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Abstract
We describe a possible mechanism for the formation of direction- and velocity-
selective cells in visual cortex through spike-timing dependent learning. We
contrast the case where only feedforward excitation and inhibition signals
are provided to visual neurons with the case where both feedforward and
feedback signals are provided. In the feedforward-only case, neurons become
selective for a broad range of velocities centered around the training velocity.
However, we show that direction selectivity in this case is strongly dependent
on delayed feedforward inhibition and in contrast to experimental results,
becomes dramatically weaker when inhibition is reduced. When feedback
connections are introduced, direction selectivity becomes much more robust
due to predictive delays encoded in recurrent activity. Direction selectivity
persists in the face of decreasing inhibition in a manner similar to experimental
findings. The model predicts that direction-selective cells should exhibit
anticipatory activity due to recurrent excitation and suggests a pivotal role
for spike-timing dependent plasticity in shaping cortical circuits for visual
motion detection and prediction.

1. Introduction

In both the neocortex and in sub-cortical structures such as the hippocampus, researchers have
observed a striking dependence of synaptic plasticity on the relative order of pre- and post-
synaptic spikes: typically, a synapse is strengthened if an input spike arrives a few milliseconds
before an output spike; a reversal in the order of spiking causes a decrease in synaptic strength
[21, 4]. This phenomenon has been labeled ‘spike-timing dependent plasticity’ (STDP).
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Modeling studies have demonstrated the importance of STDP in temporal sequence learning
[1, 24, 25, 31–33] and coincidence detection [11, 41].

In this paper, we investigate how the interaction between STDP and recurrent connections
affects the development of motion detection circuits in the visual cortex. Using networks
of integrate-and-fire neurons that adapt their connections using STDP, we show how specific
types of neural circuits might develop varying degrees of direction selectivity. Our results
show how STDP could enable cortical circuits to develop predictive responses to moving
inputs through learned patterns of lateral connections.

1.1. Prior work

A classic model for direction selectivity is the Barlow–Levick model [3] which postulates
a spatial discrepancy between excitation and delayed inhibition in the receptive field of a
direction selective neuron. The basic idea is that motion in one direction (the ‘preferred
direction’) causes the neuron to fire because excitation arrives before the delayed inhibition.
Motion in the opposite direction (the ‘null direction’) recruits the delayed inhibition first,
which arrives just in time to counteract any excitation from the other side of the receptive field
(cf figure 4 in this paper).

More recent computational models have postulated a variety of mechanisms for direction
selectivity in the visual cortex, including probabilistic feedforward synapses [6], short-
term synaptic depression [8, 36], a combination of feedforward spike-timing dependent
plasticity and synaptic depression [7, 34], rate-based Hebbian learning [43, 10] and specialized
connectivity schemes [2, 15, 35, 40, 20, 19, 27, 26].

1.2. Contributions of this paper

An important aspect of direction selectivity that has so far gone uninvestigated is the interaction
between STDP, inhibition and recurrent connectivity in the visual cortex. We investigated this
question using a series of simulations based on networks of integrate-and-fire neurons with
plastic synapses. We found that the modification of peak conductances of excitatory synapses
alone allows single cortical neurons to become direction selective as in the Barlow–Levick
model. Starting from simple feedforward-only connectivity schemes, we investigated the
development of direction selectivity in networks with increasingly complex (and increasingly
realistic) connection schemes as summarized below:

• Experiment 1. A single model neuron received a mix of feedforward excitation and
inhibition from ON/OFF cells in the lateral geniculate nucleus (LGN). The results
demonstrate that a difference in time constants for excitatory and inhibitory currents
is sufficient to allow the formation of weak direction selectivity, where cell responses are
comparable to background activity rates.

• Experiment 2. In addition to receiving feedforward ON/OFF inputs, model neurons
inhibited each other recurrently. We found that this leads to competition between the
neurons, allowing them to partition the input space and code for different directions of
motion.

• Experiment 3. We tested the effects of adding feedback excitation and inhibition, in
addition to feedforward inputs. The results indicate that such a scheme leads to robust
direction selectivity. This selectivity is resilient to changes in inhibition strength, a result
consistent with experimental observations.

• Experiment 4. We investigated the role of recurrent excitatory connections in mediating
prediction and delay compensation in the visual pathway. Our model predicts that
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recurrent connections modified using STDP can lead to ‘predictive coding’ in the
neocortex, where cells fire slightly before receiving feedforward inputs from the LGN. As
a consequence, cortical cells should continue to propagate a wave of predictive activity
for a short time even when the original stimulus is taken away.

