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Abstract Coral polyps contract when electrically stimu-

lated and a wave of contraction travels from the site of

stimulation at a constant speed. Models of coral nerve

networks were optimized to match one of three different

experimentally observed behaviors. To search for model

parameters that reproduce the experimental observations,

we applied genetic algorithms to increasingly more com-

plex models of a coral nerve net. In a first stage of

optimization, individual neurons responded with spikes to

multiple, but not single pulses of activation. In a second

stage, we used these neurons as the starting point for the

optimization of a two-dimensional nerve net. This strategy

yielded a network with parameters that reproduced the

experimentally observed spread of excitation.

Keywords Genetic algorithm (GA) � Neuron �
Network � Coral

Introduction

Corals, members of the phylum coelenterata, are the sim-

plest organisms with a nervous system. Depending on the

symmetry of their body plans, hexacorals (class Anthozoa,

subclass Zoantharia, order Scleratinia, including the reef-

building species) and octocorals (class Anthozoa, subclass

Alcyonaria, order Alcyonacea), are distinguished (Veron

2000; Fabricius and Alderslade 2001). What all of these

species have in common is a structure composed of mul-

tiple polyps embedded in a common body. Each polyp

consists of a tube with tentacles at its upper margin, which

it uses to catch plankton. The individual polyps are similar

to sea anemones (class Anthozoa, subclass Zoantharia,

order Actiniaria, Fig. 1a), to which corals are related. The

body tube consists of endodermal tissue on the inside and

ectodermal tissue on the outside. These organisms, in

contrast to all higher metazoans, lack a mesoderm. A cell-

free substance, the mesogloea, is located between the endo-

and ectoderm. The mouth of coral polyps is both the entry

and exit point into their intestine. Many species of corals

contain such actively feeding polyps, called autozoids and

non-feeding, supporting polyps, called siphonozoids. In

addition to feeding on plankton, many corals harbor photo-

synthetic symbionts, the zooxanthellae. Despite their

otherwise rather simple Bauplan, the ectoderm already

contains a network of nerve cells (neurons), which are

relatively unspecialized when compared to the neurons of

higher animals (Bullock and Horridge 1965). After the

initial settlement of a larva, a single organism contains

anywhere between a single polyp to hundred of thousands
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(Acropora) of polyps. The nervous system is continuous

between the individual polyps, and Horridge (1957) and we

have observed the spread of activity across many polyps in

response to repetitive electrical stimulation. The response

of coral colonies was varied between species of corals. In

Palythoa (Fig. 1b), the diameter of the area of contracted

polyps increased in a linear fashion. The pattern we fit our

model to was the average response and we omitted the

variation from this study. This is related to, but distinct of

the study by Horridge, where a sublinear, linear or supra-

linear spread of excitation as a function of stimuli, not

time, was observed.

One of us (THB) has worked for over 40 years to model

the spread of contractions in a coral nerve net. The long

process of finding an appropriate set of parameters pro-

ceeded by trial and error. This process was greatly speeded

up using a genetic algorithm (GA), an optimization pro-

cedure that is analogous to the selection for fitness that

occurs during biological evolution (Mitchell 1998). The

model of a coral nerve net was optimized to match

experimental observations of corals that were electrically

perturbed. There are three levels of complexity that can be

distinguished and are biologically motivated: the individual

neuron, the single polyp containing many neurons, and the

colonial organism containing many polyps. We sequen-

tially optimized models of the first two of these three

levels. We omitted an explicit simulation of the polyp

structure within the colony level and collapsed the com-

plete coral nervous net into one layer of neurons. The

polyps are implicitly modeled by the layer of neurons

within the structure closest in proximity to the intercon-

nective tissue between polyps. A model based on

individual neural elements as opposed to a mean-field

model was chosen as it more realistically models the

structure of the nervous system.

In GAs, first a population of candidate solutions (in our

case coral nerve net models) is constructed from a popu-

lation of parameter sets. Then an alternation of rounds of

selection and the introduction of variation mimic the nat-

ural selection process, which leads to the successively

better adaptation of natural organisms to their environment.

