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Abstract 

Locust antennal lobe projection neurons (PNs) display slow temporal pat- 
terns of activity in response to olfactory stimuli. These patterns are composed 
of 100-200 ms epochs of depolarizing and hyperpolarizing activity, which are 
stimulus specific and reproducible. Simultaneous recordings from small groups 
of PNs in the locust antennal lobe also found that they would transiently syn- 
chronize during odor responses. Pairwise synchronization (or synchronization 
to the average local field potential) typically lasted for only a few cycles of the 
oscillatory population response. The mechanisms underlying these phenomena 
were investigated here in a model of the antennal lobe using single cornpart- 
ment Hodgkin-Huxley type models of PNs and inhibitory local neurons (LNs). 
(1) The activation of the slow inhibitory receptors between LNs and PNs pro- 
duced hyperpolarization and controlled spike activity in ways similar to those 
observed experimentally. Depending on the temporal patterns of activity in the 
presynaptic LNs, the hyperpolarization in the PNs lasted from 100 to 400 ms 
and was stimulus specific. (2) The fine structure of PN spikes was controlled 
by the fast GABAergic input from presynaptic LNs. Reduction of the fast IP- 
SPs in groups of PNs during specific temporal epochs of stimulation, destroyed 
the synchrony of oscillations in these neurons. This model predicts that both 
LN-PN and reciprocal LN-LN inhibitory connections are required for temporal 
encoding of olfactory information in this system. 
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INTRODUCTION 

A characterization of temporal coding in olfactory systems is slow complex tem- 
poral patterns of excitation and inhibition demonstrated by olfactory neurons during 
stimulus-evoked oscillations. Such pat terns have been observed in the olfactory bulbs 
of amphibians (Kauer, 1974; Kauer and Shepherd, 1977) and mammals (Chaput and 
Holley, 1980; Meredith, 1986; Meredith, 1992) and in the antennal lobe in insects 
(Christensen and Hildebrand, 1987). The slow temporal patterns have been shown to 
be odor specific and reproducible over the trials in locust olfactory system (Laurent 
and Davidowitz, 1994; Wehr and Laurent, 1996). 

Recent intracellular recordings in vivo from locust antennal lobe projection neu- 
rons (PNs) have revealed that the times during which PNs are phase-locked with 
population oscillations depend on the presented odor. Thus there is a fine structure 
to the timing of action potentials in PN oscillations which is also stable over the tri- 
als and different for different olfactory neurons (Laurent et al., 1996; Laurent, 1996). 
This multilevel scheme of odor representation and coding becomes even more com- 
plicated considering that different odors evoke responses in spatially different groups 
of neurons (Laurent and Davidowitz, 1994; Leitch and Laurent, 1996). Thus, odor 
processing in the locust antennal lobe appears to involve a complex scheme of spatio- 
temporal coding with odor-specific populations of PNs responding to applied odor 
with odor- and neuron-specific sequences of temporal firing patterns. 

In this paper we analyzed the mechanisms of temporal coding with computational 
model of antennal lobe neural network. We found that the synchrony of PN oscil- 
lations depended on the fast inhibitory input provided by the local neurons (LNs). 
This input was controlled by the spatio-temporal patters of LN oscillations and its 
changes were odor-specific. The patterns of LN activity also effected the activation of 
the slow inhibitory receptors between LNs and PNs, that underlied the appearance 
of the slow temporal structure of PN responses. 

METHODS 

Network geometry 
We simulated a network of 90 PNs and 30 LNs. For the LN neurons we included 
a transient Ca2+ current IN (Laurent et al., 1993), a calcium-dependent potassium 
current IK(&) (Sloper and Powell, 1978), a fast potassium current IK (Traub and 
Miles, 1991) and a potassium leak current IKL. For the PN neurons we included a 
fast sodium current INa (Traub and Miles, 1991), a fast potassium current IK (Traub 
and Miles, 1991), a transient potassium A-current IA (Huguenard et al., 1991) and 
a potassium leak current IKL.  We assumed random (with probability 0.5) intercon- 
nections between all neurons. 33% randomly selected LNs and PNs were stimulated 
by pulses of current as the odor stimulation. These values are higher than those es- 
timated from the experimental data (Laurent, private communication). However the 
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Figure I :  Averaged network activity. During olfactory stimulation (two 500 ms current 
pulses are showed a t  the bottom panel) the P N  oscillations were synchronized a t  the fre- 
quency about 20 Hz. 

choice of these parameters in our model depended on total number of neurons. In a 
network with number of cells close to in vivo data (about 10 times more than in our 
model (Laurent, 1996)), the probabilities of all interconnections would be rescaled by 
factor 10. 

Some of the intrinsic parameters of the neurons in the network were initialized 
with random variability to ensure robustness of the results. Small-amplitude current 
in the form of Gaussian noise (about 10% deviation) was introduced to each cell to  
achieve random fluctuation of the membrane potential. A stimulus was modeled by a 
current pulse with a rise time constant a=O.Ol ms and decay time constant ,0=0.005 
ms. Gaussian noise (about 10% deviation) was added to the stimulation pulses. 

Phase analysis 
The averaged PN oscillations (field potential) were low-pass filtered with frequency 
cut offs at  50 Hz. The PN spikes times were converted to phases. The peaks of the 
field potential was assigned a phase 0 or 27i- and right (left) nearest minimums were 
assigned a phase +T (-T). The phase of each PN spike was calculated relatively to 
the nearest peak of the field potential (Laurent et al., 1996). 