2. Methods

Our model consists of two subsystems: a lower level model that represents the retina and LGN
and a cortical model. The retina-LGN model takes as input moving one-dimensional bars and
generates spike trains. The cortical model receives these spike trains as input and produces
voltage traces using integrate-and-fire dynamics [16]:

C
dVm

dt
=

n∑
i=0

gi
syn(t)

(
Ei

syn − Vm
)

+
Vrest

Vm
R (1)

where Vm is the membrane potential, gi
syn(t) is the conductance of synapse i at time t, Ei

syn is
the reversal potential of synapse i, Vrest is the resting potential of the cell, C is the membrane
capacitance and R is the membrane resistance. When the membrane voltage meets or exceeds
a threshold voltage, that is, when Vm � Vth, an action potential is generated lasting one
simulation step. This is followed by resetting the membrane voltage to Vreset = −50 mV for
an absolute refractory period of τref = 5 ms.

All simulations used an integration rate of 1 ms per simulation step. To quantify the
direction selectivity of a neuron, we denoted the direction of motion that elicited the maximum
response as ‘preferred’ and the opposite direction as ‘null’, and used the following direction
selectivity index (DSI):

DSI = 1 − null spikes

preferred spikes

where the numerator and denominator in the fraction refer to the number of spikes fired by the
neuron for a bar moving in the null and preferred directions, respectively.

2.1. Retina-LGN model

The preprocessing step of our system models the ON/OFF center-surround filtering
mechanisms in the retina and the lateral geniculate nucleus (LGN) [42]. We modeled these
mechanisms using a set of spatiotemporal filters intended to model the combined effects of
retino-geniculate processing. Inputs for all experiments in this paper used a one-dimensional
light bar 10 retinal pixels (0.1 retinal degrees) in width. The bar moved on every millisecond
with a constant velocity set to an integer number of pixels, with the constant velocity varying
from experiment to experiment. Figure 1(a) shows an example of one light bar moving at
a velocity of 1 pixel per millisecond. Images of these moving bars were preprocessed by
convolving them (using a Fourier transform) with a spatial filter FSPATIAL given by a difference
of Gaussian functions (figure 1(b)). The output of the spatial filter was passed through two
temporal filters FON and FOFF, each formed as a difference of Gaussian functions (figure 1(c)
and (d)).

The spatiotemporal outputs of the filters described above model the relative firing rates
over time for LGN ‘ON’ and ‘OFF’ units. These time-varying firing rates were fed as input
to a Poisson-rate spike generator, which generated two spike trains (one for the ‘ON’ units,
another for the ‘OFF’ units). Rectification is performed so that the minimum spike rate is
clamped at 0. In addition to these input spikes, uniformly distributed spikes were added to
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Figure 1. Raw input and LGN filters: (a) example of raw inputs for a light bar moving at a velocity
of 1 pixel per ms. Note that the bar shown here is plotted vertically at any given frame number.
The bar moves in slowly from the top of the figure. (b) Spatial filter used in the LGN module.
The filter is formed as the difference of Gaussian curves. (c) Temporal filter for ON cells in the
LGN, formed as the difference of Gaussians. (d) Temporal filter for LGN OFF cells, formed as
the difference of Gaussians.
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Figure 2. Convolved input traces and spike rasters. (a) Convolved input traces in time domain
following LGN FFT processing for ON units. Greyscale values represent (unrectified) Poisson
spike generator rates. (b) Traces following LGN FFT processing for OFF units. (c) Spike raster
corresponding to the activity of LGN ON cells, produced using a Poisson process. (d) Spike raster
corresponding to the activity of LGN OFF cells.

each LGN spike train to model noisy spontaneous activity in the LGN and retina. Figures 2(a)
and (b) show the spatiotemporal outputs of the ‘ON’ and ‘OFF’ filters to the moving bar
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Table 1. Synapse parameters.

Parameter Value Units

Excitatory reversal potential (Esyn) 0 mV

Excitatory peak time
(
τ exc

peak

)
10 ms

Excitatory maximum peak conductance
(
gmax

syn

)
0.02 (feedforward, experiments 1, 3, 4); µS

0.05 (recurrent, experiments 3, 4);
0.006 (experiment 2)

Inhibitory reversal potential
(
Einh

syn

)
−80 mV

Feedforward inhibitory peak time
(
τFFinh

peak

)
40 ms

Feedforward inhibitory peak conductance
(
ginhFF

syn

)
0.0018 µS

Feedback inhibitory peak time
(
τFBinh

peak

)
5 ms

Feedback inhibitory peak conductance
(
ginhFB

syn

)
0.025 (experiment 3); 0.0055 (experiment 4) µS

stimulus depicted in figure 1(a). Figures 2(c) and (d) show the corresponding ‘ON’ and ‘OFF’
spike trains that the cortical model receives as input.