It is important to point out that although GAs mimic the

algorithmic structure of biological evolution, they are not

meant as a model of evolution, but merely as an optimi-

zation strategy.1 In this paper, we improve the basic genetic

algorithm concept by mimicking another feature of bio-

logical evolution, its modularity. We do this by first

Fig. 1 Structure of a polyp and

observed patterns of the spread

of excitation across polyps.

a Schematic drawing overlayed

onto photograph of a polyp.

b Spread of polypal contraction

activity at the indicated times in

a Xenid soft coral collected in

the Sea of Cortez. The polyps

are stimulated with consecutive

pulses through a suction

electrode and neighboring

polyps contract in a radially

expanding pattern at a rate of

approximately 1 polyp/s

1 In the same sense, the terminology used here, such as ‘‘genome’’ for

the parameters to be optimized and ‘‘generation’’ for a round of

optimization do not reflect a claims about modeling biological

evolution but merely follow GA terminology.
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optimizing the parameters of the individual neuron models

that compose the nerve net. In a second step, we use these

values as starting points and additionally optimized the

parameters of the connections between neurons. In this

manner, we obtained the parameter values of a model of a

coral nerve net reproducing the experimentally observed

spread of excitation.

Methods

Coral nerve net model

We modeled the nervous system of a coral as a homoge-

nous network of connected single-compartment neurons.

Each neuron contained the classical fast Na+, delayed

rectifier K+ and leak Hodgkin–Huxley ion channels

(Hodgkin and Huxley 1952). We chose the Hodgkin–

Huxley model of neural excitability as it represents a well-

characterized description of neural spiking, and although

the precise parameter values are likely to be different, we

assume that spiking in corals is equally mediated by

depolarization-activated de- and hyperpolarizing channels.

Unfortunately, there are no intracellular voltage recordings

of coral neurons extant. This did not allow us to model the

electrical behavior of coral neurons with kinetical para-

meters specific to these organisms. We also lack specific

information on the details of synaptic transmission in

coelenterates, so we used a generic chemical model of an

excitatory synapse in our model. By generic model we

mean that we do not make any assumptions about the

nature of the involved neurotransmitters and receptors.

Rather, we assume chemical transmission with an exci-

tatory reversal potential at the postsynaptic side. The

experimental electrical stimulation was simulated as syn-

aptic potentials in the neurons.

The network is an extension of the model of a coral

nerve net simulated in Josephson et al. (1961) and is ori-

ented in a two-dimensional grid with Hodgkin–Huxley

neurons positioned at a uniform distance from all nearest

neighbors. Neurons are bi-directionally connected to their

eight nearest neighbors in the horizontal, vertical, and

diagonal directions of the grid. A refractory period is

applied to each neuron following an action potential to

prevent reverberatory activity.

Genetic algorithm

The GA was used to optimize the parameters of first the

model neurons, then the model nerve net so that the models

performed the desired behaviors. During the single-cell

simulations, a single EPSP was elicited in the neuron. This

was followed by a second simulation where it was stimu-

lated by three consecutive impulses 2 ms apart. The single

cells were optimized to spike in response to repeated

stimulation, but not a single stimulus. During the network

simulations, a single neuron in the center of the network

was stimulated by either one or three consecutive impulses

2 ms apart. The networks were optimized for a propagation

of the edge of activation linear in time in response to the

triple stimulation.

The parameters specifying the models were contained in

a list of parameters called ‘‘genomes’’ in the GA literature.

A genome for a neuron contained three parameters: maxi-

mum sodium and potassium conductances, and leakage

reversal potential.

Only the conductance densities and not the kinetic

parameters were varied in order to keep the search-space

low dimensional. For the network, it additionally contained

parameters for the connection delay and the connection

weight. Cell body dimensions, stimulus strength, and

duration, and the interval between consecutive stimuli were

held constant.

There were 32 models in the population, each with a

different set of parameters. After each round of simula-

tions, the performance of each model network was

evaluated and assigned a fitness value. The networks were

then ranked according to their fitness values. The next

generation of models was drawn from the top scoring 70%

of the population, eliminating the possibility of selection

from the lowest ranking 30% of the population. The

selection probability of a genome was scaled according to

the ranking of its fitness value, so that the networks with

the highest fitness were the most likely to survive in the

next generation. The three best scoring network genomes

were carried over to the subsequent generation without

alteration, a process called elitism. This process was used

to avoid the loss of favorable genes through the stochastic

selection process.

Two sources of variability were used to alter the geno-

mes: mutation and recombination. During mutation, a

small random number was added to each parameter with a

mutation probability of 89%, and individual parameters

from two different genomes were swapped representing the

same network parameter with a crossover probability of

45%. We first optimized the parameters of individual

neurons to respond to the single perturbation with no action

potentials fired, but to fire once in response to the multiple

perturbations. Neurons were also selected to have a resting

voltage of close to -60 mV.