RESULTS 

Transient synchronization 
To find stimulus-evoked responses in large LN-PN population we simulated network 
model of 90 PNs and 30 LNs. Without stimulation the neurons displayed spontaneous 
activity that was not synchronized over the ensemble. When the external stimulus 
was delivered the network activity was synchronized at  about 20 Hz (see Fig. 1). 

To investigate the temporal patterns of P N  synchronization more precisely phase 
analysis (see Methods) was used to examine the fine structure and timing of the action 
potentials during stimulus presentations. The results of this analysis are presented 
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Figure 2: P N  responses for two different stimuli. Four cells (rows) are shown. The response 
of each cell has been divided into 11 epochs of about 50 ms each. In each epoch the positions 
of the action potentials relative to the maximum of the average activity were measured. This 
operation was repeated 20 times for each odor (rasters). 

(Fig. 2) for four PNs and two different stimuli. The identical subsets of PNs but dif- 
ferent subsets of LNs were stimulated. We found that these stimuli elicited responses 
in almost identical populations of PNs, while the fine structure of PN synchronization 
was completely different. 

To find a mechanism underlying transient synchronization of PN oscillations we 
analyzed activity in sets of presynaptic LNs. Fig. 3 shows responses of three PNs 
for one of the stimuli presented in Fig. 2. For each of these cells we first selected 
a set of presynaptic LNs. Then for each cycle of oscillations we calculated a total 
number of Ca2+ spikes produced by all presynaptic LNs over the interval between 
two nearest peaks of field potential at  this cycle of oscillations. The number of Ca2+ 
spikes characterized total inhibitory input to the selected PN during each cycle of the 
stimulus-evoked response. In Fig. 3 the average number of spikes is plotted for all 
twenty trials. There was a clear correlation between the number of LN spikes and 
synchrony of PN responses. PN action potentials were phase-locked with the field 
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Figure 3: Role of LN inhibition for temporal pattering of PN responses. The responses 
of three PNs from Fig. 2 are shown (upper panels of each subplot) together with the 
(averaged over the 20 trials) number of Ca2+ spikes in all presynaptic LNs for each cycle 
of field oscillations (lower panels). The synchrony of PN responses during each cycle of 
oscillations was strongly correlated with number of preceding LN spikes. 

potential when the average number of spikes in all presynaptic LNs was about 2 and 
desynchronized when it was fewer than one. Thus, changes of fast GABAergic input 
to PNs can provide a mechanism for transient PN synchronization during stimulus 
evoked oscillations. 

Slow temporal patterns 
Fluctuations in the inhibitory input from LNs can explain the appearance of the fine 
temporal structure of PN synchronization. At the same time, the temporal patterns 
of PN membrane potentials in this model were almost identical for different stimuli 
and did not show a complex long-scale temporal structure observed experimentally 
(Laurent et al., 1996). To examine this we extended our model by including slow 
inhibitory receptors between LNs and PNs. We required a few presynaptic spikes to 
occur one after another to activate these receptors, and set the decay time constant 
to 200-300 ms. 

Fig. 4 shows the membrane potentials of a few PNs from a network of 90 PNs and 
30 LNs during repetitive presentations of two different stimuli. Each PN displayed 
specific temporal patterns of depolarizing and hyperpolarizing activity. As for the 
patterns of transient synchronization, the slow variations of PN membrane potential 
depended on the spatio-temporal patterns of LN oscillations. Activity increases in 
some of the LNs during specific epochs of stimulation led to activation of slow in- 
hibitory receptors in the postsynaptic PNs and their hyperpolarizations lasted a few 
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Figure 4: Slow temporal patterns of P N  activity. Three PNs are showed during repetitive 
stimulation (four 500 ms trials separated by 2.5 sec intervals). Different stimuli evoke 
distinct temporal patterns in olfactory neurons. 

hundreds of milliseconds. The input from LNs depended on the applied stimulus, so 
the slow temporal patterns were stimulus specific and different for different neurons. 

We found that many PNs showed an "off-set" depolarization, which was also ob- 
served experimentally (see, e.g., Laurent et al., 1996). This effect can be explained 
by the fast disinhibition of PNs following the stimulus termination. It is important to 
emphasize that the described temporal patterns of PN activity depended on the slow 
inhibitory receptors only and remained intact when the fast GABAergic synapses 
were blocked (not shown). This result is in a good agreement with in vivo observa- 
tions. 

CONCLUSION 

An antenna1 lobe network model presented here makes several predictions which 
can be experimentally tested. First, the synchrony of PN oscillations depends on 
LN-evoked fast GABA-mediated IPSPs. Odor-specific fine temporal structure of 
PN responses appeared to  result from odor specific spatio-temporal patterning of LN 
oscillations. These pat terns are controlled by the fast inhibitory synapses between 
LNs. Second, activation of the slow inhibitory synapses between LNs and PNs may 
explain the appearance of the complex and odor-specific slow temporal structure of 
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PN responses. Third, while the temporal coding may be unnecessary to discriminate 
chemically different odorants, such coding becomes important when the presented 
odors belong to related groups and evoke responses in similar sets of PNs (Stopfer et 
al., 1997). 
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