s,

a8,1,1 = a14,1,1 = −σ ,
a8,2,2 = a14,2,2 = −1,

a8,3,0 = −a14,1,2a14,2,1a14,3,3
c8,1,2a8,2,6

= bRσ
a8,1,2a8,2,6

,

a8,3,3 = a14,3,3 = −b,

a8,3,5 = a14,2,6a14,3,5
a8,2,6

= − 1
a8,2,6

,

(16)

where a8,1,2 and a8,2,6 are free parameters. This yields the Wang
system with Lorenz dynamics

ẋ1 = −σx1 + a8,1,2x2,

ẋ2 = −x2 + a8,2,6x1x3,

ẋ3 = bRσ

a8,1,2a8,2,6
− bx3 − x1x2

a8,2,6
.

(17)

We set c8,1,2 and c8,2,6 to one and integrate this system using a
step size of δt = 0.01 and setting σ = 10, R = 28, and b = 8

3
.

In Fig. 1, the attractors of the original Lorenz system (13) in
blue and the Wang system Eq. (11) in magenta are shown. The
dynamics matches, but the resulting attractor is scaled/displaced
in the unobserved variables x2 and x3. We found the initial condi-
tions (x1,0, x2,0, x3,0) → (x1,0, σx2,0, σ(R − x3,0)) and plot (x1, x2, x3)

for Lorenz and (x1,
x2
σ , R − x3

σ
) for Wang in Fig. 2. The three time

series for the two systems depart after some time due to numer-
ics. Since these systems share the same jerk, they can be mutually
transformed. In such cases, the authors of Ref. 18 have shown,
under mild assumptions, that if a transformation exists between two
systems, their Lyapunov exponents remain preserved. Additional
details are added in the supplementary material. To find the correct
scaling/displacement variables in a straight forward way, we match

the fixed points of both systems. The fixed points for the Lorenz
system are

# x1 x2 x3

1 0 0 0
2, 3 ±

√

b(R − 1) ±
√

b(R − 1) R − 1

. (18)

For the Wang system (17), scaling and displacement parameters for
the unobserved variables (xj → sjxj + dj, j = 2, 3) are added,

ẋ1 = d2a8,1,2 − σx1 + s2a8,1,2x2,

ẋ2 = −d2

s2
− x2 + a8,2,6d3

s2
x1 + a8,2,6s3

s2
x1x3

ẋ2 = bRσ − bd3a8,1,2a8,2,6

s3a8,1,2a8,2,6
− d2

s3a8,2,6
x1,

−bx3 − s2

s3a8,2,6
x1x2.

(19)

Then, the fixed points for this system are

# x1 x2 x3

1 0 − d2
s2

Rσ−d3a8,1,2a8,2,6
s3a8,1,2a8,2,6

2, 3 ±
√

b(R − 1)
±
√

b(R−1)−d2a8,1,2σ

s2a8,1,2

σ−d3a8,1,2a8,2,6
s3a8,1,2a8,2,6

. (20)

Matching the two sets of fixed points yields d2 = 0, s2

= σ
a8,1,2

, d3 = Rσ
a8,1,2a8,2,6

, and s3 = − σ
a8,1,2a8,2,6

. This transforms the

scaled/displaced Wang system (19) into the Lorenz system

ẋ1 = −σ x1 + σ x2,

ẋ2 = R x1 − x2 − x1 x3,

ẋ3 = −bx3 + x1 x2.

(21)
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FIG. 1. Numerically integrated Lorenz system (13) (blue) and the Wang system Eq. (17) (magenta).

The Lorenz and the Chen systems have the same algebraic 3D struc-
ture. However, they have different jerk parameters α and, therefore,
are dynamically different. The same procedure as above can be done
in any direction between systems no.8, no.14, and no.16.

B. Systems no.5, no.14 (Lorenz), and no.11

Other interesting examples are systems no.5, no.14 (Lorenz),
and no.11. When doing the same procedure as above and attempting
to change system no.5 to match the Lorenz system (no.14), we obtain
a modified system no.11 as described below. In this case, only two of

the time series match when integrated numerically. Going directly
from no.5 to no.11, we obtain system no.11 as is.