The single neuron fitness function was:

f ¼ 200xþ 5j1� yj þ j � 60� v0j=2þ jv0 � v1j=2; ð1Þ

where x is the number of action potentials fired following

the single perturbation, y is the number of action potentials
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fired following the multiple perturbations, v0 is the resting

voltage (before perturbation), and v1 is the voltage 370 ms

after perturbation.

The GA procedure was repeated to optimize the five

parameters: maximum sodium and potassium conduc-

tances, leakage reversal potential, connection weight, and

delay multiplier. All parameters were the same for all

neurons in the network. Default Hodgkin–Huxley para-

meters were used as initial values for the conductance and

leakage reversal potential parameters and the connection

weight, and delay multiplier were also assigned initial

values. The fitness function selected for a radial spread of

firing throughout the network with a constant velocity. In

addition, the fitness function required no action potentials

in response to the first perturbation and a single action

potential in response to the second perturbation from all

neurons in the network. A resting voltage of approximately

-65 mV was also required with a smaller contribution to

the fitness value than the firing behavior.

The network fitness function thus was:

f ¼ j � 65� v0j þ R
i
ð5xiiþ 10jyi � 1j þ jtavg � tijÞ

þ zðx; yÞ; ð2Þ

where xi is the average number of action potentials fired by

the ith order neighbors following the single perturbation, yi

is the average number of action potentials fired by ith order

neighbors following the multiple perturbations, ti is the

average time elapsed from first spike from ith to (i+1)th

order neighbors, tavg is the average time elapsed between

first spikes of adjacent neighbors, v0 is the resting voltage,

and z is the additional cost for having too few or too many

action potentials fired.

All simulations and optimizations were carried out in the

neuronal simulation language NEURON (version 5.7,

Hines and Carnevale 1997). A single generation of the GA,

an iteration of the optimization routine, which includes the

construction of 32 networks, electrophysiological simula-

tions (200 and *4,000 ms) and selection, mutation, and

recombination of genes, required approximately 1.5 min

on four parallel Opteron AMD 2.4 GHz processors. The

simulation code is available upon request and will be

submitted to the Yale Sense Lab Model Database

(http://senselab.med.yale.edu/modeldb/).

All experiments comply with the ‘‘Principles of animal

care’’, publication No. 86-23, revised 1985 of the National

Institute of Health, and also with the current laws of the

country in which the experiments were performed (Table 1).

Results

The patterns we aimed to replicate were observed by

T.H.B. in Palythoa in the Sea of Cortez, Mexico and in the

Enewetok Atoll in the Republic of the Marshall Islands

(then a UN trusteeship of the USA). Screenshots from

video footage of the observed propagation patterns in

response to repetitive electrical stimulation are shown in

Fig. 1b.

In a first step to achieve this goal, we optimized single

neurons so that they would respond with a spike to three

but not to one stimulation pulse. The reasoning behind this

step is that a network, which responds to repetitive stim-

ulation in an interesting manner, is most likely composed

of subunits, which perform some kind of integration.

The single neuron parameters were found after 43 gene-

rations and were shown in Table 2

A single perturbation caused a small subthreshold

increase in voltage, while two or more perturbations caused

a single firing in the single neuron, from the resting

potential of -65 mV (Fig. 2).

As a second step, we took these parameters as a starting

value and optimized for a linear spread of excitation. The

network parameters for this behavior were found after 13

generations and were shown in Table 3

The first perturbation caused a small subthreshold

increase in the voltage of the center (perturbed) neuron and

two or more perturbations caused a single firing from all

neurons in the network. Firing was simultaneous in neurons

equidistant from the center neuron and spread radially

with an approximately constant velocity of 1 neuron/s

(Fig. 3). We initially assumed that -60 mV was a rea-

sonable resting potential for the parameter search. After the

Table 1 Model parameters
Parameter Description Units Single neuron

initial value

Network initial

value

gnabar_hh Maximum sodium channel conductance S/cm2 0.12 0.161203

gkbar_hh Maximum potassium channel conductance S/cm2 0.036 0.036

el_hh Leakage reversal potential mV -54.3 -54.3

Delay multiplier Multiplier which scales delay

in conduction of excitation

between neurons

100

Connection weight Weight of connection between neurons 0.1
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single neuron optimization, we found that the Hodgkin–

Huxley neurons in the NEURON program environment

favor a resting potential of -65 mV for a range of maxi-

mum sodium conductances (approximately 0.09–0.17 S/

cm2) while the maximum potassium conductance is held

constant at the default value. The network fitness function

favored -65 mV as the ideal resting potential rather than

-60 mV in the single neuron fitness function; however, the

difference in fitness punishment between these two selec-

ted resting potentials is marginal.

