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ABSTRACT A Monte Carlo method for modeling the neuromuscular junction is described in which the three-dimensional structure of
the synapse can be specified. Complexities can be introduced into the acetylcholine kinetic model used with only a small increase
in computing time. The Monte Carlo technique is shown to be superior to differential equation modeling methods (although less
accurate) if a three-dimensional representation of synaptic geometry is desired. The conceptual development of the model is
presented and the accuracy estimated. The consequences of manipulations such as varying the spacing of secondary synaptic
folds or that between the release of multiple quantal packets of acetylcholine, are also presented. Increasing the spacing between

folds increases peak current. Decreased spacing of adjacent quantal release sites increases the potentiation of peak current.

i. INTRODUCTION

The vertebrate neuromuscular junction (nmj) (see Fig.
1, a and b) is an ideal synapse for studying the events
following the release of a quantal packet of transmitter
(acetylcholine, ACh). The nmj can be easily voltage
clamped to record the miniature endplate currents
(MEPCs) that result from such a release. Furthermore,
from experiments which record changes in MEPC shape
(rise time, amplitude, and fall time) as a result of
changing the nmj microenvironment (for instance, by
changing acetylcholinesterase [AChE] and/or acetylcho-
line receptor [AChR] concentrations) one can derive
some of the kinetic parameters of ACh interactions.

In previous publications (Land et al., 1980, 1981, 1984)
such derivations were obtained by solving simultaneous
differential equations for ACh diffusion, plus binding/
unbinding to AChR. This treatment required simplifica-
tions in both the kinetic schemes and nmj geometry used
in the model. The present paper describes the develop-
ment and verification of a Monte Carlo simulation which
allows us to follow the individual fate of every ACh
molecule released into the cleft of a nmj, and do so for
junctions whose geometry is more realistically por-
trayed. We first present validation tests for the model
and then apply the method to determine the effect of
varying endplate geometry and/or the distance between
two ACh release sites. Comparison of computational
cost and accuracy from a full and a simplified chemical
kinetic scheme is also discussed.

Address all correspondence to Dr. Salpeter.

Il. MONTE CARLO METHOD
AND VALIDATION

A. Kinetic schemes and
comparisons between differential
equations and Monte Carlo
simulations as a means of modeling

In addition to diffusion, the usual full kinetic scheme for
ACh behavior in the primary cleft of the nmj can be
expressed as:

%*,, k., B

24+ R==A + AR == 4R, =AR?, (1)
where A4 is ACh; R, is an AChR molecule containing 2
ACh binding sites plus a channel which can be either in a
closed or open conformation; AR, is the singly bound
molecule, 4,R’, is the doubly bound molecule in the
closed conformation, and A4,R* is the doubly bound
molecule in the open conformation (Adams, 1975). To
fully account for all the parameters when modeling
MEPC's, one has to solve simultaneously the differential
equations for ACh diffusion, binding/unbinding, and
channel isomerization. In the past (Adams, 1975; Sheri-
dan and Lester, 1977; Land et al., 1984) the standard
scheme in Eq. 1 was often replaced by a simpler,
approximate scheme:

2%k, ks
24 +R.=—=A + AR. == A,R,, 2)
k_, X—eff

where x_.; = 2k_,[o/(B + )]. In this scheme R, and AR,
are the unbound and singly bound molecules, as in the
full scheme, but only one doubly bound state 4,R, is
used, combining the kinetics for the 4,R’ and A,R*
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steps. To obtain 4,R* in this approximation, A,R, must
be multiplied by B/(B + «) which is the fraction of
double bound receptor molecules that are in the open
conformation, i.e., the quantity “g” in Land et al. (1981).
The simplified approximate scheme can be used if the
rate constants satisfy the inequality k_, < (a + B). A
comparison of the numerical accuracy of results from
both schemes is discussed in section V.

Even more complicated schemes than given in Eq. 1
(not including desensitized states) have been postulated.
For instance, it has been suggested (Sine and Taylor,
1980; Blount and Merlie, 1989; Hartman and Claudio,
1990) that the two binding sites on a receptor molecule
have different binding kinetics, giving two nonequivalent
singly bound AR, states, and five possible states in all.
There is also considerable evidence from patch-clamp
studies of single-channel currents (e.g., Labarca et al.,
1985) that in addition to the doubly liganded open state
(A,R*), there may also be a singly liganded open state,
making seven possible states for AChR. In addition, the
presence of a possible third binding site with inhibitory
properties has also been postulated (Udgaonkar and
Hess, 1986) in which case future modeling may need to
deal with up to 14 states for the receptor molecule and
even more if one considers the possibility of channel
openings from unliganded AChR. The implications of
these more complex kinetic schemes for MEPC genera-
tion will be addressed in detail in a subsequent paper.
However, we can foreshadow the effect which the
inclusion of channel openings from singly liganded
AChR’s will have on the time course of a MEPC. Due to
the initial high concentration of ACh no effect is
expected during the rising phase of the MEPC. In
principle there could be an effect at the later stages of
the falling phase when few of the AChR molecules are
doubly bound. With AChE intact the effect is expected
to be small because of the rapid channel closings
suggested by the single-channel experiments (Labarca et
al.,, 1985). In situations where the AChE has been
removed, single-channel openings would cause a very
slowly decreasing “tail” to the falling phase.

Another cause for complexity in endplate modeling
stems from variations in detailed geometry. The geome-
try of a neuromuscular junction differs from one animal
species to another and for different muscle types within
one species. In particular, some muscles have no second-
ary folds and in others the interfold spacing can vary (for
review see Salpeter, 1987). For the case of a nmj without
any secondary folds, where the receptor surface is a
plane sheet, the diffusion can be approximated as
two-dimensional because the cleft height is small com-
pared with the distance over which a quantal packet
spreads. Furthermore, since in that case there is radial

symmetry, one could reduce the spatial variables to a
single variable, i.e., the one-dimensional distance “r” to
the release site. Most previous modeling (Wathey et al.,
1979; Land et al., 1981, 1984) used this one-dimensional
approximation. However, for accurate modeling of cases
with secondary folds, (see Fig. 2) one needs a calculation
in a fully three-dimensional space.

It is useful at this point to contrast the two radically
different computational approaches to modeling
MEPC’s numerically for a given geometry and assumed
kinetic scheme. The first, using simultaneous coupled
differential equations, characterizes the distribution of
free ACh molecules by a density function of space and
time, A(x,y,z;t). This and other functions for the
various states of the receptor complexes are solved
numerically. Such a method was used previously by Land
et al. (1981, 1984) and by Wathey et al. (1979) but only
for the function A4 (r; t) in the one-dimensional approxi-
mation. The second approach, using the “Monte Carlo
method,” first characterizes the distribution by specify-
ing the position (x, y, z) for each of a number () of ACh
molecules at a given time ¢ (and the state of the receptor
molecule if the ACh molecule is bound to it). In this
method the time development of the distribution is
achieved not by a differential equation, but by following
each molecule in space and time as it diffuses.

