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styles between these two extremes may provide explanations for
such diverse rifting phenomena as crustal doming, the occur-
rence of so called ‘wet’ rifts (with volcanism), and ‘dry’ rifts
(without volcanism)®, uplifted graben shoulders®!, apparent
depth-dependent extension®®, and the apparent simple shear”
or delamination of the lithosphere®. This alternative working
model of continental rifting is consistent with current ideas
about both the rheology of the lithsophere and the driving forces
of plate tectonics.

We thank Roger Buck for constructive reviews of the manu-
script.
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Network model of shape-from-shading:
neural function arises from both
receptive and projective fields

Sidney R. Lehky & Terrence J. Sejnowski

Department of Biophysics, Johns Hopkins University, Baltimore,
Maryland 21218, USA

It is not known how the visual system is organized to extract
information about shape from the continuous gradations of light
and dark found on shaded surfaces of three-dimensional objects'”.
To investigate this question®*, we used a learning algorithm to
construct a neural network model which determines surface cur-
vatures from images of simple geometrical surfaces. The receptive
fields developed by units in the network were surprisingly similar
to the actual receptive fields of neurons observed in the visual
cortex™® which are commonly believed to be ‘edge’ or ‘bar’ detec-
tors, but have never previously been associated with shading. Thus,
our study illustrates the difficulty of trying to deduce neuronal
function solely from determination of their receptive fields. It is
also important to consider the connections a neuron makes with
other neurons in subsequent stages of processing, which we call
its ‘projective field’.
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Fig. 1 Organization of neural network that extracts surface cur-
vatures from images of shaded surfaces. a, Diagram of three-layer
network. Each unit projects to all units in the subsequent layer.
The responses of the units in the input layer are determined by
the environment. The responses of each unit in the hidden and
output layers are determined by summing the activities from ali
units in preceding layer, weighted by connection strengths which
can be positive or negative, and then passed through a sigmoid
nonlinearity. Unit activities can assume any value between 0.0-1.0.
b, Input-unit receptive field, formed by the Laplacian of a two-
dimensional guassian. On-centre units have an excitatory centre
and an inhibitory surround, while off-centre units have opposite
centre/surround polarities. The on- and off-centre terminology
does not imply any temporal properties for these units. ¢, Receptive
field centres of input units overlapped in a hexagonal array. Images
were sampled by both on-centre and oft-centre arrays, which were
spatially superimposed. d, Output-unit response curve, tuned to
both curvature magnitude and orientation. The maximum response
of each output unit was produced by a different combination of
those two curvature parameters. The magnitude axis is on logarith-
mic scale. Multi-dimensional responses such as this are common
in the visual cortex for various parameters, although units selective
for surface curvature have not been reported.

The specific task we set for the network was to determine the
magnitudes and orientations of the two principal surface cur-
vatures at the centre of each input surface, and to do this
independently both of lateral translations of the surface within
a small patch of the visual field, and also independently of the
direction of illumination. Surface curvature depends upon the
direction of travel along a surface. The principle curvatures are
the maximum and minimum curvatures for all trajectories
through a particular point, which are always perpendicular to
each other, and are good descriptors of local shape.

The network had three layers (Fig. 1a): an input layer (122
units), an output layer (24 units), and an intermediate hidden
layer (27 units). The input layer consist of arrays of units with
circular receptive fields (Fig. 1b, ¢), similar to neurons found
in the retina and the lateral geniculate nucleus. Output units
were selective for both the magnitude and orientation of cur-
vature (Fig. 2d). Because of its non-monotonic, tuned response,
the activity of a single output unit represented the curvature
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Fig. 2 Typical input image and resulting
activity levels within a trained network. g,
Example of an ellipitcal paraboloid surface.

