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MOST models of neural networks have assumed that neurons
process information on a timescale of milliseconds and that the
long-term modification of synaptic strengths underlies learning
and memory'. But neurons also have cellular mechanisms that
operate on a timescale of tens or hundreds of milliseconds, such
as a gradual rise in firing rate in response to injection of constant
current® or a rapid rise followed by a slower adaptation®. These
dynamic properties of neuronal responses are mediated by ion
channels that are subject to modulation®. We demonstrate here
how a neural network with recurrent feedback connections can
convert long-term modulation of neural responses that occur over
these intermediate timescales into changes in the amplitude of the
steady output from the system. This general principle may be
relevant to many feedback systems in the brain. Here it is applied
to the vestibulo—ocular reflex, whose amplitude is subject to long-
term adaptive modification by visual inputs®. The model reconciles
apparently contradictory data on the neural locus of the cellular
mechanisms that mediate this simple form of learning and memory.

We used model neurons in which the relationship between
the summed inputs ( V;;,) and the firing rate output (V) was
described by a single time constant (7) which determined the
rate at which V,,, would rise in response to a stimulus increasing
from zero to V;,. The input (V;,) to the model neuron was in
the form of a brief ramp from zero to one unit and caused an
output that rose more gradually from zero to one. The rising
phase of the model neuron’s output was a smoothed version of
the input waveform when the time constant was 20 ms and a
slower and smoothed version of the waveform when the time
constant was 70 ms (Fig. 1). It is important to emphasize that
the time constant in our model neurons is not equivalent to the
membrane time constant; rather it describes the time course of
changes in firing rate for a step change in input current and, in
real neurons, it would be determined by the combined properties
of a number of cellular mechanisms.
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Figure 2a shows an example of a model network of neurons
that can convert the small and transient difference between the
two outputs of the model neuron in Fig. 1 into a large and
sustained change in the steady-state output from the system.
The input to the network is V and the output is E. The time
courses of the responses of units T and F were determined by
single time constants, like the model neuron in Fig. 1. Units P
and B did not have time constants and their outputs at each
time were equal to the sum of their inputs at the time. The
strength of transmission of signals from one unit to the next
was regulated by multiplication factors that scaled each input.
For example, W, scales the inputs from unit T to unit P and
Wy scales the input from V to unit B. Other multiplication
factors had values of +1 for excitatory connections and —1 for
inhibitory connections.

Figure 2b shows how the network in Fig. 2a responded before
and after the time constant of unit T was changed. To obtain
the traces labelled ‘Before’, the values of Wy and W, were both
1 and the time constants were 70 ms in units T and F. The input
applied (V) then caused an identical output (E): the gain of
the system, defined as E/V, was 1. When the time constant of
unit T was decreased from 70 ms (Before) to 20 ms (traces
labelled ‘After’), the output of the network (E} was smaller and
unit P showed a large response to the input waveform. Thus,
changes in the time course of the response of unit T cause the
steady-state gain of the system to be reduced, even though no
changes were made to the scaling factors in the model.

Recurrent connections through units P, B, and F are the
critical design feature that determines how the model works.
These connections form a positive-feedback loop that allows a
change in the time course of the output from one unit to be
converted to a change in steady-state gain of the system. This
can be understood intuitively by realizing that positive feedback
will perform mathematical integration in a model that processes
time-varying inputs. When the time constants in units T and F
are the same and the values of Wy and Wy are 1, the two inputs
to unit P cancel each other at all times and there is no input to
be integrated. When the time constants in units T and F are
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FIG. 1 Time-course of response of a simple model neuron in which a step
input is transformed into an exponential rise in firing rate. The input (V;,)
and output (V,,,.) of the unit are plotted as a function of time, showing the
output when the time constant of the unit is 20 and 70 ms.