The practical limitations of computational costs are
very different in the two methods and depend on the
complexity of the problem to be solved. Consider first
free diffusion in the one-dimensional approximation.
The pure diffusion equation for ACh concentration, A4,
in the absence of any chemical reactions would read:

d/dt A(r, t) = D (6*A/or?), 3)

where D is the diffusion coefficient, d is the partial
derivative, and r is radial distance. In the differential
equation approach one approximates the continuous
differential equation (Eq. 3) for the function A(r, f) by a
difference equation with finite (but small) increments Ar
and Ar. A fundamental requirement of the difference
equation method is that Ar and Af be small enough so
that the function A4 (r, t) varies by only a small percentage
from one value of r to the adjacent value, r + Ar
(similarly for time). The number (n,) of r values at which
the function A(r) has to be evaluated is inversely
proportional to Ar. Similarly the number of time steps
(n,) is inversely proportional to At. The difference
equation method has the agreeable property that dou-
bling n, and n, (when halving Ar and Ar) decreases the
numerical error of the final results by much more than a
factor of two (Ortega and Poole, 1981). High accuracy
can thus be achieved. However, for a given distance
analyzed, such as for a typical MEPC, n, and n, have to
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FIGURE 1 (a,b) Scanning Electron Micrograph (SEM) (a) and Transmission Electron Micrograph (TEM) (b) of lizard intercostal muscle
neuromuscular junction (nmj). () In this SEM of a lizard muscle fiber (MF), the presynaptic neuron has been removed to show the surface of the
post-synaptic membrane. The primary cleft (PC) and secondary clefts (arrows) of the nmj can be seen. This micrograph illustrates the characteristic
oval shape of the lizard nmj, similar to that of mammalian muscle. If a cross-section of the nmj is taken along line A-B the structures seen in b are

exposed. Magnification X 6200, scale is 2.0 pm.

be fairly large, e.g., between 10> and 10° each. The
number of operations required is then ~n_n, or ~10* to
10°, which is feasible on modern computers. However,
for a fully three-dimensional function of Cartesian space
coordinates x, y, and z (plus time ¢), one still needs n,
different values for each of the three coordinates and the
number of operations required is of order nn, or ~10°
to 10", which is extremely time consuming even for a
modern supercomputer.

In the Monte Carlo method one does not deal with
any density function, but follows the position of each of
N molecules as a function of time, i.e., r(¢) for the
one-dimensional case and three coordinates x(¢), y(¢),
and z(¢) in the three dimensional case. The Monte Carlo
method thus mimics the real life situation more exactly.
To do the simulation, N is kept constant and a time step,
At, is chosen during which a molecule is allowed to move
in a straight line.

The time step, Az, has to be small compared with the

time over which conditions change appreciably (e.g., the
rise time, ¢, for a MEPC). As long as ¢,/At > 100 then the
choice of Ar does not introduce a major error in the
Monte Carlo calculation (see section II B). Errors in the
Monte Carlo method then come mainly from the finite
number (N) of ACh molecules used for a quantal
release. Because Poisson fluctuation are of the order
N'", the fractional errors are ~1/N'? in an individual
MEPC simulation. Because N is fixed, one can gain
greater accuracy only by repeating the number of MEPC
simulations “n” times and averaging the results. Repeat-
ing this calculation “n” times increases the computing
cost by “n”” but decreases fractional errors of the result
by only 1/n'? just as in the case of repeating actual
experiments (the final fractional error for “n” MEPC
simulations is of order 1/[nN]"*). Thus, increasing accu-
racy in the Monte Carlo method is not as easy as it is for
the differential equation method. However, unlike the
case with differential equations, going from a one-

1292 Biophysical Journal

Volume 59 June 1991



FIGURE1 (continued) (b) TEM of a lizard nmj with the presynaptic motor-neuron (MN) intact showing much of the fine-structure of this nmj (see
also Salpeter et al., 1984, Salpeter, 1987). Synaptic vesicles (SV) are tightly packed within the neuron. The acetylcholine receptors (AChR’s), found
mainly at the top ~250 nm of the folds formed by the primary (PC) and secondary (SC) clefts, are at a density of ~ 8,200 molecules per um® of
muscle membrane. In this TEM autoradiogram the AChR’s are labeled with '*I a-bungarotoxin localized by selective silver grains (SG). The
acetylcholinesterases (AChE’s) are associated with the basal lamina in both the primary and secondary clefts (Hall and Kelly, 1971; Betz and
Sakmann, 1973; McMabhan et al., 1978). Magnification 33000, scale is 0.2 wm.

dimensional to a three-dimensional calculation does not
increase Monte Carlo computing costs greatly. It only
involves keeping track of (and choosing random num-
bers for) three instead of one time-varying coordinate.
Therefore, in the Monte Carlo method the computing
cost in a three-dimensional calculation is only about
three times larger than for the one-dimensional case, in
contrast to the difference equation method where the
computing cost is increased by a factor ~n’ > 10"
Similarly, in going to more complex kinetic schemes,
the difference equation method becomes more difficult
to solve as the number of equations used to describe the
more complex kinetic scheme increase. Each new molec-
ular state added to the kinetic scheme involves adding
two more equations. The associated matrix of equations,

therefore, grows to (n + 2) X (n + 2) and adds complex-
ity to the method. In contrast (as will be seen in section
V), adding a new molecular state to the Monte Carlo
method as when going from Eq. 2 to Eq. 1 involves only
adding another algorithm to the choices allowed for an
ACh molecule, but does not change the diffusion routine
or the total number of molecules, N. Because, as we shall
see, the diffusion routine is the most time consuming
part of a Monte Carlo routine, an increase in Kinetic
scheme complexity does not increase computer time
appreciably.

To summarize the pro’s and con’s of the two methods:
the differential equation method is preferable if the
geometry and chemical kinetic scheme used are simple
(one-dimensional approximation and simplified kinet-
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FIGURE 2 (a,b,¢) Schematic views of real (a) and model (b, ¢) neuromuscular junction. () Line drawing of real nmj (see Fig. 1 b). AChR is
indicated by thick line at top of junctional folds. Circle indicates area magnified in schematic of model nmj (b, ¢). (b) Cross-section of model nmj.
Axonal and post-junctional membranes are the bounding surfaces. The axonal membrane is tiled with AChR (length of AChR tile is sg,). AChE is
located in lumen of primary and secondary cleft. Length of AChE tile is sq,. A double layer of AChE is present in secondary cleft bounded by each
of the junctional fold membranes. (c) Top view of model nmj. AChR tiles are shown covering surface of post-junctional membrane. AChE is not

shown.

ics) and if great numerical accuracy is required. The
Monte Carlo method is preferable (even essential, from
a practical point of view) if one requires realistic
modeling of geometry and chemical kinetics. Results
with an accuracy of a few percent (e.g., for the peak
MEPC amplitude) can be achieved fairly easily, but
extremely great numerical accuracy is not a practical
goal. Another advantage of the Monte Carlo method is
the ability for visual presentations as will be seen below.
Although the results of models using difference methods
may also be visualized, the images obtained from a
Monte Carlo simulation allow one to appreciate the
highly stochastic nature of a process.

B. Steps in Monte Carlo simulations

Monte Carlo simulations in general have already been
described by Rubinstein (1981). Applications to diffu-
sion and chemical kinetics are discussed by Torney and
Warnock (1988) and by Turner (1977). Below we de-
scribe only those points in the methodology which were
used in modeling MEPC’s for the nmj.