(The flat base did not fall within the input field . Orientation
of the network). b, One of 2,000 images used p N cggg
to train the network, synthesized by calulating 4/’ > A\ C +

d ¢

=3

L]
-
&

= Correct output

light reflected from the paraboloid surface.
Each image differed in the magnitudes and
orientation of the two principal curvatures, in
the slant and tilt of illumination, and in the
location of the surface centre within the input
field. All image parameters were randomly
selected from a uniform distribution. The cur-
vature magnitude ranged drom 2 deg™' to 32
deg™! and also —2 deg™' to —32 deg™!, and the
curvature orientation from 0°to 180°. The centre
of the paraboloid could fall anywhere within
the central third of the input field, and the
surface normal at the paraboloid centre was
always perpendicular to the image plane. Sur-
face reflection was Lambertian, or matte.
Illumination came predominantly from one
direction but was partially diffused to eliminate
sharp shadow edges. The illumination slant fell
between 0°-60°. The network was trained to Input image Network response

interpret images assuming that illumination

came from above (tilt between 0°-180°), and

that the signs of both curvatures were the same (that is, the surface was convex or concave). ¢, The network response to an image. The area
of a black square indicates a unit’s activity. Double hexagons show the responses of 61 on-centre and 61 off-centre input units, calculated by
convolving their receptive fields with the image. The responses were rectified, and so they only assumed positive values. These input units
cause activity in the 27 hidden units, arranged in a 3 x9 array above the hexagons. The hidden units in turn project to the output layer of 24
units, shown in a 4x6 array. This output should be compared with the other 4x 6 array at the very top, which shows a correct response to
the image. Units within a 4 X 6 array are arranged as follows. The six columns correspond to different peaks in orientation tuning, at 0°, 30°,
60°, 90°, 120° and 150°. The rows correspond to different curvature magnitudes: the top two rows code for positive (tuning peak: +8 deg™")
and negative (tuning peak: —8 deg™') magnitudes of the smaller of the two principal curvatures (Cg), while the bottom two rows code the
same for the larger principal curvature (Cy) (same tuning peaks). Curvature orientation is unambiguously coded by the pattern of activity in
six overlapping orientation-tuning curves. Representation of curvature magnitude, however, remains degenerate because output unit tuning
curves in that domain do not overlap. An output can therefore correspond to two curvature magnitudes, which the network cannot distinguish.
This remaining ambiguity could be resolved with a larger network containing units that are responsive at different spatial scales.

Output

Hidden
Surface

Off-centre
input

On-centre
input

Type 1

Type 2

Type 3

Fig. 3 Connection strength in a typical network. Excitatory weights are white and inhibitory ones are black, and the areas of the squares

indicate the connection strengths. Each hidden unit is represented by one hourglass-shaped icon, showing its receptive field (double hexagons)

and projective field (4x 6 array at the top). The organization of units in the 4x 6 array is as described in Fig. 2c. The isolated square at the

left of each icon indicates the unit’s bias (equivalent to a negative threshold). Black horizontal lines group units that have the same type of
projective field organization
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arrT T T T T pr— T T An example of the network’s response to an image is given
0.5 | in Fig. 2¢ and the network connection strengths underlying this
105 response are shown in Fig. 3. Each of the 27 hourglass-shaped
0.4l 1 o.4f icons represents the connections associated with one hidden
< unit. The double hexagons in each icon show the connections
0.3} 0.3} from all input units to that hidden unit (that is, the receptive
© field), and the 4x6 array at the top shows the connections
“ 0.2} 1 0.2} ] between that hidden unit and all output units (that is, the
projective field). Repeating the learning procedure starting from
0.1r 1 01 ] completely different sets of random weights resulted in essen-

o \ 0 tially the same pattern of connections.
i 0.4 0.8 0 0.4 0.8 The receptive fields in Fig. 3 are reminiscent of those in the
Activity visual cortex™®?, Excitatory and inhibitory connections are often

Fig. 4 Distribution of activity levels for two hidden units when
the network was presented with the 2,000 images described in
Fig. 2b. For each image, units gave responses between 0.0 and 1.0,
which were grouped into ten bins. a, Histogram with a unimodal
distribution typical of orientation-selective units (type 1) and of
units selective for the relative magnitudes of the principal cur-
vatures (type 3). These units tend to be activated over a range of
intermediate levels when presented with many inputs, and appear
to act as continuous, tuned filters indicating the values of their
respective parameters. b, Histogram with typical bimodal distribu-
tion for a unit discriminating between positive and negative cur-
vatures (type 2). These units are like feature detectors, tending to
be either fully on or off to indicate whether a surface is convex or
concave.

