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The brain contains an astonishing diversity of neurons, each express-
ingonlyone setof ionchannelsoutof thebillionsofpotential channel
combinations. Simple organizing principles are required for us to
make sense of this abundance of possibilities and wealth of related
data. We suggest that energy minimization subject to functional
constraints may be one such unifying principle. We compared the
energy needed to produce action potentials singly and in trains for
a wide range of channel densities and kinetic parameters and ex-
amined which combinations of parameters maximized spiking func-
tion while minimizing energetic cost. We confirmed these results for
sodium channels using a dynamic current clamp in neocortical fast
spiking interneurons.Wefind further evidence supporting this hypo-
thesis in a wide range of other neurons from several species and
conclude that the ion channels in these neurons minimize energy
expenditure in their normal range of spiking.
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The mammalian genome contains genes encoding hundreds of
types of ion channels, most of which can be produced in mul-

tiple splice variants and regulated at multiple phosphorylation
sites by numerous intrinsic and extrinsic factors (1–4). Which
combination of these ion channels will be expressed by any par-
ticular neuron, with any particular computational or behavioral
role? Because any given electrical phenotype can be produced by
many combinations of ion channels (5–8), on functional grounds
alone, this question is severely underconstrained. What other con-
straints might govern ion channel expression? And can exploring
these constraints help us understand how cells or circuits are
constructed?
Energy consumption may be one such constraint. The brain is

one of themost energetically demanding organs in the body (9, 10);
the human brain uses more than twice as much glucose per day as
the heart (10). Neuronal activity—action potential generation, in-
put integration, and synaptic transmission—accounts for 50–80%
of this energy use (11–14). Potential energy is stored in trans-
membrane ion gradients, which creates a cellular battery whose
maintenance accounts for most of the brain’s ATP consumption
(11, 13, 15, 16). Action potential generation taps into these gra-
dients and expends some of this potential energy, which needs to be
actively restored. How can this energy be most efficiently used to
generate activity or carry out computation?
This question has inspired a body of research on how to enco-

de a signal, or perform a computation, using as few action
potentials—and thus as little energy—as possible (17–24). Which
combinations of ion channels will minimize energy cost depends
both on the neuron’s function, such as its typical firing rate, as well
as on the detailed kinetics of the channels (25). Here, we combine
biophysical modeling with dynamic-clamp electrophysiology to
understand the constraints on the kinetics and density of the ion
channels underlying action potential generation. We find that ion
channel expression in various species, neural structures, and cell
types supports the hypothesis that they may be constrained to
minimize energy use, subject to functional requirements.

Basics of Action Potential Generation. TheHodgkin–Huxleymodel of
action potential generation uses fast voltage-gated sodium (Na+)
channels, delayed rectifier potassium (K+) channels, and voltage-
independent (“leak”)potassiumchannels.At rest (Figs. 1Aand2A-1),
the cell’s batteries are already charged—Na+ ions are more concen-
trated outside the cell than inside (Fig. 1, red ovals), whereas K+ ions
(Fig. 1, blue diamonds) are more concentrated inside the cell than
outside. The action potential is triggeredwhenmodest depolarization
(Fig. 2A-2) causes the sodium channels’ activation/deactivation gates
(“m” gates, Fig. 2B, light red) to enter the “open state” (Fig. 1B). This
increases the membrane’s permeability to Na+ ions (Fig. 1B; Fig. 2C,
red), permitting Na+ ions to passively flow down their concentration
gradient andenter the cell. This influxof positive charge (Fig. 2D, red)
depolarizes themembrane,bringing themembranepotentialup to the
Na+ ions’ reversal potential, ∼50 mV (Fig. 2A-3).
This strong depolarization triggers the potassium channel ac-