The LGN spatial receptive field size in figure 1 is about 100 pixels. If we assume
this corresponds to the size of a typical LGN receptive field (i.e., about 1 × 1◦), we get the
relation that one pixel corresponds to approximately 0.01◦. The velocities used during training
ranged from 1 to 5 retinal pixels per millisecond, which corresponds to velocities in the range
10–50◦ s−1. This can be considered a reasonable range of velocities to expect in the visual
field. Overlap in LGN receptive fields varies depending on the part of the retina to which the
receptive fields correspond. In our model, LGN inputs have a high degree of overlap with their
neighbors, approximately 98 retinal pixels (0.98◦ of the visual field). We assume a cortical
neuron receptive field size of 2◦, giving a retinal eccentricity of approximately 2–5◦ from the
fovea.

2.2. Synapse model

We model synaptic impulse responses using the alpha function:

g (t) = t exp(−t/τpeak)

τpeak exp(−1)
(2)

where τpeak defines the peak time of the alpha function, and both t and τpeak are relative to a
spike input to the synapse at t = 0. Table 1 lists the values of synaptic parameter settings that
were held constant during each experiment.

2.3. Cortical neuron model

We modeled cortical neurons as leaky integrate-and-fire neurons [16]. A second-order Runge–
Kutta solver was used to perform integration of the neural membrane voltage. In addition to the
input spike trains from the retina-LGN model, each cortical neuron also received exponentially
distributed current to model noisy background inputs to the neurons. We chose exponential
noise as an approximation to the positive half of a zero-mean Gaussian. Thus, we assume
only excitatory noise, with inhibition being more tightly controlled. This is in keeping with
simulation [37] and in vitro [39] studies that demonstrate a need for precise inhibitory control
to maintain acceptable activity levels in recurrent neural networks. Note that our results do
not depend on any particular noise model; we have also run several of our experiments using
zero-mean and non-zero mean Gaussian noise, with no qualitative effect on the results.
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Figure 3. Experiment 1: feedforward architecture and STDP learning window. (a) In the first
group of experiments, a single cortical cell receives inputs from ON- and OFF-selective cells
from the LGN. Each connection consists of a plastic excitatory connection and a fixed-strength
inhibitory connection. (b) STDP learning window used in our experiments. The negative lobe of
the window is larger than the positive lobe to facilitate competition between synaptic weights of
individual neurons.

Table 2. Cortical neuron parameters.

Parameter Value Units

Capacitance (C) 0.5 nF
Resistance (R) 40 M�

Resting potential (Eleak) −60 mV
Threshold voltage (Vth) −40 mV
Reset voltage (Vreset) −50 mV
Refractory period (τref) 5 ms
Exponentially distributed noise magnitude (η) 0.35 nA

Each model cortical neuron received a separate set of feedforward excitatory connections
from the LGN ‘ON’ cells and ‘OFF’ cells. Each excitatory connection was paired with a
fixed-strength feedforward inhibitory connection (see figure 3(a)). In experiments 2, 3 and 4,
fixed-strength feedback inhibitory connections were present between all cortical neurons
(with no self-connections). In experiments 3 and 4, excitatory feedback connections were also
present. Table 2 summarizes neural parameters used in our experiments.

2.4. Learning rule

Learning rules for STDP are typically based on a temporally asymmetric window that
determines the sign and amount of synaptic modification as a function of the time difference
between pre- and post-synaptic spiking (e.g. [4]). The learning window we used captures the
shape and temporal extent of the window observed in physiological experiments and is shown
in figure 3(b). Note that in keeping with the observations for firing rate stability noted in [14]
(see also [38]), which state that the negative lobe of the synaptic learning kernel should be
larger than the positive lobe, our learning rule has a negative lobe 1.25 times the size of the
positive lobe. The learning window is multiplied by a learning rate parameter �g to determine
the magnitude of synaptic modification for a given time step. In all simulations shown here,
�g for all synapses was set to the constant value 10−4.
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Figure 4. Direction selectivity with feedforward connections relies on interaction between
inhibition and weight asymmetry. (a) Spike-timing dependent plasticity induces an asymmetry in
synaptic weight values. When a light bar moves in the preferred direction, the bar activates LGN
units with high-strength connections at time t0, before the slower inhibition can compensate at time
t2, causing the cell to spike. (b) When the bar moves in the null direction, weak synaptic weights
are encountered at time t0. By time t2, when the bar reaches the region of strong synaptic weights,
slow-acting inhibition has already risen to compensate, preventing any firing from occurring.