To align the dynamics of system no.5 in Table I (represented
below in a general form) with the Lorenz system [no.14 in Table I or
Eq. (13)],

ẋ1 = a5,1,1 x1 + a5,1,2 x2,

ẋ2 = a5,2,6 x1 x3,

ẋ3 = a5,3,0 + a5,3,3 x3 + a5,3,4 x2
1 + a5,3,5 x1 x2,

(22)

FIG. 2. Numerically integrated Lorenz system (13) (blue) and the Wang system Eq. (17) with a8,1,2 = a8,2,6 = 1, where we plot (x1,
x2
σ ,R − x3

σ
) in magenta and adjusted

initial conditions. The Lyapunov exponents are the same, that is, (0.906, 0,−14.572), since there is a transformation between the two systems as required in Ref. 18
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FIG. 3. Numerically integrated (x1,
x2
σ ,R − x3

σ
) for the Lorenz system (13) (blue) and system (25) (magenta). The Lyapunov exponents are the same, that is,

(0.906, 0,−14.572), since there is a transformation between the two systems as required in Ref. 18.

the coefficients αi’s in Eq. (10) need to be the same

bσ(R − 1) = a5,1,2a5,2,6a5,3,0,

−σ = a5,2,6

(

a5,1,2a5,3,4 − a5,1,1a5,3,5

)

,

−b(σ + 1) = −a5,1,1a5,3,3,

−1 = a5,2,6a5,3,5,

σ + 1 = −a5,1,1,

−b − σ − 1 = a5,1,1 + a5,3,3,

1 = 1.

(23)

With this solution, system no.5 can be written as

ẋ1 = −(σ + 1)x1 + a5,1,2x2,

ẋ2 = a5,2,6x1x3,

ẋ3 = b(R − 1)σ

a5,1,2a5,2,6
− bx3 + 1

a5,1,2a5,2,6
x2

1 − 1

a5,2,6
x1x2.

(24)

Equation (24) then shares the time series of the x1 variable with
the Lorenz system. The other variables may be scaled and shifted
to those of the Lorenz system. To get a system, where all time series
are matched, we replace xj, where j = 2, 3 with sjxj + dj and match
the fixed points of this scaled (by sj) and displaced (by dj) system
with the fixed points of the Lorenz system. The shift and scaling
parameters are s2 = σ + 1, s3 = −σ , d2 = 0, and d3 = (R − 1)σ .
This transforms the modified system no.5 into the form of system

no.11,

ẋ1 = −(σ + 1)x1 + (σ + 1)x2,

ẋ2 = (R − 1)σ

σ + 1
x1 − σ

σ + 1
x1x3,

ẋ3 = −bx3 − 1

σ
x2

1 + (σ + 1)

σ
x1x2.

(25)

Figure 3 shows the time series of the original Lorenz system (13)
in blue and system (25) in magenta. While x1 and x3 are the same
(up to numerical errors), x2 is slightly different. In fact, plotting
(σ + 1)x2 − x1

σ instead of x2 would make the lines overlap and

consequently applying the transformation x2 → σx2 + x1
σ + 1 changes

Eq. (25) back to the original Lorenz system. Note that Eq. (24), which
is system no.5 in Table I and Eq. (25), which is system no.11 in
Table I, and the original Lorenz system shares the same time series
of the x1 variable. Numerically, this is not always true. If we integrate
system (25) and the Lorenz system (13) with equal values for the ini-
tial conditions for the x1 and x2 variables, we get Fig. 3 (integration
step size is δt = 0.001 and σ = 10, R = 28, and b = 8

3
). In this case,

all three time series match for a long time, then they depart from
each other due to finite number lengths on computers. For other
initial conditions, they depart sooner. In theory, x1(t) should be the
same forever.
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FIG. 4. System no.6 with two choices for the parameters (a6,1,1,
a6,1,2, a6,2,1, a6,2,6, a6,3,0, a6,3,3, a6,3,5). (a) (−0.3494,−0.2886, 0.2141,
1.2300,−0.1379,−0.0282) and (b) (0.2,−2,−2.18, 0.22,−0.55, 1.2).

C. System no.6

System no.6

ẋ1 = a6,1,1 x1 + a6,1,2 x2,

ẋ2 = a6,2,2 x2 + a6,2,6 x1 x3,

ẋ3 = a6,3,3 x3 + a6,3,5 x1 x2

(26)

is a Lorenz-like system with a very interesting and different dynam-
ics, as shown in Fig. 4. Although the jerk structure is the same, no
single set of coefficients can make the jerk equation of System no.6
equivalent to that of another Lorenz-like system, making System
no.6, a unique type of system.

IV. NECESSARY CONDITION FOR DIFFEOMORPHISMS

TO PRESERVE THE JERK FORM

In this section, a necessary condition for a diffeomorphism to
preserve the jerk of a vector field is demonstrated.

Theorem 1. Let f(x) a differentiable vector field in R
3,

x = (x1, x2, x3), and 8 : R
3 → R

3, a local diffeomorphism around
x0 ∈ R

3. If

8(x) = (ϕ1(x), ϕ2(x),ϕ3(x)) (27)

and ϕj(x) = xi for some i, j, then the jerk equation in relation to xi of

ẋ = f(x) = (f1(x), f2(x), f3(x)) (28)

and of the system transformed under8 is the same.
Remark 1. In Theorem 1, ϕj(x) = xi denotes that at least one

of the coordinate functions of 8(x) and must be a projection. Note
that ϕ1(x) = h(x) = x1 in Sec. II.