tivation/deactivation gates (“n” gates, Fig. 2B, blue) to open, in-
creasing the membrane’s permeability to K+ ions (Fig. 2C, blue),
which lets potassium exit the cell (Fig. 2D, blue). This efflux of
K+ ions competes with the influx of Na+ ions to control the
membrane potential; the net effect is to hyperpolarize the neuron
(Fig. 2A-4). At the same time, the sodium channels’ inactivation
gates (“h” gates, Fig. 1C; Fig. 2B, dark red) begin to block the
sodium channels, slowly reducing the membrane’s sodium per-
meability. Eventually, sufficient hyperpolarization causes the m
and n gates both to enter the deactivated state, (Fig. 2 A-5 and
B), bringing the membrane’s sodium and potassium permeabil-
ity back to baseline levels.
These changes in gate states, channel conductances, and cur-

rent flow were fueled by the energy stored in the cell’s Na+ and
K+ gradients: No ATP was expended during the generation of
the action potential itself. These gradients are now partly run
down and must be actively restored. The sodium-potassium
pump (Na+,K+ ATPase) is primarily responsible for this resto-
ration. It imports two K+ ions and extrudes three Na+ ions (Fig.
1D), at the cost of one ATP. There is thus a direct relationship
between the number of Na+ ions that enter the cell during action
potential generation and the energy cost of recovering from the
action potential.

Spike Cost and Spike Rate. The ionic currents underlying the action
potential are plotted in Fig. 2D Upper, and the cumulative Na+

influx is plotted in Fig. 2D Lower. Note that action potential re-
polarization (between times 3 and 5), not just depolarization
(between times 2 and 3), accounts for a substantial portion of this
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Na+ influx. Intuitively, this occurs because during depolarization,
sodium conductance far exceeds potassium conductance. So-
diumentry during depolarization is thus approximately limited to
what is required to charge the cell’s capacitance. But during re-
polarization, both sodium and potassium channels are open and
sodium enters the cell at the same time that potassium exits the
cell. These fluxes mostly cancel each other, so that only a small
part of the charge exchanged goes into changing the cell’s mem-
brane potential.
Second, note that the duration of this repolarization, and thus

the duration of the action potential itself, limits the rate at which

the neuron can spike. Partial sodium channel deinactivation is
required to replenish the pool of sodium channels available for
action potential generation, and this deinactivation can occur
only when the membrane is sufficiently hyperpolarized. Indeed,
narrowing the action potential by tripling the rate of potassium
channel activation (detailed in Fig. 2 E–H) does increase the rate
at which the model neuron is able to spike (Fig. 3A). However,
because sodium channel inactivation accumulates slowly, sodium
channels are less inactivated earlier in the action potential. If
potassium channels activate earlier, sodium and potassium con-
ductances will overlap more extensively (Fig. 2G). Earlier hyper-
polarization will therefore be opposed by a greater sodium cur-
rent flow, increasing the total Na+ influx during repolarization
and thus increasing the metabolic cost of the action potential
(Fig. 2H). These two factors thus imply a trade-off between the
energy cost of action potential generation, particularly repolari-
zation, and neurons’ functional capacity—their ability to spike
rapidly or their bandwidth.

Kinetics, Rates, and Costs. For the model shown in Fig. 3A, sys-
tematically speeding (curves and points on curves labeled “a” in
Fig. 3A) or slowing (curves and points on curves labeled “c” in Fig.
3A) the time constants of potassium channel activation speeds or
slows the maximum action potential rate. Both for single action
potentials (solid lines in Fig. 3A) and for action potentials gener-
ated in trains (50 Hz shown, dotted lines in Fig. 3A), faster K+

channels increase Na+ influx—and thus increase energy cost—and
slower K+ channels decrease Na+ influx and energy cost. In other
words, although fast-activating potassium channels do give cells the
ability to spike quickly, this increased bandwidth comes at a cost,
and this cost must be paid every time the neuron generates any
action potential. This result implies that neurons whose compu-
tational role does not require the ability to spike quickly need not
pay this cost to perform their function. We thus predict that nat-
urally slow-spiking neurons should not express fast-activating pot-
assium channels.
Are there other strategies that cells might adopt to achieve the