METHODS. Simulations were conducted with ‘A Simulation Package’, written
by L. Optican and H. Goldstein. The models were described as block diagrams
and the dynamic units were represented in Laplace notation as 1/(s7+1),
where 7 is the time constant of filtering and s is the Laplace operator. The
block diagrams were described in a Block Oriented Modeling Language
(BOMOL) and a lexical analyser was used to convert the BOMOL code into
the 'C’ programming language. The program was then compiled and linked
into a simulation shell that allowed control over the values of the parameters
of the model and provided stimulus generation and graphical display of
outputs. The time-step of simulation was 1 ms, much shorter than any of
the time constants used here.
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different, the two inputs to unit P differ transiently. This injects
a transient into the positive-feedback loop. The transient is
integrated and remembered and is expressed as a steady-state
decrease in the output from the model.

The model network in Fig. 2a suggests a general algorithm
for learning and may be applicable to the operation of many
brain pathways that include recurrent connections. The network
was selected for our studies specifically because of its relevance
to the neural pathways that generate the vestibulo-ocular reflex
(VOR)®. The VOR uses vestibular inputs to the brainstem and
cerebellum to generate smooth eye movements that help stabilize
images on the retina during head turns’. In Fig. 2, unit P
represents a specific group of Purkinje cells in the cerebellum®
and unit B represents neurons in the brainstem’. The model
must contain a positive-feedback pathway through units B, F
and P because of evidence that such a recurrent pathway exists
in the brain®. In the brain, the positive-feedback pathway carries
an efference copy of eye velocity commands back to the cerebel-
lum and is important in the generation of visually guided smooth
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FIG. 2 Performance of a recurrent network that is based on the flow of
signals in the primate vestibulo-ocular reflex. a, Diagram of the network,
which includes a feedback loop with positive gain. Units T and F have the
properties described in Fig. 1 and P and B operate as simple addition units
without dynamical properties. Initially, units T and F both had time constants
of 70ms. W, and W; indicate the weights of the connections from unit T
to unit P and from V to unit B, respectively. The connections indicated by
minus signs have weights of —1 and the other connections have weights
of +1. b, Effect of changing the time constant of unit T from 70 ms (Before)
to 20 ms (After). Even though this did not change the steady-state response
of unit T, it caused a profound reduction in the steady-state output from
the network and a pronounced increase in the response of unit P. The
steady-state gain of the system was 1.0 when 7, was 70 ms and was 0.28
when 7y was 20 ms. In applying the model to the VOR, unit P represented
the ‘horizontal gaze-velocity Purkinje cells’ in the flocculus and ventral
paraflocculus of the cerebellum®782* and unit B represented the ‘flocculus
target neurons’ in the vestibular nuclei’.
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pursuit eye movements. During pursuit, the positive-feedback
pathway is used to integrate transient visual motion inputs into
a sustained eye velocity output®.

The gain of the VOR, defined as eye speed divided by head
speed, is normally near 1, even in darkness when there is no
possibility of visual correction'®. The excellent performance of
the VOR is established and maintained by a learning mechanism
that uses the association of visual and vestibular inputs to guide
adaptive changes in the gain of the VOR'“'?. Previous
hypotheses have suggested that learning is mediated by changes
in the gain of steady-state transmission at different synaptic
relays but have disagreed about the loci of learning. Recordings
under some conditions®'* have been consistent with the sugges-
tion'® that decreases in the gain of the VOR are mediated by
increases in the value of Wy. Decreases in the gain of the VOR
caused the output of the Purkinje cells, represented by unit P,
to become modulated in phase with their vestibular inputs during
the VOR. In contrast, recordings under other conditions®’
appeared to contradict the hypothesis'®: decreases in the gain
of the VOR were associated with decreases in the value of Wp.
It was postulated that decreases in the gain of the VOR would
be mediated by parallel decreases in the value of Wy and W,°.

When applied to the VOR, the model in Fig. 2a offers a way
to resolve the controversy between these two hypotheses as well
as the apparently contradictory data®'*. Analytical solution of
the model in Fig. 2a shows that the model is stable only if Wy
and W; have the same value. Under these conditions, the gain
of the VOR will be Wy(7/7r), where 71 and 7 are the time
constants of units T and F, respectively. It was found that the
neural equivalent of W, was reduced to 81% of normal when
the gain of the VOR was 0.18. Therefore, the solution of our
model predicts that 7/ should be 0.22. If we assume further
that 7 is fixed at 70 ms, then 7 should be reduced to 18 ms.
The analytical solution also reveals that the steady-state output
of unit P during the VOR will be equal to VWp(7g—71)/7¢.
Thus, the model predicts that the output of unit P will be in
phase with vestibular input V when the gain of the VOR is low,
as found by experiment®’-',