Before commencing a particular simulation, we speci-
fied the boundaries of the volume in terms of Cartesian
coordinates (x, y, z) of the surfaces (membranes) within
which the free ACh molecules are allowed to move but
not cross. A number of parameters were also specified
such as the densities of the AChR molecules (o,) (the

density of ACh binding sites is o, = 20,) and of the
ACHhHE active sites (ACh binding sites, ¢, ), the number
(N) of ACh molecules per quantal packet, the diffusion
constant (D), the chemical kinetic parameters for AChR
(six if Eq. 1 is to be used, four if Eq. 2 is to be used, and
more for more complex schemes), and the kinetic
parameters for AChE (k,, and k_,). The values for o,
and o, are taken from experimental measurements.
However N, D, and the chemical kinetic parameters
were allowed to vary as will be discussed in a future
paper.

Finally, we specified a “Monte Carlo time step” At, at
the end of which each ACh molecule is “interrogated”
as to its activity during this period (i.e., distance and
direction moved, the new location and the state of
binding, as described below). For a given value of Az and
the diffusion constant, D, the average distance moved in
any Cartesian coordinate is given by the net diffusion
length (L,) defined by

L? = 4D(At/w). 4)

Diffusion theory (Crank, 1975) gives the probability of
moving some distance between (L — AL) to (L + AL),
for any value of L. This probability is proportional to the
area under the diffusion distribution function (the error
function) between (L — AL) and (L + AL). We chose
100 successive bins in the diffusion distribution function
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with equal probability of occurring. Since each bin with
midpoint L; (j = 1 to 100) has equal area, the bin width
and thus the spacing, L;,, — L;, varies. Explicitly:

L, = Lgw" erf™(j/100 — 0.5/100), )

where erf™' is the inverse error function (van der Laan
and Temme, 1984). The properties of the erf™ function
are such that the average value of L; is L, (as required),
the median value, L, is ~0.84 times L, and the largest
L,value is L,,, ~3.6 L,. Each Cartesian coordinate, (x, ,
and z separately) is then either increased or decreased
(randomly) by a distance L;, determined by choosing j
from a uniform random number generating routine and
substituting into Eq. 5.

The computing cost for a MEPC simulation is in-
versely proportional to the time step Ar. It would
obviously be too costly to mimic the actual Brownian
motion of molecules (with Az < 107° ps). However, Az
must be small compared with the time over which bulk
conditions change appreciably; i.e., At < t,, where ¢, is
the 20% to 80% rise time of a MEPC (~100 ws). We
found that Ar < 0.02¢, is sufficiently small not to cause
any appreciable errors, as checked by comparing results
from two simulations carried out with two different
values of Az. During the falling phase of a MEPC
conditions change more slowly than during the rising
phase and one could increase At after the peak ampli-
tude is reached. However, for ease in Monte Carlo
bookkeeping, we introduced an additional constraint
and required that the largest of the 100 step lengths
(~3.6 L,) be less than twice the cleft height, Z (there-
fore, for 2Z ~ 100 nm, L, < 27 nm). For instance, for
free diffusion D ~ 6 x 10 %m’ "' (Eccles and Jaeger,
1958; Krnjevic and Mitchell, 1960; Dionne, 1976; Wathey
et al., 1979), and rearranging Eq. 4 gives At ~ (27
nm)*/(6 X 10 %cm’s™"), so that we generally use Ar <
1 ps.

In an actual computation, the AChR molecules on the
postsynaptic membrane surface are modeled as small
squares of length sq, (Fig. 2) each having 2 ACh binding
sites (for the lizard we used sq, = 11 nm). Thus, 1/sq; =
o, is the density of the AChR molecules. After each At
time step, when an ACh molecule has moved a distance
L;, (determined as described above), the ACh molecule
is interrogated as follows: the line joining the old and
new position of the ACh molecule is examined. If the
molecule had hit (crossed) any bounding surface where
there is no AChR (e.g., the surface is an axonal
membrane or is at the bottom of the folds) or if the
molecule hit an AChR which is already fully bound with
2 ACh molecules then specular reflection is specified,
(i.e., the particle is still allowed to move as originally
specified in the two dimensions parallel to the surface,

but its direction perpendicular to the surface after the
hit is reversed and it is thus bounced off the hit surface).
If, on the other hand, the ACh molecule had hit an
AChR square that has a free ACh binding site, the
computer chooses a random number between 0.0 and
1.0 (to nine decimal places). If this random number is
less than a predetermined fractional number p, (see
below) the ACh molecule is allowed to bind; if the
random number lay between p, and unity specular
reflection without binding is again specified and the
ACh molecule bounces off the surface.

The number p_, i.e., the “Monte Carlo binding proba-
bility per time step At”, has to be related to the forward
binding rate constant, k., defined by chemical kinetics.
To do this we consider that if 4 is the concentration (in
molarity) of free ACh in the volume above the surface,
chemical kinetics requires the binding rate per AChR
square to equal (k,)(4)s™". Since, in the Monte Carlo
simulation, the average of all diffusion step lengths L; is
L,, half of all the ACh molecules which are within a
perpendicular distance L, of the receptive surface will,
on the average, hit during one time interval A¢z. Thus the
number of ACh molecules that hit per AChR square per
At is: 0.5 N A, (where A is the molar concentration of
ACh within that volume and N, is Avogadro’s number)
times L,sq’ (i.e., the volume above the AChR square).
This number of hits times the probability p, of binding
gives the number of bindings per time step which must
equal k, AAt, thus relating p, to k.. Using sq; = 1/o, and
Eq. 4 for L, Eq. 6 a gives this relation in two alternative
forms:

p. = (k.N)o(mAt/D)"* = p.(Ly/sq,), (62)

where p, , the Monte Carlo binding probability for the
special step length L, = sq,, is given by:

P+ = (ky/N,)(w/2Dsq,). (6b)

Of course, At and L, have to be chosen small enough so
that p, < 1. For typical values of k, for ACh to AChR
binding p,, << 1 so that we can choose L, several times
sq, and still have p, < 1.

If a molecule is bound to a receptor, its chemical
kinetic rate constant k_ for unbinding likewise has to be
converted to a “Monte Carlo probability” p_ for unbind-
ing. Per time step, p_ = 1 — exp (—k_At), which is close
to k_At as long as k_At is small compared with 1. To
determine whether a molecule unbinds during a time
step we again randomly choose a number between 0 and
1, and allow unbinding if it is between 0 and p_ and
retain binding if it is between p_ and 1. Upon unbinding,
an ACh molecule is moved an average step length (L,)
from the AChR to which it had been bound. In actual
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simulations one has to make a distinction between singly
bound and doubly bound AChR complexes with a
corresponding suffix lor 2 for p. and &..

There are many more AChR squares on the receptive
surfaces than there are ACh molecules released in a
single quantal packet, but in our bookkeeping we need
to keep track of only individual ACh molecules. After
each time step the position (x, y, z) of each ACh mole-
cule is determined and whether it is bound to an AChE
site or to an AChR (singly or doubly) is noted. The
procedure followed for AChE binding is described
below. The possibility of a free ACh molecule exiting
from the cleft is also considered. In our previous
numerical calculations (Land et al., 1984) we defined the
boundary at which a diffusing ACh molecule is lost from
the cleft as a circle on the primary cleft membrane of
radius R,.. In our current model, however, it is more
convenient to define a square or rectangular region with
sides 2X,, and 2Y,, in the x and y directions, respectively
(instead of a circle with diameter 2R, ). The x direction
was defined as that along the long axis of the muscle,
whereas the y direction is at 90° to the x axis and in the
plane of the membrane. The quantal packet release site
can be anywhere in the rectangle; if an ACh molecule
diffuses outside the rectangle it is removed from the
simulation.