fast-spiking phenotype? And howmetabolically expensive are they?
This minimal model has two other gates, whose kinetics may be
varied. Faster sodium channel activation/deactivation (i.e., faster m
gates) somewhat increases the rate at which neurons can spike, with
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Fig. 1. (A) At rest, both sodium channels (light red) and K+ channels (light
blue) are closed, Na+ ions (red ovals) are concentrated extracellularly, and K+

ions (blue diamonds) are concentrated intracellularly. (B) Depolarization
causes Na+ channels to open, permitting Na+ ions to flow down their con-
centration gradients into the cell. This influx of positive charge depolarizes
the neuron. (C) This depolarization causes K+ channels to open, letting K+

leave the cell, hyperpolarizing the membrane potential; at the same time,
depolarization causes Na+ channel inactivation gates (dark red ball and
chain) to close, limiting Na+ influx. Eventually the hyperpolarization is suf-
ficient to close and deinactivate the Na+ channels and close the K+ channels,
restoring the channel states to baseline. (D) The Na+ influx and K+ efflux are
reversed by the Na+,K+ ATPase.
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Fig. 2. (A and E) Voltage waveforms. (B and F) Gate states. Light red, “m”

(Na+ channel activation) gate; dark red, “h” (Na+ channel inactivation) gate;
blue, “n” (K+ channel activation) gate. 1 = fully open, 0 = fully closed or
inactivated. (C and G) Na+ (red) and K+ (blue) conductances. (D and H)
(Upper) Na+ (red) and K+ (blue) currents; (Lower) cumulative Na+ current
influx. (Right) The traces from the broad action potential in A–D are overlaid
on the corresponding traces from a narrower action potential, generated by
tripling the rate of K+ channel activation/deactivation.
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Fig. 3. (A–C) (Top) Time constants as a functionofmembrane potential. Gate
kinetics were systematically speeded or slowed by multiplying the time con-
stants at all voltages by the same constant speed factor. (Middle) Maximum
spike rate as a function of speed factor. (Bottom) Cost (in ATP) for a single
action potential (solid line) or for an action potential in a 50-Hz train (dashed
line) as a function of speed factor. (D) Maximumnumber of spikes per 107 ATP
(z axis) as a function of n-gate speed factor (x axis) and h-gate speed factor
(y axis and surface color). (E) Na+ channel inactivation speed factor that
maximizes the spikes/cost, for spikes generated as efficiently as possible
(black) and for spikes generated in 25-, 50-, and 75-Hz trains (red, green, blue).
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almost no effect on metabolic cost (Fig. 3B). Intuitively, this occurs
because the total Na+ influx during the upstroke of the action po-
tential is nearly independent of sodium channel activation speed,
because during this period the sodium conductance depolarizes the
cell without significant opposition. The contribution of sodium
channel deactivation to Na+ influx during the action potential
downstroke is also relatively small—by the time that the cell has
hyperpolarized enough to cause m gates to reenter the closed
state (deactivation), the sodium current is sufficiently inactivated
(h gate) to keep the sodium current low, irrespective of how long
this transition takes.
Differences in sodium channel inactivation/deinactivation (i.e.,