FIG. 5. Diagram of x
8−→ w

4̃−→ w̃
4−1

−→ x.

Proof. Without loss of generality, we can consider ϕi(x) = xi.
If ϕj(x) = xi, with i 6= j, the coordinates’ change given by







ψk = ϕk, if k 6= i or k 6= j,
ψj = ϕi,
ψi = ϕj

is such that ψi(x) = xi. For i = 1, we define the transformation 4 :
R

3 → R
3 given by

4(x) = (X(x), Y(x), Z(x))

with






X = x1,
Y = LfX = Lfx1 = f1(x),
Z = L2

f X = LfY = ∇f1 (x) · f(x)> = ∇Y · f(x)>,
(29)

where Lf(·) is the Lie derivative of a real function defined by Eq. (2).
In order to find the jerk equation of system (28), it is necessary to
take the derivative of4 in relation to time as shown in Eq. (30),







Ẋ = ẋ1 = f1(x) = Y,
Ẏ = ∇Y · f(x)> = Z,
Ż = f(x) · Hf1 · f(x)> + ∇f1(x) · df(x) · f(x)>,

(30)

where df(x) =
[
∂fi
∂xj

]

is the Jacobian matrix of f(x) and Hf1 =
[
∂2 f1
∂xi∂xj

]

is the Hessian of f1(x) for i, j = 1, 2, 3. Now consider a diffeomor-
phism 8 : R

3 → R
3 around x0 ∈ R

3 such that ϕ1(x) = x1. In the
coordinate system w = (ϕ1, ϕ2, ϕ3), the differential Eq. (28) around
8(x0) is given by

ẇ = d8(x) · f(8−1(w))
> = f̂(w)>, (31)
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FIG. 6. Phase-portraits of the modified Lorenz system (35).

where d8, the Jacobian matrix of8, is given by

d8 =








1 0 0
∂ϕ2

∂x1

∂ϕ2

∂x2

∂ϕ2

∂x3
∂ϕ3

∂x1

∂ϕ3

∂x2

∂ϕ3

∂x3








. (32)

Consider yet again another transformation 4̃ :R3 → R
3

4̃(w) = (X̃(w), Ỹ(w), Z̃(w)),

such that







X̃ = ϕ1,
Ỹ = Lf̂ϕ1 = Lf̂X̃,
Z̃ = L2

f̂
ϕ1 = Lf̂Ỹ.

(33)

From Eqs. (31) and (32), the first coordinate of f̂(w) is f1(8
−1(w)).

Hence,

Ỹ = f1(8
−1(w)) and Z̃ = ∇f1(8

−1(w)) · f(8−1(w))
>

.

Follow the same steps in the process of obtaining the jerk equation
as conducted for transformation 4(x), that is, take the derivative of

Eq. (33) in relation to time and get

˙̃X = ϕ̇1 = f1
(

8−1(w)
)

= Ỹ,

˙̃Y = ∇f1
(

8−1(w)
)

· d8−1 · ẇ>

= ∇f1
(

8−1(w)
)

· d8−1 · f̂(w)>

= ∇f1
(

8−1(w)
)

· f(8−1(w))
> = Z̃,

˙̃
Z = f̂(w) · (d8−1)

>
︸ ︷︷ ︸
(

d8−1·f̂(w)>
)>

·Hf1

(

8−1(w)
)

· d8−1 · f̂(w)>

+∇f1
(

8−1(w)
)

· df
(

8−1(w)
)

· d8−1 · f̂(w).

From Eq. (31) and8−1(w) = x, for every x around x0 then,

˙̃
Z = f(x) · Hf1 (x) · f(x)> + ∇f1(x) · df(x) · f(x)>. (34)

The right-hand side of equation ˙̃
Z in (34), the jerk equation for

the transformed system, is exactly the same as the right-hand of
equation Ż in Eq. (30), which completes the proof for i = 1. For
i = 2, 3, the proof can be obtained using the same steps. �

The transformation can be summarized in Fig. 5.