For hydrolysis by an AChE active site we use a
simplified chemical kinetic scheme with only two param-
eters: we choose a value for the binding rate constant k
between ACh and AChE sites and define a probability
p.. by analogy with Eq. 6

P = 12(k.JN,)o,(mAtD)" @

In this equation the factor % corrects for the fact that
because the AChE is assumed to be in the basal lamina
in the middle of the cleft (Hall and Kelly, 1971; Betz and
Sakmann, 1973; McMahan et al., 1978) it can be hit by
molecules moving up as well as those moving down, and
the AChE active site density, o, replaces o,. We then
simplify the hydrolysis by a single hydrolysis/unbinding
rate constant k_, (~3,600 s™') (Vigny et al., 1978) and
use a probability p_, = k_, At per time step for the AChE
active site becoming free again and (simultaneously) the
ACh being destroyed irreversibly.

When the full chemical kinetic scheme in Eq. 1 is used
(see section V), we have an additional isomerization
routine: if a doubly bound AChR is in the closed state
(4,R!) we use a probability p,; = 1 — exp (—BAf) ~ BA?
per time step for switching to the open state (4,R*) and
a probability p_; ~ aAt for the inverse process. In all our
runs both p_; and p,; were <0.02. A similar routine
would be used if one postulated singly liganded open
channels.

C. Validation tests

To validate our model, test cases were chosen for which
analytical solutions could be computed accurately and
the results compared with the model output. This was
done for the diffusion, collision, binding, and unbinding
segments of the computer program. Due to the complex-
ity of our model it was necessary to break the testing
procedure into several steps.

1. Diffusion

We tested the diffusion of 5,000 ACh molecules (equiva-
lent to a small quantal packet) so that the percentage
fluctuations would be the maximum to be seen after
normal quantal release. Two conditions were tested:

(a) The first diffusion test involved diffusion in open
space with no reflecting walls: initially all ACh molecules
start at the same point in space (from a point source)
and are then allowed to diffuse for a certain number of
iterations 7. At the end of T time steps the radial
distribution of particles away from the original starting
point is computed. For this simple case, the expected
density distribution is known analytically: the volume
density A(r, t) as a function of radial distance r from the
source at time ¢, should be:

A(r, ) = Ny(4mtD) ™2 exp (—rY4tD), ®8)

where D is the diffusion constant, N, is the total number
of molecules released and r = (x> +y* + 2°)"? is the
three-dimensional radial distance from the origin. This
analytic function A4 , is plotted in Fig. 3 against the radial
distance, r, expressed in micrometers. The experimental
points in Fig. 3 were obtained from the Monte Carlo
simulation, and represent the number N, of molecules in
successive bins 7, to r, + Ar divided by 4wriAr, (the
volume of each bin) to give ACh concentration. The
error bars denote the “Poisson fluctuation” + (N;*/4xwr;
Ar), i.e., the expected deviations from a smooth curve
due to the finite number of molecules.

Fig. 3 shows excellent agreement with expectations,
but also illustrates an intrinsic limitation of any Monte
Carlo method: because N o« 4wr? the fractional error
(N;)""*is large when r is small, i.e., near the origin. This
situation does not improve even after many time steps.
Fortunately, most practical results of the simulation,
e.g., rise time and amplitude of a MEPC represent
averages over many adjacent spatial bins.

(b) The second diffusion test involved diffusion in
space between two parallel plates, to test a situation
similar to that encountered at a nmj, ACh molecules
start from a point source within a space between two
parallel plates, representing axonal and post-synaptic
membranes but without secondary folds. This creates a
narrow box: the distance between the plates (z dimen-

1296 Biophysical Journal

Volume 59 June 1991



900 1200 E.OO

600

ACh Concentration (N/um?3)
300

0.0 05 1.0 15 20 25 3.0 35
Radial Distance (Lm)

FIGURE3 Concentration distribution of free ACh molecules dif-
fusing in three-dimensional free space. At time ¢ = 0, 5,000 ACh
molecules were released from a single point in space. Graph is a
snapshot of volume concentration of ACh at varying radial distance
from the release point at a time ¢ = 300 ps, corresponding to a number
T = 400 iterations. The mean diffusion length per iteration was L, =
0.025 pm. Concentration equals number of ACh molecules in a bin of
radial distance r, divided by the volume of each bin. Smooth curve is
theoretically expected result. Points with error bars are Monte Carlo
result with Poisson error.

sion of the box, representing the cleft height, Z) is small,
about twice the average diffusion step length (L,), and
the length (2X,,) and width (2Y,,) of the box are each 64
times the height. The two plates are reflecting and the
side walls are absorbing (i.e., when a particle comes
to the end of the box it is removed from the simula-
tion). The simulation was run for a time ¢ such that Z <
(tD)? < 64Z. In such a case, when (tD)"? is large
compared with Z, the expected density distribution of 4
is independent of the z-coordinate (Z) and is given by
the two-dimensional function,

A(s,t) = (Ny/4mtD) exp (—s*/4tD), 9)

where s = (x* 4+ y*)"* is the distance from the origin in
the x-y plane alone, and N, is the total number of
molecules.

The Monte Carlo simulation was used to determine
how rapidly the free ACh molecules distribute across the
cleft. We see by comparing Figs. 4, a and b, that this
occurs by as little as three time steps (2.25 ws). The
lateral distribution fits the expected diffusion pattern
already after 1 time step (Fig. 4 ¢) and does not change
after three time steps (Fig. 4d). This attests to our
correct choice of each L, from the Gaussian distribution.

2. Binding and unbinding test

We showed in section II B how to choose Monte Carlo
probabilities p, and p_ to mimic assumed values of the

binding and unbinding rate constants k, and k_ (for
single receptor binding sites). We report here on two
tests: (a) to test ACh unbinding rate, all AChR were
bound at time ¢t = 0 and, during the run, p, was set to 0
(i.e., no rebinding could occur). The Monte Carlo
simulation (Fig. 5 a) then verified that the number of
bound receptors decayed exponentially with time x exp
(—k_t) as they should; (b) to test fluctuations at equilib-
rium, a certain number, Ny of unbound, and N, of
bound receptors (single bindings only in this test), and a
number, N, of free ACh molecules were introduced into
a closed box of volume V at time ¢ = 0. Because A is the
concentration of ACh, N, = AV. For chosen values of k,
and k_, the bindings and unbindings in a Monte Carlo
run gave values of Ng, N, and N, varying with time but
with Ny + N, equal to the constant number of AChR
sites and N, + N, equal to the constant number of ACh
molecules. The equilibrium values of Ny, N,g, and 4
(denoted by subscript eq) should be related by

[A).N/Nar)eq = k_Ik - (10)

Fig. 5 b shows that deviations of N, from the equilib-
rium value (N,g)., fluctuated about zero (as a function
of time, after any transient has died down) and that the
RMS average of the deviation agreed with Poisson
statistics. This demonstrates that the Monte Carlo simu-
lation will correctly mimic expected fluctuations around
binding equilibria after an initial transient.

lll. MINIMUM STEP LENGTHS AND THE
PROBABILITY FOR REBINDING.

When evaluating the Monte Carlo method for obtaining
chemical kinetic parameters, two related questions are:
(a) what ambiguities might there be in any definition of
the unbinding rate constant k_; and (b) to what extent do
we introduce errors by using time and length steps (At
and L,) that are larger than those in molecular Brown-
ian motion.