faster h gate) kinetics also have little effect on the rate at which
neurons can spike, outside of the degenerate range in which in-
activation occurs too quickly for the neuron to support action
potential generation (Fig. 3C). However, faster sodium channel
inactivation limits the degree to which sodium and potassium
currents overlap during repolarization, limiting waste current;
slower inactivation increases this overlap, increasing waste. These
differences thus have an enormous effect on action potential cost.
This implies that to minimize metabolic cost (while preserving the
ability to spike quickly) sodium current inactivation must occur as
fast as possible, outside of the degenerate range. This relationship
between τn, τh, and metabolic efficiency (i.e., spikes per ATP) is
characterized in Fig. 3D. Note that optimum inactivation rate—
the point at which inactivation becomes too fast to sustain spike
generation—varies with potassium channel activation speed: If
potassium channels activate more slowly, the speed of sodium
channel inactivation must be reduced, so that sodium-mediated
depolarization still lasts long enough to activate the potassium
channels. Conversely, if potassium channels activate more rapidly,
then sodium channels must also inactivate rapidly to minimize
waste current. The sodium inactivation speed that minimizes cost
per spike is a linear function of potassium activation speed, both
when action potentials are generated as fast as possible and when
they are generated at a given rate (Fig. 3E). This is another pre-
diction of the model.

Densities, Rates, and Costs. Cells can also express different densities
of the same ion channels. Does changing channel density permit
rapidactionpotential generation, and, if so, atwhat cost? Increasing
potassium channel density, like speeding potassium channel kinet-
ics, increases the rateatwhich a cell can spikebynarrowing its action
potential, with a roughly proportional increase in the cost per action
potential (Fig. 4B).Conversely, increasing sodiumconductance also
increases the rate at which a cell can spike, but without narrowing
action potentials (Fig. 4C). Instead, increased sodium conductance
reduces the refractory period by decreasing the voltage threshold
for spike generation, allowing spikes to be generated even when a
smaller proportion of the total sodium conductance is available.
However, the combination ofwider action potentials with increased
sodium flow at each stage of the action potential makes this an
expensive strategy.
These relationships between metabolic cost, functional capa-

bilities, and channel kinetics and density allow us to make pre-
dictions about what biophysical strategies cells with different
firing properties will adopt, if their aim is to minimize metabolic
cost and meet their functional requirements. But these trade-offs
are derived from a greatly reduced model, whereas real neurons
are morphologically complicated and contain numerous, diverse
voltage-gated channels. It is therefore unclear to what extent we
should expect these relationships to hold in real neurons. Two
factors make this question difficult to address experimentally.
First, in real neurons, individual channel or gate kinetics cannot
be systematically varied, which makes parameter sweeps impos-
sible. Further, in any given neuron, one cannot simultaneously
measure the voltage response to a given current input and re-

verse engineer the contributions of different ionic currents to this
response, which complicates estimation of energy costs.

Rate and Costs in Real Neurons. Both problems can be resolved
using dynamic voltage clamping. In a dynamic clamp, a computer
is reciprocally connected to a neuron through an amplifier. At
each time step, the computer reads the cell’s membrane poten-
tial from the amplifier, calculates how much current would be
flowing through the simulated conductance at that membrane
potential, commands the amplifier to apply that amount of cur-
rent, and updates the state of the simulated conductance (Fig.
5A). We first blocked cells’ intrinsic voltage-gated sodium chan-
nels with tetrodotoxin (TTX) and then used a high-speed dy-
namic clamp to reinsert simulated sodium channels, modeled
using the same equations as in our parameter sweeps above (Fig.
5). Of all of the ion channels in a cell the sodium channel has the
fastest time constants, which requires a comparably fast dynam-
ic clamp.
After sodium channel replacement, cells could generate action

potential-like waveforms in response to depolarizing current steps.
The upsweeps of these waveforms were generated by the user-
defined, artificial sodium conductances—but the repolarization
was mediated by the cell’s own potassium channels, whose kinet-
ics, densities, positions, and diversity were unchanged. “Sodium”

influx was now measurable, simply by tracking the amount of
current injected by the dynamic clamp system over time. Because
the simulated sodium current had user-definable kinetics and
density, it was now possible to systematically alter the kinetics of
the underlying modeled gates and the density of the modeled
channels. This dynamic clamp enabled parameter sweeps over
sodium channel properties, in real neurons, similar to those per-
formed in the model. We were thus able to test how similar the
relationships between sodium channel properties, cellular func-
tion, and energy cost, observed in our simple model, were to the
relationships among these factors found in real neurons.
We found that both modeled and real neurons displayed quali-

tatively similar relationships between sodium channel properties,
bandwidth, and metabolic cost (Fig. 5C). Faster-activating sodium
channels moderately increased the rate at which cells could fire, with
little effect on action potential cost (Fig. 5C, i); faster-inactivating
sodium channels had little effect on the rate at which cells could
fire, but decreased spike cost (Fig. 5C, ii); and increased sodium