Application of the model in Fig. 2a to the VOR therefore

simulates motor learning in the VOR without contradicting any

available data'®. In addition, the output from the model (E in
Fig. 2b) reproduces the observation that reductions in the gain
of the VOR cause the eye velocity evoked by rapid head turns
to show a transient overshoot before settling to a steady, sus-
tained level'®. In the model, motor learning is accomplished by
several mechanisms at two or more loci. This suggests that
learning in monkeys may be effected by a combination of
changes in steady-state synaptic transmission in the brain stem
and cerebellum and changes in time-course of the vestibular
inputs to the cerebellum.

We described the time course of the response of model
neurons to a step input with a single time constant so that we
could both simulate (Fig. 2b) and calculate the performance of
the network in Fig. 2a. Our simulations showed that changes in
the transient component of a neuron’s responses can be transfor-
med into changes in the steady-state output from a network.
Although a more complicated model would be required to
describe the time-course of the responses of real neurons to a
step increase in input current, the basic effects of changes in
the transient response would be the same as those revealed here.
In the brain, changes in the dynamics of neuronal responses
could result from modulation of intrinsic cellular mechanisms,
modulation of the strengths of local feedback connections, or
changes in the selection of inputs with different dynamics. This
third possibility is especially intriguing in a sensory-motor sys-
tem like the VOR. In the vestibular system, some afferents
respond to a head velocity stimulus with a tonic change in firing
rate while others have a phasic/tonic response’. The mechanism
demonstrated here could reduce the steady-state gain of the
VOR by using local learning mechanisms to increase the
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influence of the vestibular inputs that transmit phasic/tonic
signals to the cerebellum while decreasing the influence of the
inputs that transmit purely tonic signals'®.

The recurrent positive feedback pathway in our neural
network was critical for converting a subtle change in the time-
course of neuronal responses into a change in the steady-state
output of the system. Feedback connections are a general archi-
tectural feature of the brain and are found at many different
levels, including the inputs and outputs of the cerebellum and
the connections between areas of the cerebral cortex. The
importance of recurrent connections in the pathways that medi-
ate the VOR?® allows us to model how recurrent connections
could contribute to learning and memory. The model raises the
possibility that subtle changes in the function of individual
cellular mechanisms may have profound effects on the output
from specific behavioural systems and emphasizes the import-
ance of understanding the architecture of the neural networks
that convert cellular changes into changes in behavioural
output. U
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A single amino-acid difference
confers major pharmacological
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NEUROPSYCHIATRIC disorders such as anxiety, depression,
migraine, vasospasm and epilepsy may involve different subtypes
of the 5-hydroxytryptamine (5-HT) receptor™2. The 1B subtype,
which has a unique pharmacology, was first identified in rodent
brain®>~’, But a similar receptor could not be detected in human
brain®, suggesting the absence in man of a receptor with equivalent
function. Recently a human receptor gene was isolated (designated
5-HT, receptor®®, 5-HT,pz receptor'®'’, or S12 receptor'?)
which shares 93% identity of the deduced protein sequence with
rodent 5-HT,y receptors™'%, Although this receptor is identical
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TABLE 1 Ligand-binding properties of the wild-type and T355N mutant human recep-
tors compared with those of the rat and mouse 5-HT,g receptors

K, (nM)
Human Human Rat®* Mouse*®
Ligand (wild type) (T355N) (5-HT,g) (5-HT,5)
Serotonergic
5-HT 10+1 8x1 16+1 39
5-CT 4+1 3+1 71 10
DHE 6x1 2+1 442 NA
RU24969 44+4 C2%1 2+1 10
Metergoline 25+3 200+ 40 129+33 NA
Sumatriptan 38+3 560100 465+ 85 NA
Methysergide 130+7 970+130 1,823+ 297 NA
8-OH-DPAT 1,600+100 25000+£1,000 >10000 30,000
Methiothepin 12+1 38+8 13+4 NA
B-adrenergic
(—)Propranolol 8,100+ 400 17£1 574 NA
(—)Pindolol 11,000+ 1,000 20+3 153162 69
(—)Alprenolol 11,000 + 800 13+1 NA NA