3. Results

3.1. Experiment 1: feedforward connections only

A mismatch in the time constants for inhibitory and excitatory synapses, in conjunction with
a spike-timing dependent rule, can lead to the development of direction selectivity. Because
of the asymmetry in the synaptic learning kernel, repeated exposure to bars moving in the
same direction will cause an asymmetry in the excitatory LGN synaptic weights. When a bar
moves across the retina in the learned preferred direction, it will first encounter a group of
high-valued synaptic weights, causing the cortical neuron to fire. In contrast, when the bar
moves in the opposite (null) direction, it will first encounter a group of synapses with low peak
conductance. By the time the bar reaches the high-valued weights, feedforward inhibition will
have risen sufficiently to prevent the cortical neuron from firing. Figure 4 demonstrates this
idea, similar to the direction-selective neural detector first proposed by Barlow and Levick
[3]. More recently, Mo and Koch have proposed a model in the context of reverse-phi effects
(illusory motion in the presence of rapid reversal in image contrast) that implements a similar
idea for feedforward direction selectivity [28]. Their model demonstrates that inhibitory
interaction between ‘ON’ and ‘OFF’ synapses is necessary to explain the reverse-phi effect
in V1 complex cells. As an initial proof of concept, experiment 1 shows how a single neuron
receiving only feedforward excitation and inhibition and exponentially distributed noise can
learn direction selectivity.

3.1.1. Training paradigm. We trained a single cortical neuron using a light bar that moved at a
velocity of five retinal pixels (0.05◦) per simulation step. We performed ten training iterations,
where each iteration consisted of moving the bar from left to right across the simulated retina
and applying spike-timing dependent learning to modify the excitatory connections from the
retinal/ LGN system. Each iteration used a different Poisson-generated raster of LGN input
spikes, ensuring that the feedforward excitatory weights are biased in general toward forward
motion without overtraining for one particular sequence of input spikes. Each iteration ran for
350 ms.
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Figure 5. Learned weight asymmetry leads to direction selectivity. (a) These bar graphs show
feedforward weights from 50 ON cells and 50 OFF cells onto a single cortical neuron. Before
learning (two left graphs), weights are distributed uniformly on the interval [0, 0.004] µS. After
learning (two right graphs), the spike-timing dependent learning rule generates weight asymmetry.
Most OFF cell inputs to this cortical neuron are depressed, while the shape of the ON cell inputs
becomes skewed between a region of strong weights (to the left) and weaker weights (to the right).
(b) The weight asymmetry after learning leads to direction selectivity. Before learning, the cortical
cell responds vigorously (with three spikes) to movement in the null direction. After learning, the
cell only spikes in response to the preferred direction of motion.

3.1.2. Weak direction selectivity. Figure 5 shows how, despite a uniform distribution before
training, a marked asymmetry forms in the excitatory feedforward connections as a result of
applying STDP over multiple iterations. Figure 7 demonstrates how the neuron responds with
two spikes in the preferred direction and three spikes in the null direction before training, and
responds only in the preferred direction after training, with no spikes in the null direction. The
weight asymmetry prevents response in the null direction and allows response in the preferred
direction.

Unfortunately, as figure 7 shows, the response in the preferred direction remains weak;
only two spikes are generated after training. Although the asymmetry between feedforward
excitation and inhibition can generate direction selectivity, it is clearly inadequate for creating
enough spikes to overcome large-scale noise fluctuations. We defer a discussion of robust
direction selectivity using recurrent connections to experiment 3 in section 3.3.

Figure 6 shows that the shape of the spike-timing dependent modification window is
critical—not all Hebbian learning rules will lead to direction selectivity, even when the training
inputs are biased toward one direction of motion. In figure 6(c), we show the same learning
window as elsewhere, but with the negative lobe of the window reflected above the x axis. After
training, the neuron displays almost no direction selectivity, with 15 spikes in the preferred
direction and 13 spikes in the null direction. This result demonstrates that arbitrary causal
learning rules do not necessarily lead to direction selectivity. Figure 6(a) shows that weights are
still uniformly distributed after training; unlike figure 5(a), no spatial asymmetry in synaptic
weights occurs. Note that, even if a weight decay term were included for normalization, the
model neuron would still respond equally vigorously to both directions of motion.