A

B C

Fig. 4. The default membrane Na+ and K+ channel densities (A) can be
changed by adding or removing K+ channels (B Top), or by adding or removing
Na+ channels (C Top). (B and C) (Middle) Maximum spike rate as a function of
channel density. (B and C) (Bottom) Cost (in ATP) for a single action potential
(solid line), or for an action potential in a 50-Hz train (dashed line), as a func-
tion of speed factor.
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current density increased the rate at which cells could fire, but
increased spike cost (Fig. 5C, iii).We thus conclude that the trade-
offs between kinetics, rates, and cost that we observed in themodel
are robust to variations in channel kinetics, voltage dependence,
and subcellular localization and are therefore likely to hold in real
neurons. We propose that if the energy cost of action potential
generation is a constraint on brain volume, coding strategy, or
computational capacity, then cellular ion channel expression will
be optimized not merely to achieve function, but also to achieve
function while minimizing metabolic cost; and that if this is the
case, then ion channel expression patterns will obey the trade-offs
predicted by our model and experiments.

Comparisons Across Cell Types, Structures, and Species. We found
two biophysical strategies, speeding potassium channel activation
and increasing the sodium conductance density, which could
strongly increase the rate at which neurons were able to fire. Both
strategies also increased the energy cost of action potential gen-
eration. But the two strategies were very different in their energy
efficiency: Doubling a cell’s maximum spike rate from 100 to 200
Hz by speeding potassium channel activation roughly doubles the
energy cost per spike, but doubling the rate by adding sodium
conductance multiplies the energy cost per spike by a factor of 20.
We therefore predict that cells with higher spike-rate require-
ments will fulfill these requirements by expressing faster potassium
channels and not by expressing more sodium channels. Further,
because faster potassium channels are expensive even in a cell that
spikes slowly, we predict that only cells whose operation requires
them to be able to spike quickly will express fast potassium chan-
nels. This is the principle of minimally acceptable bandwidth.
Many brain regions contain multiple cell types with different
in vivo spike rates, from which we can infer differences in their
functional or bandwidth requirements. Do faster-spiking neu-
rons achieve these spike rates through faster-activating potassium
channels or through greater expression of sodium channels?
In the cerebral cortex, parvalbumin-positive (Pv+) interneur-

ons are tonically active at comparatively high rates, whereas reg-
ular-spiking pyramidal neurons spike relatively infrequently and
irregularly (Fig. 6A). The faster spiking neurons display far nar-
rower action potentials—to the degree that Pv+ neurons are one
of only a few cell types identifiable in extracellular recording.
These action potentials are made narrow specifically by the ex-
pression of the fast-activating potassium channel Kv3.1/KCNC1.
A far greater proportion of Pv+ interneurons, compared with
pyramidal neurons, contain mRNA for KCNC1 (Fig. 6B, i) (26),
and KCNC1 RNA levels are 10-fold higher in Pv+ interneurons

than in regular spiking Thy1+ pyramidal neurons (Fig. 6B) (27).
These neurons do not adopt the dense-sodium strategy to permit
fast spiking: In vivo, maximal action potential upstroke velocities,
a proxy for available sodium current, are not significantly different
between fast- and regular-spiking cortical neurons (Fig. 6C) (28).
A similar pattern is found in a wide variety of neural structures. In
the hippocampus, neurons that spontaneously fire faster (29) have
narrower action potentials (30), mediated by faster-activating
potassium currents (31). Similarly, thinner-spiking neurons have
higher in vivo firing rates in both the striatum (32, 33) and the
amygdala (34–36). In the songbird high vocal center, thinner-
spiking neurons have faster spiking rates in vivo (37). In the lateral
parabrachial nucleus, central lateral neurons, compared with ex-
ternal lateral neurons, have briefer action potentials mediated by
faster repolarization and also far less spike frequency adaptation
(permitting comparatively fast sustained spiking), with no differ-
ence in rate of rise (38).