Discussion

The model coral nerve network with the parameters found

by optimizing first the single neuron, then the single neuron

and network parameters, reproduced experimentally

observed behavior. In response to repetitive stimulation,

the diameter of the activity increased in a linear manner, as

experimentally observed in Palythoa (Fig. 1b).

Table 2 Optimized neuron parameters

gnabar_hh (S/cm2) 0.161203

gkbar_hh (S/cm2) 0.036

el_hh (mV) -54.3

Fig. 2 Single neuron model simulations. Membrane potential traces

in response to a a single stimulation and b to three stimuli

Table 3 Optimized network parameters

Delay multiplier 200.598

Connection weight 2.04033

Fig. 3 Network model simulations. Spread of excitation in an 11911

array of polyps in response to triple stimulation of the center neuron.

Time since the stimulation is shown to the left of each array. Excited

neurons in yellow and inactive neurons in violet
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GAs were previously been used for optimizing only

single-cell parameters (Stiefel and Sejnowski 2007; Achard

and De Schutter 2006). We have successfully extended this

approach to optimize the parameters of a model coral

neural net. This successful optimization shows that the

behavioral output of an animal’s complete nervous system

can be modeled with a few assumptions and that all

parameters of such a model can be found within reasonable

computing time. The relatively simple structure of the

coelenterate nervous system makes this possible for the

linear radial spread of firing behavior.

The optimized network tended to exhibit a radial spread

of excitation with constant velocity for a variety of con-

nection weight and delay parameters. Holding the

conductance and delay parameters constant and decreasing

the connection weight resulted in a marginal decrease in

velocity of spread between only the stimulated neuron and

the first order neighbors on the order of a few milliseconds.

The velocity of spread between successive neighbors was

not affected. Systematically varying the delay parameter

while holding the conductance parameters constant showed

that the velocity of spread remained constant, but was

linearly related to the magnitude of the delay parameter for

a variety of connection weights. These results suggest that

the radial spread of firing with constant velocity is robust

and preserved for a variety of connection weights and delay

parameters. Optimizing for a radial spread of firing with

acceleration of velocity is a future direction of this work.

In the future, we will include additional biological detail

in the simulations of coral nervous systems, such as the

separation of the network into polyps and interpolypoidal

neurons. We will also aim to delimit the parts of the

parameter space giving rise to all three observed modes of

the spread of excitation.

We hope that more empirical details of the physiology

of coral nervous systems will emerge in the near future and

that these data will shed more light and allow more bio-

logically realistic modeling of these fascinating animals at

the base of the metazoan phylogenetic tree.

Theodore H. Bullock: personal reflections

This collaboration with Ted Bullock grew out of a long-

term interest that he had in modeling the nervous networks

of coral. We have old movies of him out in the Marshall

Islands stimulating corals with a Grass stimulator. His early

programming efforts were in FORTRAN and with other

colleagues he had developed a simulation environment that

allowed him to explore the behavior of models with dif-

ferent parameters for the neurons and networks. His

notebook was filled with attempts to search for a combi-

nation of parameters that would match his behavioral data.

In an earlier collaboration with Ted, we had developed a

computational model of the pacemaker nucleus of electric

fish (Moortgat et al. 2000), another field that he pioneered.

We teamed up with Ted again in 2005 for this project,

applying genetic algorithms to the problem of how waves

of activity travel in coral using a technique that allowed the

search to be carried out rapidly and automatically. We had

used this technique before to explore the complexity of

single neurons and this was our first foray into the com-

plexity of networks. We learned from Ted a great deal

about corals and he inspired us to learn more from the

literature. He shared with us stories about his coral expe-

ditions and regaled us with other stories behind the many

artifacts in his office, from dolphin and bull shark brains to

Amazonian natives’ bows and arrows. One of us (KS) has

since moved to Okinawa and through Ted’s influence has

become a computational coral neuroscientist. Ted’s per-

sonality and scientific achievements have inspired

generations of neuroscientists to take up their life’s work.
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