3.2. Experiment 2: competitive feedback inhibition

Our previous experiment demonstrated the ability of a single neuron to learn direction
selectivity when the neuron is exposed to light bars moving in a single direction. In the
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Figure 6. Other Hebbian learning windows do not lead to direction selectivity. (a) These bar
graphs show feedforward weights from 50 ON cells and 50 OFF cells onto a single cortical neuron.
Before learning (two left graphs), weights are distributed uniformly on the interval [0, 0.004] µS.
After learning (two right graphs), a Hebbian learning rule maintains weight symmetry. (b) The
weight symmetry after learning prevents direction selectivity. Before learning, the cortical cell
responds vigorously (with three spikes) to movement in the null direction. After learning with the
Hebbian kernel, the cell spikes even more vigorously in response to both the preferred and
the null directions of motion. (c) Non-STDP Hebbian learning window. Here the negative
lobe of the STDP window shown in figure 3(b) has been reflected back above the x axis.
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Figure 7. Learning causes direction selectivity across a range of velocities. A single cortical neuron
trained using a velocity of five retinal pixels (0.05◦) per ms demonstrates direction selectivity across
a range of velocities, with a notable decline in selectivity for higher velocities.

next set of simulations, we investigated whether groups of neurons recurrently connected by
inhibitory synapses can learn to code for multiple directions of motion simultaneously.

3.2.1. Training paradigm. We trained a group of three cortical neurons on two different
directions of motion. The first direction involved a bar moving left to right at a velocity of
1 retinal pixel per millisecond; the second direction involved a bar moving right to left at a
velocity of 1 retinal pixel per millisecond. Each pass of the light bar over the retina constituted
one iteration of the simulation. We applied the spike-timing dependent learning rule over
20 total iterations, 10 for the left-to-right bar and 10 for the right-to-left bar. Again, each
iteration ran for 350 ms. The neurons were all-to-all connected (with no self-connections)
using inhibitory synapses with a peak synaptic conductance ginhFB

peak = 0.025 µS.
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Figure 8. Experiment 2: inhibitory feedback connections permit learning of multiple velocities.
(a) In the second group of experiments, a collection of three cortical cells are interconnected using
fixed-strength inhibitory synapses. The three neurons are exposed to two different velocities (in
this case, +1 and −1, representing two different directions of motion). (b), (c), (d) Neurons 1 and
2 code for the opposite direction of motion as neuron 3.

3.2.2. Partitioning the set of input sequences. Given slight initial biases in the feedforward
excitatory weights, some neurons may be expected to respond more vigorously than others to
bars moving in a particular direction. These vigorously responding neurons will inhibit the
less-responsive neurons. In turn, only the vigorously responding neurons will modify their
feedforward excitatory synapses sufficiently to create an asymmetry that codes for motion
in one particular direction. Figure 8(a) shows a schematic diagram of this arrangement.
Figures 8(b), (c) and (d) demonstrate responses of the three cortical neurons to motion in each
direction. Two of the neurons code for motion in the left-to-right direction; the other codes
for motion in the right-to-left direction.

Figure 9 shows the resulting asymmetry in feedforward excitatory weights. Note that
neurons 1 and 2 display weights that code for the opposite direction of motion as neuron 3.

Figure 10 shows that learning direction selectivity through competitive inhibition scales to
larger numbers of neurons. Figure 10(a) shows how a system of 100 neurons learns direction
selectivity. Fortyfive of the 100 neurons have a direction selectivity greater than or equal to
0.5 in either the left-to-right or right-to-left direction when tested at the training velocity of
1 retinal pixel per millisecond. Thirty of these direction-selective neurons prefer left-to-right
motion; the other 15 prefer the right-to-left direction. Figure 10(b) shows the number of
spikes generated in the preferred and opposite directions by each neuron. Most neurons that
do become directionally selective exhibit weak responses of only one or two spikes. However,
a relatively small number of neurons do fire vigorously in response to bars moving in the
preferred direction (with five or more spikes), with no spikes in response to bars moving in
the opposite direction. Peak conductance ginhFB

peak of feedback connections was set to 0.000 81.
Figure 11 demonstrates how the weak direction selectivity developed as a result of STDP

in feedforward-only connections drops off as feedforward and feedback inhibitory strengths
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Figure 10. Neural competition scales to larger networks. (a) Direction selectivity index plotted over
a network of 100 model cortical neurons, each interacting through inhibitory feedback connections.
Horizontal bars denote direction selectivities of 0.5 in the left-to-right (+0.5) and right-to-left (−0.5)
directions. (b) Spike counts taken from a single testing simulation run of the 100-neuron network.
Most neurons fired on the order of 2–5 spikes, with a few outliers firing up to 14 spikes.

