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Abstract— We propose a time-domain approach to detect
cross-trial frequencies based on nonlinear correlation func-
tions. This method is a multivariate extension of discrete
Fourier transform (DFT) and can be applied to short and/or
sparse time series. Cross-trial and/or cross-channel spectra
(CTS) can be obtained for electroencephalography (EEG) data
where multiple short data segments of the same experiment
are available. There are two versions of CTS: The first one
assumes some phase coherency across the trials while the
second one is independent of phase coherency. We demonstrate
that the phase dependent version is more consistent with tra-
ditional spectral methods as implemented in EEGLAB. This
multivariate spectral analysis is a spatio-temporal extension of
DFT and should not be confused with cross-spectral analysis.

We applied this method to EEG data recorded while
participants reached for and grasped a virtual object where
we compared a cross-trial spectrogram (CTS) of data around a
stimulus with traditional event related spectral perturbations
(ERSP) analysis. We show that CTS can be applied to
shorter data windows than ERSP by using spatio-temporal
information in the EEG and therefore yields higher temporal
resolution. Furthermore a CTS can be computed for each
individual subject while ERSP is commonly computed on a
whole population of subjects.

I. INTRODUCTION

The relationship between frequency analysis and analysis

of frequency and/or phase couplings in the time domain

is poorly understood (see e.g. [1], [2], [3], [4], [5]). In a

recent paper Lainscsek et al. [6] found that the linear delay

differential equation

ẋ = axτ , (1)

where xτ = x(t − τ) can be used to detect frequencies in

the time domain. This approach can be simplified ([7]) by

using the expectation value 〈x2〉 = lim
T→∞

1

T

∫

T

0
x2 dt of a

signal

x(t) =
N
∑

i=1

Ai cos(ωi t+ ϕi) +D cos(Ω t+ φ)

= S +D cos(Ω t+ φ) .

(2)

S is the signal under investigation and D cos(Ω t+ φ) is a

probing signal. 〈x2〉 has a constant value for frequencies Ω
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that are not contained in the signal S under investigation

and for frequencies Ω that are contained in the signal S
it is the same constant value plus a term that depends on

the amplitude and phase of that frequency. Therefore the

function

L(Ω) = max

(

〈x2〉 − 〈S2〉 −
1

2

)

. (3)

can be used as frequency detector.

The manuscript is organized as follows: Sec. II introduces

the application to real world data, the hardware, and the

experimental setup. Sec. III describes the data analysis. Sec.

IV is the discussion.

II. MATERIALS AND METHODS

Real world data often contain data segments that cannot

be used for the analysis. Artifacts in electroencephalography

(EEG) data would be an example. Eq. (3) can also be used

for sparse data: For a sparse signal x(T ), where T is the

vector of times for which the signal is good, the probing sig-

nal B cos(ΩT +φ) can be used to detect the spectrum. The

same trick can be used when very short segments of data

need to be analyzed and there are multiple trials of the same

experiment: Consider a signal x1(T1), x2(T2), . . . , xn(Tn)
where all time series xi(Ti) are centered around the same

event, a stimulus S for EEG data (upper plot in Fig. 1). Then

Fig. 1. Re-alignment of data for the computation of a cross-trial
spectrogram (CTS) that assumes some phase coherence in the data. First
the data are re-aligned around the stimulus S. Then for each data window
the data are concatenated and a new time vector is generated. The
concatenated data are then the signal S in Eq. (2) and the new time vector
is the time in the probing signal.

all time vectors Ti can be considered equal and the signal

can be rewritten as x1(T ), x2(T ), . . . , xn(T ) (middle plot

in Fig. 1). For a short data window that would be too short
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for spectral analysis, the data of all trials can be combined

and the spectrum can be computed by using a probing

signal with a time vector that consists of n repetitions

of the time vector T for n data segments (lower plot in

Fig. 1). In this manner cross-trial spectrogram (CTS) can

be computed by using sliding short windows. This CTS

version assumes phase coherency across the data segments.