To answer these questions we need to decide the
minimum distance L, that an ACh molecule must
move before the Monte Carlo method can deal with it as
being unbound. Recall that Monte Carlo simulations are
based on the assumption of random walk, i.e., that there
is no correlation in direction of motion from one time
step to the next, from which it follows that Az is
proportional to L (see Eq. 4). The random walk
procedure is justified when time steps are larger than
correlation times in the so-called “solvent cage effect”
(Koenig and Fischer, 1973; Adelman, 1987). In the
solvent cage, provided by the surrounding water (and
other) molecules, an ACh molecule would oscillate
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FIGURE 4 (a) Z distribution of the number of free ACh molecules diffusing across the primary cleft (z direction) at a single instance in time after
one iteration (T = 1,7 = 0.75 us). The cleft is described as a space with reflecting walls atz = 0 wm (i.e., axonal membrane) and at z = 0.05 wm (i.e.,
synaptic membrane) divided into 30 bins of height 0.0017 wm each. At time = 0, 5,000 ACh molecules were released atz = 0 wm. The data points
(03) are numbers of molecules with Poisson error bars per z-bin. The mean diffusion step length was L, = 0.025 wm. The horizontal line represents
a uniform distribution of the 5,000 ACh molecules across the 30 bins (i.e., 167 molecules per bin). (b) Z distribution of the number of free ACh
molecules, as in Fig. 4 a, but after the third iteration (7 = 3, t = 2.25 ps) by which time they have reached uniform distribution. (c) Radial
distribution of the number of free ACh molecules diffusing in the primary cleft with reflecting walls (atz = 0 and z = 0.05 um) after one iteration
(T'=1,1=0.75 ps, as in Fig. 4 a). Absorbing walls at maximum radial distance r = 1.6 pm. The data points (CJ) are from the Monte Carlo
simulation (with Poisson error bars). The smooth curve is the theoretically expected result. (d) Radial distribution of the number of free ACh
molecules as in ¢, but after the third iteration (T = 3,1 = 2.25 ps, same time as for Fig. 4 b).

(with a period of order 107 s and an amplitude of a
fraction of 1 nm). Estimates in the literature for solvent
cage correlation times tend to be <1 ns. Therefore the
smallest At (At,;,) for which random walk certainly
would apply is of order 1 ns. For the macroscopic
diffusion constant D ~ 6 X 10~° cm’s™' given for ACh in

the neuromuscular cleft (Eccles and Jaeger, 1958; Krn-
jevic and Mitchell, 1960; Land et al., 1980, 1981, 1984), a
At of 1 ns corresponds to an average step length L, of 1
nm (see Eq. 4). We will therefore define this distance to
be L,,;,- This L, . is about equal to three diameters of a
water molecule and therefore larger than the distance
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FIGURES (a) Fraction of ACh remaining bound to AChR vs. Time
(in unbinding test). At time ¢ = 0, all 5,000 ACh molecules were bound
to AChR sites. Dark line is the Monte Carlo simulation result for
residual bound ACh with an expected e-fold fall time of 0.5 ms. Each
iteration was 0.75 ps and k_ was 2,000 ™. (b) Difference between the
actual number of bound molecules, N,, and the theoretical value
expected at equilibrium as given by Eq. 10 ([N 4z ]., = 2,500) plotted vs.
time. At time ¢ = 0, 5,000 free ACh molecules were released (i.e., Ng
was zero and far from the equilibrium value). The rapid transient in
the curve illustrates the capacity of the receptors to bind ACh.
Theoretically N, should approach equilibrium with an exponential
relaxation time of 71 ps as observed in this example. As expected,
RMS fluctuations of +5.4 molecules were seen after equilibrium was
reached.

for escaping from one cage into another. Although there
is some uncertainty about the exact times, and therefore
the distances that are involved, one can consider that
once a molecule has escaped from a cage it has lost

memory of where it started from, and is therefore
moving with random walk motion. Thus the Monte
Carlo method would apply to times and distances in the
order of 1 ns and 1 nm, respectively. Note also that
L /At is ~200 times smaller than the thermal speed
of an ACh molecule at room temperature in vacuum.
Thus, the cage effect slows diffusion, and gives a mini-
mum dimension for noncorrelated random walk.

As stated above, we will consider that an ACh
molecule has unbound from an AChR site once it has
moved a distance L;, which must be at least 1 nm (or
L,..), from that AChR site. The resultant unbinding
rate constant for Monte Carlo simulation will be called
k . The difference between k_,, and values obtained
by bulk kinetic equations (k_,,,), is largest when the
molecules are far from equilibrium. Consider that at an
initial time, ¢ = 0, all receptors on the membrane are
fully bound, and there are no free ACh molecules above
the membrane. During a relatively short time, ¢, (where
1 ns <t <10 ps < 1/k_), little free ACh builds up
and few AChR binding sites are available. However, the
AChR molecule from which the ACh has just unbound
and moved away from (i.e., to the defined distance L,)
is, by definition, available. Therefore k_ depends on the
probability (f,,) that the ACh rebinds before it has
escaped from the vicinity of the AChR from which it
unbound. In a bulk chemical kinetics treatment (e.g., by
the differential equations used by Land et al., 1981, 1984),
the rate equations account for binding of ACh molecules
to AChR’s only under the assumption that there is no
special relationship between a free ACh molecule and
the state of a nearby receptor. The increased transient
rebinding probability (f,,) is therefore seen as a de-
creased unbinding rate in the bulk scheme (k_,,, ). Thus
k o is equal to k_y(1—f,,). Nearer to equilibrium, f,,
is compensated for by binding to nearby sites, and
k_yu/k yc Will approach unity.

We will define and calculate f,,, in terms of another
quantity, n_,,, using our Monte Carlo scheme. Recall that
in this scheme we represent the membrane area which
contains an average of one AChR molecule (with two
binding sites) as a square tile of dimension sg, = o, ",
For the lizard nmj this is ~11 nm. We define n, as the
average number of times that a molecule returns to hit
the same AChR square before hitting another square
(or escaping). Therefore f,,, equals n,,, times the binding
probability per hit (p, ). To obtain a value for n,. by our
Monte Carlo method, a single ACh molecule was re-
leased from a random spot on one particular receptor
square sq, and, by our definition of unbinding, it was
moved away from the membrane a distance L, The
molecule was allowed to diffuse with average step length
L, hit the same or another square or to escape, but was
not allowed to bind in this simulation. For L, = L, = 1
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nm and for sg, = 11 nm we found n_,, ~ 1.5. To answer
question b above, we also carried out a more extensive
set of simulations. This was to deal with practical Monte
Carlo runs where, to save computer time, we usually use
much larger time and average length steps than L,
(typically At ~ 1 ws and L, ~ 30 nm; about three times
larger than the tile size sq,). Because n,, depends only
on the ratio of the average step length L, used, to the
dimension of a AChR tile sq, we carried out the
calculation for 10 widely different values of L,/sg,, each
repeated 1,000 times. We thus obtained accurate aver-
age values for how n,, depends on L,/sq, which is plotted
in Fig. 6.