parameters in a degenerate manner; that is, various input images
could lead to the same response. To resolve this ambiguity,
curvature parameters were encoded by the pattern of activity in
a population of output units having different, but overlapping
tuning curves, analogous to the way that colour can be encoded
by the pattern of activity in three broadly tuned channels. This
network was intended to model processing for only a small
patch of the visual field, about the size handied by a single
cortical column. It would have to be replicated at different
locations to cover the entire field, perhaps with all components
feeding into a higher level network to integrate the local analyses.

Given this three-layer network architecture, the ‘back-propa-
gation’ learning aigorithm’ was used to organize the properties
of the hidden units to provide a transform between the
retinotopic space of the input units and the two-dimensional
magnitude and orientation parameter space of the outputs.
Images of elliptic paraboloid surfaces were used as inputs (Fig.
2a, b). Sharp edges were excluded from the images, and so the
only cues available for computing curvatures were in the shad-
ing. The network was presented with many images, and, for
each input, responses were propagated up to the output units.
The actual output was then compared with the correct output
for that image, and all connection strengths in the network were
slightly modified to reduce error in the manner specified by the
algorithm. Gradually, the initially random connection strengths
became organized. The correlation between the correct and the
actual outputs reached a plateau of 0.88 after 40,000 presenta-
tions, and the network generalized well for images that were
not part of the training set. Increasing the number of hidden
units failed to improve the network performance, although it
did deteriorate when there were too few hidden units. No
biological significance is claimed for the algorithm by which the
network developed but, rather, the focus of interest is on the
resulting mature network.
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organized in an orientation-specific and muti-lobed manner,
although some are more or less circularly-symmetrical. Upon
examining projective fields, however, three types become
apparent: type 1 has a vertical pattern of organization to the
4 x 6 array of weights; type 2 has a horizontal organization with
alternate rows being similar; and type 3 has a horizontal organiz-
ation with adjacent rows being similar. These classes of hidden
units appear to provide information to output units about,
respectively, the orientation of the principal curvatures (type
1), their signs (convexity/concavity) (type 2), and their relative
magnitudes (type 3). The units had different response distribu-
tions when presented with many stimuli. Type 1 and type 3 had
unimodal distributions (Fig. 4a), whereas type 2 units had
bimodal distributions (Fig. 4b). Based on these distributions,
we interpret types 1 and 3 as being filters that indicate values
for their respective parameters, and type 2 units as being feature
detectors that discrminate between discrete alternatives (con-
vexity and concavity). A few hidden units were difficult to
classify, and four failed to develop large weights.

We tried probing the units with simulated bars of light and
found that the responses of the hidden units were easily predict-
able from the pattern of excitatory and inhibitory connections
they received from the input units, and that most of these
responses appear similar to those of simple cells in the visual
cortex™®. In contrast, it required extensive trial and error to find
the optimal stimulus for the output units, but this was not
surprising as each output unit received convergent inputs from
all 27 hidden-unit receptive fields. Some output units had strong
‘end-stopped inhibition’, similar to that of some complex cells
in the cortex®. In these units, responses dropped precipitously
when the bar length was extended beyond a certain point.

Examination of the receptive fields of individual units does
not make apparent what the network is doing, and interpreta-
tions other than that of extracting curvatures from shaded images
are likely to spring to mind. While this model network obviously
does not establish that receptive fields in the cortex which
resemble those developed by the network are engaged in shading
analysis, it does raise questions about conventional interpreta-
tions of the functions of receptive fields, not only in visual
pathways, but in other sensory systems as well. Understanding
the function of a neuron within a network appears to require
not only knowledge of the pattern of input connections forming
its receptive field, but also knowledge of the pattern of output
connections, which forms its projective field. Indeed, the same
neuron may have a number of different functions if it projects
to several regions.
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