A cross-trial spectrogram can also be computed in a phase

independent manner by computing the spectrum of each

time series in the data segment separately using Eq. (3) and

then taking the mean over those spectra. In this manuscript

we show the differences between the phase dependent and

the phase independent versions of the CTS and compare

them to traditional methods as implemented in EEGLAB

[8]. Cross-trial spectra in the way used here are different

from the cross-spectral density ([9], [10], [11]), where the

cross-correlation between two signals is used.

We used this method for computing CTS with data

windows of only 250 ms length . This corresponds to only

128 data points (the sampling rate was 512 Hz) for each

trial. However, when using 50 trials and realigning each data

window as shown in Fig. 1, there are then 128 · 50 = 6400
data points in each data window. We compared this to

traditional event related spectral perturbations (ERSP) anal-

ysis [12]. The ERSP measures average dynamic changes

in amplitude of the broad band EEG frequency spectrum

as a function of time relative to an experimental event.

To compute an ERSP, baseline spectra are calculated from

the EEG immediately preceding each event. The epoch

is divided into overlapping data windows and a moving

average of the amplitude spectra of these is created. Each

of these spectral transforms of individual response epochs

are then normalized by dividing by their respective mean

baseline spectra. Normalized response transforms for many

trials are then averaged to produce an average ERSP.

The main difference between the proposed method of

cross-trial spectrograms (CTS) and traditional ERSP analy-

sis is that CTS uses the data of each data window of many

trials simultaneously to compute the spectrogram, while

ERSP averages over individual spectra. Therefore CTS can

use shorter data windows if enough trials are available, and

ERSP is restricted to the minimum window length for each

spectrum.

A. Hardware

Electroencephalographic (EEG) data were collected us-

ing a 70-channel active electrode EEG system (Biosemi

Inc. ActiveTwo, Amsterdam, Netherlands) consisting of a

cap plus four EOG electrodes, temporal to both eyes and

above and below the right eye, two EMG electrodes on the

trapezius and right and left sternocleidomastoids, and two

reference electrodes on the left and right mastoids. Data

were recorded with a 512 Hz sampling rate, and referenced

to the averaged mastoid electrodes. Head position relative

to the EEG sensors was determined with a electromagnetic

motion tracking system (Polhemus, FASTRAK, Colchester,

VT, USA).

B. Participants

Nine healthy older adults (4 females) participated in this

study (mean ± SD age: 64.3 ± 7.9 years). No participant

had any neurological or psychiatric disease. All participants

were right-hand dominant with normal or corrected to

normal vision. All participants signed the informed consent

document approved by the human subjects Institutional

Review Board of the University of California, San Diego.

C. Protocol

Participants reached for and grasped a virtual rectangular

object (3.5 x 8.5 x 6 cm) with haptic feedback provided to

the thumb and index finger by two 3-degree of freedom

haptic robotic devices (Phantom Premium 1.0, Geomagic,

Wilmington, MA, USA). Participants placed the digits of

their right hand on on a virtual starting dock and a the sound

of a tone reached for the object at a comfortable speed. The

object was located 13-18 cm away in a virtual environment

designed using custom scripts (Vizard, WorldViz LLC,

Santa Barbara, CA, USA, [13]). Participants were provided

haptic as well as visual feedback of the dock so that they felt

their hands resting on a solid surface. Overall, a maximum

of 360 (10 blocks of 36 trials) trials were performed by

each participant, with rest provided between blocks to limit

fatigue. In this study, we considered EEG data from 50

randomly selected trials from -1.5 seconds before the tone

stimulus (S) to 1.5 seconds after the stimulus.