are reduced from 100% of training inhibition down to 0% in 20% decrements. This result
contrasts with biological findings that complex cells maintain direction selectivity even when
inhibition is greatly reduced. This leads us to conclude that although competitive inhibition
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Figure 11. Feedforward-only learning causes dropoff in direction selectivity as inhibition is
decreased. A single neuron is trained without feedback inhibition or feedback excitation on
sequences with velocities of five retinal pixels (0.05◦) per ms. After training, direction selectivity
is tested over a range of velocities on the range 1–10. For each velocity, direction selectivity
is measured when feedforward inhibition is set at 100% of training inhibition, 80% , . . . , 0%.
Selectivity drops off markedly for higher velocities than the training velocity and for reduced
inhibition. Colours (see bar at right) represent direction-selectivity index values of the model
cortical cell (cf section 2), from light (strong preference for left-to-right motion) to dark (weak
preference for right-to-left motion).

can allow cortical neurons to code for direction selectivity, additional, excitatory recurrent
synapses (cf section 3.3) are necessary to cause robust learning of direction selectivity.

3.3. Experiment 3: feedback excitatory and inhibitory connections

Our previous experiments showed that the mismatch between feedforward excitation and
inhibition time constants is sufficient to create an asymmetry in feedforward excitatory
weights, causing direction selectivity, and that mutually inhibiting groups of cortical neurons
can compete to code for stimuli moving in different directions. However, since experiments 1
and 2 only employed feedforward connections, the direction selectivity developed by the
cortical neurons was relatively weak. Intuitively, having recurrent excitatory connections
biased in the learned direction of motion should help the cortical neurons code much more
strongly for stimuli moving in that direction. In experiment 3, we investigated the effects of
adding recurrent excitatory synapses that are modified by STDP, along with weak non-plastic
recurrent inhibitory synapses.

3.3.1. Training paradigm. Our simulated cortical network for this experiment consists of a
chain of 11 integrate-and-fire neurons connected all-to-all (no self-connections) with excitatory
and inhibitory synapses (figure 12). The recurrent inhibitory synapses are initialized to constant
fixed values of ginhFB

peak = 0.0055 µS, and the recurrent excitatory synapses are initialized to
random, uniformly distributed values from 0 to 0.005 µS. We assume that each neuron receives
input from a patch of the retinal/LGN system that does not overlap with the receptive field of
any other cortical cell in the chain. Further, the feedforward excitatory weights were set to
the values learned in the previous experiments, so an asymmetry biasing the network toward
weak responses in the preferred direction already exists. The recurrent excitatory weights
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Figure 12. Experiment 3: Network with recurrent excitation and inhibition. The third set of
experiments covers the case where feedback excitation and inhibition and feedforward excitation
and inhibition are present in the network.
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Figure 13. Recurrent connections allow robust direction selectivity. In contrast to the single
neuron shown in figure 7, responses in the preferred direction are represented by numerous spikes.
Responses in the null direction remain weak. (a) Responses with inhibition at 100% of initial;
(b) responses when inhibition is set at 60% of initial. Note the difference in scale of the y axes for
the two subgraphs.

were modified according to the STDP rule as the network was exposed to a moving bar
10 pixels (0.1◦) wide moving at a velocity of five pixels (0.05◦) per millisecond. Again,
each pass of the light bar over the retina constituted one iteration of the simulation, and each
iteration ran for 725 ms. Ten iterations comprised the total training set for the network.

3.3.2. Strong direction selectivity. Figures 13 and 14 show that STDP causes an asymmetry
in the excitatory recurrent connections that leads to robust direction selectivity. Figure 13(a)
shows the number of spikes fired by the neuron in the middle of the chain when presented
with bars moving at velocities from 0, . . . , 10. Compared to the results for feedforward-
only excitation in figure 7, the neuron displays much more vigorous activity in the preferred
direction, while firing either 0 or 1 spikes in the null direction for all velocities except 0. Strong
direction selectivity persists until inhibition is lowered to 20% to 0% of normal (see figure
15). Note the higher velocities in particular display much more robust direction selectivity
as compared to the feedforward-only case. Figure 14 shows how STDP causes an initially
uniform distribution of recurrent excitatory weights to develop a marked asymmetry after
learning. Our findings are consistent with other modeling studies, for example, the work of
Suarez et al [40], who found that asymmetric, excitatory recurrent connections are necessary
to replicate biological data and ensure robust direction selectivity.