According to Eq. 6, the binding probability per hit
(p.) in a Monte Carlo simulation is proportional to L,.
The expression f,,, = (n,.,)(p, ) can then be rewritten as:

Freo = [(La/sq ) 1P o5 (11)

where p, is the Monte Carlo binding probability for the
special step length L, = sq,. Fig. 6 shows how f,, depends
on step length by plotting the combination (L,/sq,)n,,
against the ratio L,/sq,. The most important result in Fig.
6 is the fact that (L,/sq, )n,, (and therefore, from Eq. 11,
fiv/P o) approaches a constant value of ~0.14, when the
diffusion length is small (L, < 0.2sq,). For the molecu-
lar motion with L, . (i.e., 1 nm) the ratio L /sq, is indeed
small (~1/11), and, from Eq. 11, f,, is close to 0.14 p .
For the rate constant k, at the nmj, derived by us (Land
et al., 1980, 1981, 1984) p., is about 0.01 (see section II
B). Thus 0.14 p,, < 1 and the k_ values obtained by
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FIGURE6 The dashed curve gives the quantity n,, (left axis), the
“average number of returns” as defined in section III, and the solid
curve gives the combination (L,/sq,) X n,, (right axis) which is
proportional to f,, (Eq. 11). Both are plotted against the mean
diffusion length L, in units of sg,, the length of a “receptor tile.”

Monte Carlo methods (k_,,.) is essentially the same ag
that obtained by differential equations (k_,, ).

Fig. 6 also shows that (L,/sq,)n,, and thus the
corresponding value of f,,, further decreases as L, is
increased. Thus (1—f,,,) = k_,,/k_ye is close to unity
under all circumstances, and, no major error is intro-
duced in our Monte Carlo simulations, even when L is
chosen larger than sq,. Also, since all the dimensions
that we deal with in the neuromuscular junction, includ-
ing the average distance between AChR molecules, are
considerably larger than L, correlated events from
solvent cages do not interfere with the validity of the
Monte Carlo simulation for obtaining kinetic parame-
ters of ACh binding and diffusion.

IV. GEOMETRIC CONSIDERATIONS AND
ILLUSTRATIVE MODEL RUNS

A. Saturated disk model

To understand possible interpretations of geometric
effects on model MEPC’s, we should consider the
saturated disk model (Matthews-Bellinger and Salpeter,
1978; Salpeter and Land, 1980; Salpeter, 1987). In that
model two areas are defined. The first, a, is the
post-synaptic area containing the number of AChR
binding sites equal to the number (N) of ACh molecules
in a quantal packet (a, = N/o,, where o, is AChR binding
site density). The second, a., is the post-synaptic area
effectively activated by a single ACh quantum. As a
released quantal packet of ACh diffuses and spreads
over the post-synaptic membrane it binds AChR binding
sites, saturating a small post-synaptic disk area (Fig. 7, a
and b). However, not all the AChR molecules in area a,
are doubly bound or saturated by ACh. In effect only in a
central region of a, are most of the AChR’s doubly
bound, leaving a predominantly mono-liganded rim. As
a. approaches a, in size, the ratio of doubly to mono-
liganded AChR’s increases and more of a, becomes part
of the saturated disk. If we can consider only the doubly
liganded AChR’s as opening channels (but see section II
A), the efficiency of channel opening and thus the
amplitude of a MEPC depends on the ratio of doubly
liganded to mono-liganded AChR’s and thus a/(a. —a,).
This ratio in turn depends on the ratio of diffusion time,
a,/D, to the binding time (z,): the larger a,/Dt, is, the
greater is the efficiency.

When AChE is active in the nmj, ACh molecules are
hydrolyzed almost immediately after unbinding from
AChR. They rarely have a chance to rebind. Double
binding to the same AChR is even rarer. The fall time of
a MEPC in the presence of AChE, therefore, is approxi-
mately equal to 1/x ;. However, when AChE is inactive,
ACh can bind AChR, unbind, diffuse, and bind again
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FIGURE7 (4, b) A Monte Carlo simulated nmj with junctional folds (AChE inactive) 30 ps after release of 9,500 ACh molecules showing (a)
diffusing ACh (gray points) and (b) post-synaptic response of AChR (unliganded AChR’s are white, singly liganded AChR’s are gray, and doubly
liganded AChR’s are black). The axonal membrane and nonreceptive membrane of the bottom of the folds are invisible for illustrative purposes.

many times before diffusing out of the cleft by a process
called “buffered diffusion” (Katz and Miledi, 1973;
Cull-Candy et al., 1980; Land et al., 1984) which length-
ens the MEPC fall time. The a,/Dr, ratio affects the
extent of buffered diffusion and hence the fall time when

esterases are inactivated. The larger a /D¢, is, the longer
is the fall time. These considerations affect the interpre-
tations of events when more than one quantal packet is
released into the cleft and when folds are added to a
nmj.

Bartol et al. Monte Carlo Simulation of Miniature Endplate Currents 1301



B. MEPC potentiation

If two quantal packets are released simultaneously and
they are adjacent to one another each will activate an
area a, on the post-synaptic membrane. If two release
sites are close enough together these a, areas will
overlap and the probability of forming doubly liganded
AChR’s will increase. Since fewer ACh molecules are
then wasted on singly liganded AChR’s, potentiation is
expected (Hartzell et al., 1975) (see Fig. 8). We used our
Monte Carlo simulation with two quantal packets to
observe quantitatively the process of MEPC potentia-
tion (the results were compared with that obtained for a
single quantal packet). Two 50-nm spherical quantal
packets of 9500 ACh molecules each were released
simultaneously at varying distances from one another.
The simulated nmj used for these model runs contained
secondary folds as in the lizard nmj (~0.3 pm separa-
tion). The release site for each packet was always
centered over the mouth of a secondary fold. The
distances used were: 0 um (i.e., two quantal packets
released from same site) 0.57 pm, 1.14 pm, and = (i.e.,
equivalent to two independent quantal packets with no
potentiation). Thus in all these cases two packets are
summed. The simplified kinetic scheme was used with
the following parameters with and without AChE: ¢, =
8,200 pm™' (Salpeter et al., 1984), ¢, = 3,500 pm™" (M.
M. Salpeter, unpublished data), k_, = 3,600 s™' (Vigny et
al., 1978). The following values, k,, = 5.2 x 10'M"'s7/,

ki =k,=26x10M"s"" k,=4,120s"", x_ = 82457,
D = 6.5 x 10%m’"', and N = 9,500 ACh molecules,
were preliminary best fit data, and are within the error
ranges of values reported earlier (see Land et al., 1984).

Potentiation is quantified in Tables 1, a and b. When-
ever the post-synaptic areas a, overlapped, potentiation
could be seen, i.e., responses that exceeded those
produced by 2 nonoverlapping quanta (as with « separa-
tion). In the case of the peak current the results were as
expected (section IV A above). The greatest potentia-
tion was seen when the post-synaptic areas a, over-
lapped (as with 0 um separation) and decreased as the
distance between the released quanta increased. At
infinite distance the amplitude was exactly twice that
obtained from a single quantal release.