III. DATA PROCESSING AND ANALYSIS

We analyzed two sets of data, raw and clean data. To

get clean data, raw EEG data were imported into EEGLAB

using MATLAB (The MathWorks, Natick, MA, USA) for

processing [8]. Data were high-pass filtered at 1 Hz to

remove drift and low-pass filtered at 55 Hz to remove line

noise. EEG artifacts associated with eye and other muscle

movement were removed using independent component

analysis (ICA) [14]. Based on the topography, spectra,

and trial-to-trial characteristics of ICA components, non-

artifactual components were selected and used to generate

Fig. 2. (A) Mid-parietal EEG cluster containing the Pz and CPz electrodes
used in this analysis. (B) Sample EEG time series.
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Fig. 3. Cross-trial spectrograms of 50 randomly selected trials time-locked to a stimuli onset (dashed white lines) in a single participant. The dominant
frequencies detected in clean EEG data are consistent with the raw EEG data. The lower two plots use the CTS that assumes phase coherency (PC)
and the upper plots use the phase independent CTS (no PC). The upper two plots are more consistent with the traditional ERSP analysis (see upper
two plots in Fig. 4)

Fig. 4. ERSP analysis on the same subject as used in Fig. 3 (upper plots) and mean over all nine subjects (lower plots). The ERSP analysis demonstrates
increased low frequency and decreased high frequency activity after the stimuli (S) in clean EEG data recorded over the mid-parietal cluster, and the
increased low frequency activity prior to the stimuli in raw EEG data.

back-projected EEG data, which will be referred to as clean

EEG.

The re-arranged EEG data (see Fig. 1) from a central

parietal region consisting of electrodes Pz and CPz were

used for the cross-trial time domain frequency analysis.

These mid-parietal electrodes were selected due to the

critical role of the parietal cortex in online reaching and

grasping [15], [16] (Fig. 2). The raw and clean data were

analyzed using 1/4 second sliding time windows with an

overlap of 1/32 s and a probing frequency signal rang-

ing from 0.5 to 30 Hz. Fig. 3 shows both versions of

the obtained CTS. The upper two plots show the phase

dependent CTS that assumes phase coherency (PC) while

the lower plots show the phase independent CTS (no PC).

1153



For comparison to this novel cross-trial frequency analysis

methods, event-related spectral perturbations (ERSPs) were

calculated for the mid-parietal cluster using using Morlet

wavelets (or Gabor wavelets [17], [18], [19], [20]). We used

the EEGLAB default parameters (200 time point windows)

and all 50 trials from the nine participants. Fig. 4 shows

the ERSP plots on clean and raw EEG data. We found

that, consistent with ERSP analysis (Fig. 4), the go tone

elicited an increase in low-frequency neural activity in the

delta (0.5 to 4 Hz), theta (4 to 8 Hz), and alpha (8-12

Hz) bands (Fig. 5). In the raw data, there was an increase

in delta activity approximately 500 ms before the tone,

which is also noticeable in the cross-spectrum analysis.

Clean and raw EEG data demonstrate similarities in the

dominant frequencies detected in the signal, particularly in

the lower frequencies (Fig. 5). Prior to tone onset, we found

Fig. 5. Cross-trial spectrogram of clean and raw EEG data in all nine
participants. Increased amplitudes are observed in the lower frequency
bands after the go tone in both clean and raw EEG data. The phase
dependent (no PC) and phase independent (PC) versions of the CTS are
shown in separate columns for the clean as well as the raw data.

an increase in beta frequency (13-30 Hz), and subsequent

decrease in beta frequency content during movement.

IV. DISCUSSION

We demonstrate that CTS analysis seems to be able to

distinguish changes in frequency in a broad-band phys-

iological signal, even without any pre-processing using

only sparse, short time segments. Data cleanup using ICA

does not significantly alter the dominant frequencies in the

spectrograms compared to using raw data (see Fig. 5).

In contrast to traditional ERSP analysis, the current CTS

analysis is capable of using shorter data windows and thus

allows for finer identification of frequencies in an EEG

signal. However, further work remains to assess the sensitiv-

ity of this method on broad-band systems, and similarities

and contrasts to other existing frequency analysis methods.

This time domain frequency analysis tool appears to be

very promising for use in future applications of noisy and

complex signals, such as EEG, where a measure of rapid

changes in frequency is desired.
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