The values are depicted as mean +s.e.m. from 4 {(wild type) and 3 (T355N) indepen-
dent experiments done in triplicates. NA, data not available. Complementary DNAs
encoding the wild-type and T355N mutant human receptors were inserted into the
mammalian expression vector pRK5 and introduced by transient transfection into the
human embryonic kidney 293 cell line by a modified calcium phosphate precipitation
method®>, The cells were collected by centrifugation 48 h after transfection, lysed in
ice-cold buffer (50 mM Tris-HCI, pH 7.4, containing 5mM EDTA), homogenized, and
sonicated for 10 s. Nuclei and intact cells were removed by centrifugation at 1,000g
for 10 min. The supernatant was spun at 35,000¢ for 30 min and the resulting pellet,
containing the microsomal membrane fraction, was resuspended in binding buffer
containing 50 mM Tris-HCl (pH 7.4), 4 mM CaCl,, 0.1% ascrobic acid, 10 mM pargyline
and 1 uM leupeptine. Microsomal membranes (50 wg protein) were incubated with the
ligands in binding buffer (30 min, 25 °C). Binding was terminated by the addition of
5 ml ice-cold 50 mM Tris-HCI (pH 7.8), rapid vacuum filtration through glass fibre filters,
and two subsequent 5-ml washes. Specific binding was defined as the excess over
blanks taken in the presence of 10°M cold 5-HT. Scatchard analyses of saturation
binding of [®H)5-HT showed two populations of binding sites; equilibrium dissociation
constants () for the wild-type and mutant receptor, respectively, were 4.6 + 1.4 and
3.9+1.2 nM(high-affinity sites); 72 + 24 and 75 + 14 nM (low-affinity sites). The respec-
tive receptor densities in pmol per gram of protein were 1,000 + 320 and 1,440 + 610
(high-affinity sites), 13670+1,860 and 25,330 +4,480 (low-affinity sites). Specific
binding of [*H]5-HT was not detectable in untransfected cells (not shown), indicating
that these cells do not express significant levels of endogenous 5-HT receptors.
Equilibrium inhibition constants (K;) were determined according to the following equation:
Ki=1Cs0/(1 +[T]/Kp), where ICs, is the concentration of competing ligand required for
50% inhibition of [*HI5-HT binding, [T] is the concentration of the [H]5-HT tracer
(3nM), and K, is the high-affinity constant of [*H]5-HT, as determined by saturation
binding. The data were analysed by nonlinear least-square fitting using the EBDAZ*
and LIGAND?® programs.

to rodent 5-HT, g receptors in binding to 5-HT, it differs profoundly
in binding to many drugs. Here we show that replacement of a
single amino acid in the human receptor (threonine at residue 355)
with a corresponding asparagine found in rodent 5-HT,; receptors
renders the pharmacology of the receptors essentially identical.
This demonstrates that the human gene does indeed encode a 1B
receptor, which is likely to have the same biological functions as
the rodent 5-HT, g receptor. In addition, these findings show that
minute sequence differences between homologues of the same
receptor from different species can cause large pharmacological
variation. Thus, drug-receptor interactions should not be extrapo-
lated from animal to human species without verification.

The human and rodent 5-HT,5 receptors bind to 5-HT with
comparably high affinity. But the human receptor binds with
much lower affinity to the serotonergic agonist RU 24969 and
to the B-adrenergic receptor antagonists propranolol, pindolol
and alprenolol, and with higher affinity to several serotonergic
drugs, including sumatriptan and 8-hydroxy-2-(di-n-propyl-
amino)tetralin (8-OH-DPAT)*'* (Table 1).

The 32 amino-acid differences between the human and rat
receptors are scattered throughout the molecule, but only eight
are found in the transmembrane domains, which are thought to
contain the ligand-binding pocket (Fig. 1). An asparagine
residue in the seventh transmembrane segment has been impli-
cated in B-antagonist binding to the B-adrenergic receptor'®
and to human 5-HT,, receptors'’. Notably, an asparagine
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