We also ran our simulations on a larger recurrently connected network of 100 model
cortical neurons (figure 16). Here, each cortical neuron received 50 LGN inputs, and LGN
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Figure 14. Recurrent weights show asymmetry after training. (a) Recurrent synaptic weights
before training. Colour bar shows relative values of recurrent synaptic weights, from light (high
peak conductance) to dark (low peak conductance). (b) Weights from the same network after
training. A clear asymmetry results from being trained on bars moving in the preferred direction.
Note the difference in scale from (a).
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Figure 15. Learning with recurrent excitatory feedback causes robust direction selectivity even
when inhibition is dropped. A mix of inhibitory and excitatory connections on both the feedforward
and the feedback synapses is trained on a moving bar. The resulting network displays robust
direction selectivity across a range of velocities, even as feedforward inhibition is decreased. As
in figure 11, greyscale values represent direction-selectivity index values (cf section 2).

receptive fields for adjacent cortical cells overlapped (each cortical neuron’s receptive field
shared 45 of 50 LGN neurons with each neighbor). We adjusted the maximum peak synaptic
conductance gmax

syn to 0.1; all other parameter settings were identical to the 11-neuron network
as described in section 2. Figure 16(a) demonstrates the robustness of direction selectivity as
feedforward inhibition is lowered from 100% of initial to 0%. The selectivity is measured from
cortical neuron 45 of 100. Many neurons in the middle of the array responded weakly compared
to the middle neuron in the 11-neuron network; this is likely due to the interaction of the
overlapping receptive fields and recurrent inhibition, causing activity to ‘jump’ between distant
recurrent neurons along the chain while suppressing responses from intervening neurons. This
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Figure 16. Direction selectivity scales to large recurrent networks with overlapping fields.
(a) A network of 100 neurons, with overlapping receptive fields (see text), was trained on a moving
bar. The resulting network displays robust direction selectivity across a range of velocities, even
as feedforward inhibition is decreased. As in figure 11, greyscale values represent direction-
selectivity index values (cf section 2). (b) Number of spikes for preferred and null directions,
plotted for neuron number 45 from the network, plotted for 100% initial inhibition. (c) Number of
spikes for neuron 45 at 60% initial inhibition. (d) Direction selectivity of all 100 neurons for the
training velocity (5 retinal pixels ms−1, that is, 0.05◦ ms−1), plotted for 100% initial inhibition.
(e) Spike counts in preferred and null directions for all 100 neurons at the training velocity
(5 retinal pixels ms−1, that is, 0.05◦ ms−1), plotted for 100% initial inhibition.

effect is notable in figure 16(e), where many neurons at each end of the chain fire a large number
of spikes, while only a few in the middle spike. Different sizes of receptive field overlap and
settings for inhibition would lead to different levels of activity for neurons in the middle of
the chain.

Figures 16(b) and (c) demonstrate the number of spikes fired in each direction of motion
for neuron 45, with feedforward inhibition respectively set at 100% and 60% of initial. The
neuron spikes vigorously for all velocities, and continues to display direction selectivity
except for very high velocities with lowered inhibition. Figure 16(d) displays the DSI values
(positive values indicating a preference for the training direction of left to right, negative values
indicating a preference for right to left), with inhibition at 100% of initial, for the training
velocity of five pixels (0.05 retinal degrees) per simulation step. Figure 16(e) displays the
corresponding spike counts in each direction.

4. Model predictions

Our model of STDP-driven selectivity for direction and motion makes several experimentally
testable predictions. In particular, it is known that STDP allows a network of neurons to
predictively encode sequences [5, 1, 31–33, 22–24, 14]. We investigated the implications of
these findings within the context of motion detection and direction selectivity.
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Figure 17. Recurrent connections cause predictive waves of activity. A moving stimulus (solid
line) causes recurrent connections to fire predictively, allowing cells to spike before the stimulus
reaches their receptive fields. In contrast, when a flashed stimulus is provided (dashed line), the
model predicts a peak in activity only after the flash has occurred.

4.1. Experimental paradigm

We used the 11-neuron cortical network described in section 3.3 (after training the recurrent
excitatory weights) to determine whether moving bars could generate predictive activity. In
this experiment, we assume that synaptic weights have stabilized to represent a preferred
direction of motion, and therefore turn off synaptic plasticity while running our simulations.
We present two experimental setups:

• Predictive firing. In this setup, we move a bar across the retina-LGN system, then examine
the activity of the five middle neurons to determine whether the onset of activity precedes
the appearance of the bar in the receptive field of the neurons. The bar is considered to
impinge on the receptive field of the neurons as soon as the rightmost edge of the bar
encounters the leftmost retina-LGN unit corresponding to the leftmost cortical neuron.

• Continuing predictive activity. In this setup, we examined the dynamics of model neuron
responses in the network when a moving bar was abruptly stopped after an initial period
of motion.

Preliminary physiological results that are suggestive of our simulation results have been
reported by Jancke et al [13].

4.2. Predictive firing

Figure 17 shows the results from the first experimental setup. We contrast the results when
the input is a moving bar with the results when the input is a single flashed bar. To generate
the curves shown here, we convolve the mean activity of the middle 3 neurons in the case of
moving stimuli with a Gaussian with mean 0 and standard deviation 0.1, and in the case of
flashed stimuli with mean 0 and standard deviation 0.05.