V. TRANSFORMATION THAT LEADS TO COEXISTING

ATTRACTORS

We further investigate the role of fixed points, stability issues,

FIG. 7. Phase-portraits of the numerically integrated
Lorenz system with the transformation (37).
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FIG. 8. Numerical stability in dependence of the initial conditions y1,0 and y2,0 of
system (35). The third initial condition is fixed as y3,0 = 1.0113959. The colors
denote the length of the numerical integration before |y1| > 100.

and pitfalls of the numerical analysis of dynamical systems recon-
structed from a single time series. Max Planck’s idea of “natural
units”19 illustrate the fact that a system’s behavior can be described
in a simple or more complicated way depending on the coordinate
system. We present an example of the Lorenz system14 and a modi-
fied Lorenz system that was obtained by coordinate transformations
of the unobserved variables. Both systems have the same differen-
tial model and share the same time series of x1(t), but the number
of fixed points can change and lead to coexisting attractors. Let us
consider the Lorenz system (13) with variables (x1, x2, x3) and the
system

ẏ1 = σ

(

−y1 + y2

y3

)

,

ẏ2 =
−y2 y3

(

y3 + b
(

y2
2 + y3

))

+ y1

((

R − y3

)

y3
3 − y2

2

(

y3
3 − 1

))

y3

(

2 y2
2 + y3

) ,

(35)

ẏ3 =
−y3

((

b − 2
)

y2
2 + b y3

)

+ y1 y2

(

1 − 2 R y2
3 + 2 y2

2 y2
3 + 2 y3

3

)

2 y2
2 + y3

.

System (35) was obtained by the transformation x1 → x1, x2 → x2
x3

,

and x3 → x3 + x2
2, or

x1 = y1,

x2 = y2

y3
,

x3 = y3 + y2
2

(36)

from the original Lorenz system. x3 = 0 would make the Lorenz
system 2D and is, therefore, not allowed. Additionally, (x1, x2, x3)

= (0, 0, 0) is an unstable fixed point. Therefore, this transformation
does not cause any singularities. According to Theorem 1 in Sec. IV,
both systems generate the same time series x1(t) = y1(t). To numer-
ically obtain the attractor of system (35), we can (i) directly integrate
this system or (ii) we can integrate the Lorenz system and apply the

inverted transformation (36),

y1 = x1,

y21,2 =
−1 ±

√

1 + 4x2
2x3

2x2
,

y31,2 =
−1 ±

√

1 + 4x2
2x3

2x2
2

(37)

to those numerical values. Both plots should be the same. Figure 6
shows (i) and Fig. 7 shows the coexisting attractors (ii). The left plot
in Fig. 7 is similar to the left plot in Fig. 6. The right plot can only
be obtained by plotting (y1, y22). Numerically, this is not possible
because of y22 → ±∞.

The attractor of System (35) shown in Fig. 6 has four fixed
points,

ξ 1,2 =
(

√

b(R − 1),
−1 ±

√

1 + 4 b (R − 1)2

2
√

b (R − 1)
,

−1 ±
√

1 + 4 b (R − 1)2

2 (b (R − 1))

)

,

(38)

ξ 3,4 =
(

−
√

b(R − 1),
1 ±

√

1 + 4 b (R − 1)2

2
√

b (R − 1)
,

−1 ∓
√

1 + 4 b (R − 1)2

2 (b (R − 1))

)

,

while the standard Lorenz system has only three fixed points,

ξ 1 = (0, 0, 0),

ξ 2,3 = (±
√

b(R − 1), ±
√

b(R − 1), R − 1).
(39)

In Fig. 8, the dependence on the initial conditions is illustrated. The
initial conditions that determine which of the two coexisting attrac-
tors is visited are very close and seem to have a fractal structure.
This also causes the numerical instability of the system since num-
bers during numerical integration only a finite number of digits is
processed which represents a small change of the number and can
cause a jump from one attractor to the other.

System (35), therefore, will be numerically integrated to always
give Fig. 6 with the four coexisting fixed points, instead of one of the
two attractors with the corresponding two fixed points. The fixed
point of the Lorenz system located at the origin is not present in
either one of the modified Lorenz attractors since it became sin-
gular. The number of fixed points, therefore, cannot be used to
validate a system. System (35) can also be interpreted as the Lorenz
system in a changed coordinate system determined by the trans-
formation between these two systems. Finally, it is worth noting
that the two systems share the same Lyapunov exponents since the
transformation between them meets the mild assumptions given in
Ref. 18.
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VI. CONCLUSION

In this paper, we investigated the connections and transfor-
mations between 17 Lorenz-like systems that were introduced in
Ref. 11. We showed which systems can share the same time series
and transformations between systems. We also proved that trans-
formations of the unobserved variables do not change the jerk form
and showed an example of how such a transformation can change
the systems behavior and lead to coexisting attractors. Finally, we
demonstrated that sharing of the same jerk form by another model,
derived from the study of a different phenomenon in another
domain, can provide insights into behaviors in that other domain.

SUPPLEMENTARY MATERIAL

In the supplementary material, we present the calculation
results for the Lyapunov exponents of the Lorenz and the Wang
systems discussed in the paper. While there is a comprehensive
mathematical proof ensuring that the Lyapunov exponents remain
consistent across systems that can be mutually transformed, we
provide a brief proof for the case of linear transformations.
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