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I I d . I ‘ / Results Figure 6. Spatial extent of glutamate spillover . Starting with zero initial background glutamate  Figure 8. Glutamate release at the test synapse . Synapse 4 in Figure 2 was arbitrarily chosen as
. IltI'O UCthn - o . concentration, vesicles were released one at a time from the cleft center of each of the four synapses  the measurement synapse with active AMPA and NMDA receptors. To establish a baseline
The goal of this project is to construct a simplified realistic 3D model of the hippocampal neuropil and use it in a Elgure 5b Il)lstrlbutgon ;’f Al\g’? and NMDAtStitiS at St’iﬁd()y;tate.b T1}<le dlStf(;bultl(;n oftreceptor ita’f{es se;n Hi)ﬂ;fi ir} the motif shown in Figure 2. Moti.f asymmetry causes variation in mean radi:al diffusio.n response, vesicular release at synapse 4 was simulated with Ves.icles of size 3000 and 5000 with 100
Monte Carlo computer simulation of synaptic neurotransmitter release to characterize the effect of biophysical lgures below are based on measurements taken with 0.5 pM background glutama € concentration. ror bo displacement of glutamate f.rom.the Pomt .of release among the four synapses following synaptic Hz burs:ts of 1,3, and 6 re.leases. Th.e time course of receptors in the open state are Plotted below.
parameters of hippocampal neuropil on glutamate spillover. This parameter space will have three dimensions and AMPA "fmd NMDA, CO0 represented the unbound state and O the open state. Receptor kinetic models are shown release. The minimum radial diffusion distance of ~0.21 um reflects the absence of glutamate The excitatory postsynaptic current in the last figure below was calculated by assuming a constant
will be explored as follows: below right. o - . o o or o transporters inside the synapse. The mean radial diffusion distance varied across the four synapses = membrane voltage of -70 mV, and single channel conductance values of 10 pS for AMPARs and 45
15 - 180 - 180 - 35 - 180 - 200 - 200 - but was approximately the same for the two vesicle sizes. Because the spillover is largely contained  pS for NMDAREs.
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Specific Aim #1: determine how quantal size affects spillover by simulating synaptic release of 3000 and 5000 within a 4 pm diameter region, a 5 pm cubic model is justified. 3000 5000
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Figure 1. Neuropil model as motif array. A three = 0 0 0 0 g
dimensional model with tortuosity of 1.4 has been I Q -
constructed in MCell. A cubic volume of neuropil 5 pm on a 3 0.25 0.25 - 0.25 - 0.25 - g 10 - 10 -
side is built by assembling 125 one pm cubic motifs in a 5 x © " ' ' "
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Figure 3 were performed using MCell with a time step of ' ' ' S ,
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Figure 2. Motif design and synapse detail. Each motif contains 4 independent synapses surrounded by glial o ..:n.:g-!t___ c1 Lilu Co = g T o 062 082 0.76 0.96 5000
processes. Thus, the model contains 500 synapses total. The gap between synapses is 20 nm narrowing to 10 nm at < ga g - & GEJ mean 058 081 075 095 Vesicle size: 3000
edges. Each postsynaptic density (PSD) contains 80 AMPARs and 20 NMDARs. Glial surfaces contain glutamate S 1 o - i % ' ' ' '
transporters with a surface density of 1600 per ym”. < o o - E_ | 268 3.01 332 3.29
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M O.I.”: ex ‘ O d e d Vi ew Figure 3. Synaptic release of glutamate. Simultaneous release of one vesicle (4000 molecules) from each of four ' ' : '
p synapses in a motif demonstrates spillover into the extrasynaptic space. Surrounding motifs are hidden from view. . . . . .
Glutamate transporters were included in this simulation. Figure 7. Half-life of glutamate. With 0.5 pM background glutamate concentration vesicles
All gaps 20nm except where noted. containing 3000 or 5000 glutamate molecules were released singly from each of four synapses in
motif. The average half-life was 666 psec for 5000 glutamate and 591 psec for 3000 glutamate. Results
for zero initial glutamate concentration were comparable. Legend indicates release synapse as
defined in Figure 2. On a semi-log plot the profile has a dual exponential decay and exhibits virtually
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no dependence on which of the four synapses in the motif is chosen for release. Analytical calculation 0 0—
B of half-life assuming a well-mixed system predicts a half-life of 700 microseconds, independent of - ;
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