Our model predicts a sharp onset of activity for the flashed stimulus, and that activity
for the moving stimulus should not be as sharply peaked and begin a few milliseconds
(approximately 20 ms in the model) before the arrival of the moving stimulus on the receptive
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Figure 18. Predictive activity continues to propagate when the moving bar is stopped. After
20 ms of exposing the network to a moving bar, we turn off all inputs from the LGN. Recurrent
connections continue to propagate the activity even in the absence of external input. In a larger
cortical model, this activity would gradually be reduced due to recurrent inhibition. Here, the
small number of simulated recurrent neurons and asymmetry in the weights acts to reduce activity
as time passes.

field of the leftmost neuron. Further, our model predicts that no such predictive firing will
occur in direction-selective cells when exposed to a bar moving in the null direction.

4.3. Continuing predictive activity

Figure 18 shows the results from the second experimental setup. We begin with a bar moving
at a velocity of five retinal pixels (0.05 retinal degrees) per millisecond. After 20 ms, input
from the LGN stops completely. At the point where input from the LGN stops, the trailing
edge of the moving bar has only reached the end of the receptive field for model cortical
neuron 2 (with the bar itself also impinging on the receptive field for model cortical neuron 3).
Our model predicts that, even in the absence of continued LGN input, a propagating wave of
activity should continue for some time as a result of recurrent excitation. Figure 18 shows this
effect in the model network; the figure plots the mean location of activity within the network
of 11 cortical neurons over time. Model cortical activities were measured every 20 ms, and
plotted as Gaussians whose means are located at the mean locus of cortical activity and whose
standard deviations are given by the standard deviation of model cortical activity. Successive
bumps in activity continue from left to right along the neural chain, propagating because of a
learned left-to-right asymmetry in the recurrent weights. Feedback inhibition prevents cells 3
and 4 from responding strongly. In long chains of recurrently connected neurons, continued
predictive firing will eventually cease as recurrent inhibition overcomes excitation; in our
small simulated network, activity stops as the wave of firing reaches the end of the chain.

5. Conclusions

We have shown how STDP causes different configurations of model cortical neurons to learn
to detect motion in a particular direction. We demonstrated four main results:
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Figure 19. Proposal for cortical architecture. We propose that cortical columns act to partition the
set of input sequences, with nearby columns competitively inhibiting one another and excitatory
intracolumn connections coding for temporal correlations. This setup is reminiscent of the
expectation maximization (EM) approach to finding a model for probabilistic input data, and
of Kohonen’s SOM model.

(i) STDP allows single neurons receiving feedforward excitatory and inhibitory connections
to develop weak direction selectivity.

(ii) A network of mutually competitive, inhibitory neurons can learn to code for multiple
different directions.

(iii) A network with both feedforward and STDP-driven recurrent excitatory connections
develops robust direction selectivity.

(iv) Recurrently connected networks of direction-selective neurons can predictively encode
the direction of stimulus motion and fire in anticipation of feedforward inputs.

Our model predicts that recordings from visual cortical columns should reveal moving
waves of activity when the retina is exposed to moving bars, and that the activity should
begin slightly before the bar reaches the receptive field of the cortical neuron (i.e. it should
be ‘predictive’). Waves of activity should continue for a short while in cortex even after the
stimulus is removed. These trends may represent a general coding strategy used throughout
the neocortex: chains of excitatory neurons provide a top–down prediction of how a stimulus
will evolve with time, biasing the activity of lower level sensory neurons, an idea consistent
with recent predictive coding models [29, 30].

Our results suggest the following model for the development of cortical direction
selectivity and sequence learning in general: chains of recurrently connected neurons learning
to code for a particular direction of motion interact competitively with other chains through
recurrent inhibition (see figure 19). For any given sequence of inputs, one recurrent chain may
‘win out’ over its neighbors to code for a particular temporal sequence, spiking sufficiently to
prevent neurons in other chains from spiking significantly. The ‘winning’ chain of neurons
would modify their recurrent excitatory synapses according to the STDP learning rule, so
that the winning chain is more likely to respond vigorously to the temporal input sequence in
the future. The mutually competitive interaction of chains of recurrently connected neurons,
interspersed with STDP-driven learning, is strongly reminiscent of the well-known expectation
maximization (EM) algorithm [9, 12] from statistics and machine learning (and also of
Kohonen’s self-organizing maps (SOMs) [17, 18]), raising the intriguing possibility that
the neocortex utilizes statistically motivated principles for learning temporal sequences.
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