During the falling phase (z,) greatest potentiation was
seen, under our conditions when esterases were inacti-
vated, and thus when buffered diffusion could take
place. Under those conditions the surprising result
comes when the two post-synaptic disc areas are not
coincident but offset yet overlapping as in the 0.57 and
1.14 um separation giving a dumbell-shaped post-
synaptic response area. The fall time ¢, does not decrease
steadily with increasing separation between the release
sites, but remains prolonged as long as there is some
overlap (possibly with the maximum at 0.57 wm separa-
tion). The shape of the falling phase is also of interest
because one might expect a rapid amplitude decrease at

FIGURES Potentiated post-synaptic response for two quantal packets of ACh (N = 9,500 each) released 0.57 wm apart. For clarity, secondary
folds are absent. As in Fig. 6 black, gray, and white spheres represent doubly liganded, singly liganded, and unliganded AChR’s respectively. AChE
is inactive. Note that the overlap of the monoliganded rims (gray) of the two spreading saturated disks has lead to an increase in doubly liganded
AChR's (black) in the region immediately between the disks giving a dumbell-shaped doubly liganded area.
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TABLE1 MEPC potentiation by simultaneous release of two
quantal packets

Release spacing Peak current t, t
(a) AChE active
wm nA us ms
0 143 = 0.1 722 1.41 = 0.03
0.57 122 +0.2 69 =3 1.39 = 0.02
1.14 11.3 = 0.2 62=x1 1.38 = 0.02
© 11.0 £ 0.2 61 =2 1.33 = 0.03

(b) AChE inactive

0 194 £ 0.2 107 £ 2 5.04 £0.1

0.57 17.1 0.2 103 =5 547 x0.2

1.14 153 £ 0.2 96 =5 5.08 0.2
© 14.8 = 0.04 93 +6 3.99 + 0.08

The results of releasing two quantal packets of ACh simultaneously at
varying distances from one another are shown for simulated MEPC’s
with (a) and without (b) AChE. Release site spacings were 0 um (i.e.
double quantal packet released from same site), 0.57 wm, 1.14 wm, and
w um (i.e. two independent packets whose amplitudes sum linearly
without potentiation).Muscles contained junctional folds with spacing
as in the lizard nmj and release sites were directly over the mouth of a
junctional fold. 7, is 20-80% rise time, and f; is e-fold fall time.

first for the larger separations, followed by a slower
decrease when the spreading packets overlap. An exam-
ple of such a “nonexponential kink” was reported by
Hartzell et al. (1975), but is not seen in our simulations:
in Fig. 9 the two-quanta MEPC’s for three different
separations are superposed after normalizing to allow
comparison of the shapes. Each of the three curves
shows an almost pure exponential falling phase.

0.4

03

0.2

Normalized Amplitude

0.1

0 1.0 20 3.0 40 50 6.0
Normalized Time

FIGUREY Shape of MEPC’s for three conditions of potentiation
(1.14 wm [=], 0.57 pm [sw], and % [w<] spacing) normalized in
amplitude and fall time to the 1.14 pm spacing case (AChE inactive).
The plot illustrates that the normalized shape of three MEPC’s is
identical and has not been influenced by potentiation.

C. Effects of junctional folds

Different neuromuscular junctions have different
amounts of junctional folds varying in depth and spacing
(for review see Salpeter, 1987). In the nmj of frog
cutaneous pectoris muscle folds are ~1 wm apart while
in that of intercostal muscle of lizard they are ~0.3 pm
apart (Matthews-Bellinger and Salpeter, 1978; Salpeter
et al., 1984). In addition, in the frog there is a proximo-
distal gradient of post-junctional fold spacing and fold
length (in y-axis across the primary cleft) (Tremblay et
al., 1989). Synapses of the central nervous system con-
tain no secondary folds. The effect of these geometric
differences on synaptic kinetics is unknown. We applied
our Monte Carlo model (Fig. 10, a and b) to study the
effect of secondary folds on MEPC generation. We
initially used three conditions: (a) no folds, (b) folds as
in the lizard twitch fibers with ~0.3 pm spacing and 0.8
pm depth (AChR down to 0.25 pm), and (c) folds as in
the frog twitch fibers with ~1 pm spacing and 0.5 pm
depth (AChR down to 0.25 wm). In our initial tests we
set the exit half-lengths at X, = Y, = 1.6 pm and the
primary cleft height, Z, to 50 nm. Using these geometric
parameters meant that case b above had nine folds
spread in the primary cleft, but case ¢ had only three
folds. The folds were arranged parallel to one another at
right angles to the long axis of the muscle. In all cases,
the same kinetic input parameters for the simplified
scheme of Eq. 2 were used as given in section 1V B. The
packet was released in the primary cleft over the center
of a junctional fold (if folds were present).

Tables 2, a and b, give the results for peak current
(4,), rise time (z,), and fall time (¢, for the three cases
with and without AChE. We see that both ¢, and A4,
decrease as more secondary folds are added. This effect
of the folds could be understood as follows: wherever a
fold is present, some of the ACh molecules are removed
from the primary cleft into the secondary cleft. In effect
this functions as if there were two or more smaller
quantal packets acting on adjacent, overlapping areas
(primary cleft plus one, two, or three folds) (see Fig. 7, a
and b, and Fig. 10). As can be seen from the discussion
in section IV A above, during the rising phase, the
quantal packet has to diffuse far enough to encounter
and bind to free AChR binding sites. As the quantal
packet is divided between the primary and secondary
clefts a, also decreases and, since efficiency decreases as
a,/Dt,, so does the amplitude. This effect is accentuated
by the additional circumstance that the AChR site
density is twice as large in the secondary folds (both
surfaces are covered), so that the area (a,) and thus
diffusion time is even smaller. A smaller a, also means
there is a lower probability of overlap between saturated
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FIGURE 10 (a,b) Post-synaptic response in the absence (a) and presence (b) of junctional folds (AChE inactive). As in Fig. 7, doubly liganded,
singly liganded, and unliganded AChR’s are represented by black, gray, and white spheres respectively. At time ¢ = 0, 9,500 ACh molecules were re-
leased from a single quantal packet in both a and b. With folds present (b), the diffusing ACh packet is divided between the primary and secondary clefts
and efficiency of binding to AChR is reduced (see section IV C). Note the much larger doubly liganded (black) region in a as compared with b.

disks resulting from the release of multiple quanta (as  less potentiation of the current amplitude (see section
would occur during an endplate current [EPC] causedby IV B) and a more linear response to multiple quanta.

nerve stimulation). Values for quantal content range We can make some rough estimates for the currents
from 50-300 (Salpeter, 1987). Thus a smaller a, leadsto ~ produced in a full EPC, i.e., after the simultaneous
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TABLE 2 Effect of varying secondary fold spacing on MEPC
wave form

Fold spacing Fold depth  Peak current t, t;
(a) AChE active
wm wm nA us ms
No folds 0 7.36 = 0.09 87 £3 143 x0.02
1.0 0.5 6.29 = 0.1 733 1.45=x0.09
0.29 0.8 548 £ 0.1 612 133x0.03
(b) AChE inactive
No folds 0 998 £0.15 1204 3.99 =0.09
1.0 0.5 927017 1215 426=0.12
0.29 0.8 7.38 = 0.04 936 3.99+0.08

The results for three different fold spacings are shown: no folds; 1.0
wm spacing (as in the frog); and 0.29 pm (as in the lizard). Results are
shown for MEPC’s simulated with AChE active (a) and AChE inactive
(b). t,is 20-80% rise time, and ¢, is e-fold fall time.

release of 50-300 quantal packets of ACh. If the release
sites were randomly distributed over the entire endplate,
the average separation between adjacent release sites
would be larger than 2 um. However, with fold geometry
roughly as in the lizard nmj and with AChE active, Table
1 a shows that potentiation is unimportant when the
separation of adjacent release sites exceeds 0.6 pm.
Therefore, a linear response (absence of potentiation)
should hold for quantal contents appreciably larger than
the usual 50-300 even if there were no folds, but would
extend to an even greater number of quanta if there
were folds. Given the geometry and size of the nmj
(Matthews-Bellinger and Salpeter, 1978) and reported
quantal contents, we conclude that the effect of the folds
on the linearity of a full EPC is relatively unimportant. It
seems likely that the folds primarily have a different
function, as for example in facilitating the replenish-
ment of Na* ions.

The effect of secondary folds on the fall time is
puzzling however. With AChE present, the falling phase
mainly represents unbinding (because little rebinding of
released ACh molecules occurs) (Anderson and Stevens,
1973), and folds should make no difference. However,
when AChE is inactivated, there is considerable rebind-
ing, followed by further binding (i.e., buffered diffusion).
Such buffered diffusion should go on for a shorter period
when folds are present because both N and a,/(a, — a, )
are smaller. Yet this is not the case and the fall time is
relatively unaffected. This result emphasizes that, as in
the case of the dumbell-shaped post-synaptic area dur-
ing potentiation, when complex geometries are involved,
the effective buffered diffusion is difficult to predict
analytically and needs the Monte Carlo method to
determine empirically.

In conclusion, the presence of folds decreases the
efficiency of ACh binding. This would result in lower

amplitude MEPC’s unless the kinetic parameters were
altered in such junctions to compensate for the lower
efficiency. Modeling kinetic parameters to fit experimen-
tally obtained MEPC’s for different species and junc-
tional geometry will be the subject of a subsequent paper.

D. Proximodistal gradient in
frog muscle

Robitaille et al. (1987) have observed a proximodistal
decrease in the amplitude of miniature endplate poten-
tial (MEPP) in the frog cutaneous pectoris muscle. This
gradient parallels a proximodistal gradient in post-
junctional geometry in which the spacing between folds
increases (i.e., fewer folds) and the side to side length of
the post-junctional fold (2Y,,, at right angles across the
cleft) decreases, (i.c., the junction gets narrower) (Trem-
blay et al., 1989). From the above argument (section IV
C) one would assume that increasing the junctional
fold-to-fold spacing should increase MEPC amplitude.
However, the shorter width of the folds (2Y,,) across the
primary cleft shortens the distance before ACh mole-
cules diffuse out of the cleft. We have used the Monte
Carlo simulation with the following geometric parame-
ters as given by Tremblay et al. (1989): junctional fold
width (2Y,,), 3.0 wm proximal, and 1.5 wm distal, and
junctional fold spacing, 0.5 um proximal, and 1.0 pm
distal. We found that even with AChE intact, MEPC
amplitude (4,) and fall time (¢;) were slightly lower
(~10%) in the distal segment (see Tables 3,4 and b). In
the absence of AChE, MEPC amplitudes were ~1.3
times lower and ¢, was ~ 2.8 times shorter in the distal
compared with the proximal segment. Our results are
consistent with those seen by Tremblay et al. (1989) in
which peak miniature end plate potential (MEPP)
amplitudes were ~3 to 5 times lower distally. (The
MEPP amplitude is expected to be roughly the MEPC
amplitude times ¢, neglecting the effect of the membrane
time constant). We, however, differ from Tremblay et al.

TABLE3 Effect of proximodistal gradient in fold geometry on
MEPC wave form

Fold spacing  Fold length (2Y,,)  Peak current t t
(a) AChE active

wm wm nA us ms
0.5 (proximal) 3.0 6.18 71 1.46
1.0 (distal) 1.5 5.76 58 133

(b) AChE inactive

0.5 (proximal) 3.0 8.91 104 492
1.0 (distal) 15 6.90 74 1.73

Geometric parameters for proximal and distal nmj segments for frog
are as given by Tremblay et al. (1989). Results are shown for Monte
Carlo-simulated MEPC’s with AChE active (¢) and AChE inactive (b).
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(1989) in the interpretation of the results. Whereas
Tremblay et al. argue that increased fold spacing in the
distal segment explains the decreased MEPP amplitude,
we find (section IV C) that increased fold spacing
increases MEPC amplitude. Therefore, the much shorter

. in the distal segment is the major factor determining
the decreased 4, and ¢,.

V. ALGORITHMS FOR SIMPLE VS. FULL
KINETIC SCHEMES

The simplified kinetic scheme previously described in
Eq. 2 (section II A) simulates the 4,R* state of the
receptor complex without explicitly putting in the kinet-
ics of the isomerization step as discussed in section II.
This simplified equation is based on the assumption that
the rise time (z,) is short relative to the fall time (¢;) and
that the channel opening rate (B) is fast relative to
diffusion (D) and binding (k. ). A correction to Eq. 1 can
compensate for the extent to which these conditions are
not fully met (Bartol et al., 1990). However, our Monte
Carlo simulation makes it simple to explicitly add an
isomerization step so that the full kinetic scheme of Eq.
1 may be implemented. We carried out some Monte
Carlo simulations both with the full and with the
simplified scheme to compare computing costs and
numerical accuracy.

The two computing schemes are identical, except
when AChR molecules become doubly bound. For such
AChR molecules the full scheme involves an extra
choice of a random number to give the probability of
whether a channel will open or not. The increase in
computing time from the simplified to the full scheme
was <10%. This small change in computing costs may
seem surprising, but is due to two facts: (@) there are
relatively few doubly bound AChR complexes compared
with freely diffusing AChR molecules. (b) For the
diffusion routine three random numbers are required
(the three spatial dimensions) for each ACh molecule
followed by a test for whether and where each molecule
crossed a membrane (see section II B), whereas for the
isomerization routine only one random number is needed
for each of the doubly liganded AChR molecules.

With the full scheme the Monte Carlo simulation of
the instantaneous channel current showed more high
frequency noise (or flicker) due to channel openings and
closings (see Fig. 11). The amplitude of the noise
increased as the ratio of a to B approached 1.0 where
channel flicker is maximum. This is the expected result
from the formula for statistical variance as p(1 — p),
which is maximum atp = 0.5 (i.e., when a = B). Channel
flicker is a phenomenon which is expected to occur with
a real MEPC in the nmj and is simulated by the Monte

¢ x Binding Efficiency

S T T T T T

T T
0 1.0 20 3.0 4.0 5.0 6.0

Time (ms)
FIGURE 11 Two single MEPC’s derived from the full kinetic scheme

(Eq. 1) (black) and the simplified kinetic scheme (Eq. 2) (gray) (AChE
inactive). Note that the shapes are similar but that the more realistic
full scheme reveals the noise due to multiple channel openings and
closings.

Carlo algorithm. Fortunately there are many isomeriza-
tion steps per rise time and the noise has little affect on
the numerical accuracy of the main quantities to be
computed. We repeated the same computations a num-
ber of times, using different random number seeds, and
found that the standard deviations for the peak ampli-
tude, rise time, and fall time was ~ 5% each, both for the
full and the simplified schemes. We found that for
conditions expected to prevail at the nmj, and using the
kinetic parameters as given in section IV B, results
obtained from the simplified and full equation were
compatible. Because the simplified scheme is only ap-
proximate, and because the increased cost for the full
scheme is minimal, the full scheme is preferable when-
ever Monte Carlo simulation is used. A detailed analysis
on when and under what circumstances the results from
the two kinetic schemes diverged will be given in a
subsequent paper as will the analysis of complex schemes
such as singly liganded openings, a third ACh binding
site, and nonequivalent binding kinetics (see section
I1A).
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