A B C
i ii iii

Fig. 5. (A) Dynamic clamp schematic: A computer (left), simulating a voltage-gated sodium conductance is reciprocally connected to a neuron (right). The
cell’s voltage determines the driving force on the simulated conductance and thus the current command sent to the amplifier; at each time step, the dynamic
clamp computer uses the cell’s voltage to update the state of its sodium conductance model. (B) Intracellular recording of a fast-spiking interneuron showing
its ability to generate fast, nonadapting trains of action potentials. TTX application (Middle) blocks action potential generation. Dynamic clamp restoration of
sodium conductance (Right; command current in red) permits the neuron to generate fast, nonadapting trains of action potential-like waveforms. (C)
Maximum spike rate (Upper) and spike cost (Lower) as a function of Na+ channel activation rate (i), inactivation rate (ii), and channel density (iii). Black traces,
average of normalized values for all cells; gray traces, normalized values for each cell.
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Fig. 6. (A) Action potential rate (Left) and shape (Right) in a thin-spiking in-
terneuron (black) and a regular-spiking neuron (gray) during up and down
states in vivo. (B, i) Percentage of pyramidal neurons and PV+ interneurons
identified as KCNC1-positive through single-cell PCR. (B, ii) Microarray meas-
urements of KCNC1 RNA levels in pyramidal neurons and PV+ interneurons. (C)
Maximum action potential upstroke velocity in regular spiking (RS) and fast
spiking (FS) cortical neurons. (D, i) electric organ discharge (EOD) frequency in
theelectric organofn=28differentfish, vs. K+ current activation time constant
in EOD cells of the same fish (measured at 25 mV above threshold). (D, ii) Na+

current inactivation time constant vs. K+ activation time constant in n = 17 fish.
(A) Adapted from ref. 68. (B, i) Adapted from ref. 26. (B, ii) Adapted from ref.
27. (C) Adapted from ref. 28. (D) [Reproducedwith permission fromMcAnnelly
and Zakon (39) (Copyright 2000, Society for Neuroscience).]
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Although faster potassium channels can endow a cell with the
ability to spike quickly, this ability comes with increased energy
cost. The extra cost can be kept to aminimum by speeding sodium
channel inactivation, which minimizes the overlap between so-
dium and potassium conductance opening. But this speeding is
beneficial only up to a point, and this point is proportional to
potassium conductance activation speed.We thus predict that, all
else being equal, cells with faster potassium channel activation
kinetics will display faster sodium channel inactivation kinetics.
These comparisons are difficult to make between neurons with

different action potential heights, spike thresholds, and resting
potentials—i.e., between neurons with sodium channels that
experience vastly different ranges of voltage before the repola-
rizing phase of the action potential. However, we can straight-
forwardly compare kinetics across neurons with similar prespike
and early-spike voltages. An example of an entire family of cells
with similar resting membrane potential, action potential height,
and spike threshold, but with variable firing rate requirements, is
found in the electric organ of weakly electric fish. The electrically
active cells (electrocytes) in these fish generate the electric organ
discharge (EOD). Each fish generates the EOD at a characteristic
frequency, but different fish generate this discharge at different
frequencies, spanning a wide range from 50 to 200 Hz, and the
same fish may change its frequency with hormonal shifts. In fish
with faster EOD frequencies, electrocytes contain potassium
channels with faster activation kinetics (39) (Fig. 6D, i). This result
can be predicted from functional considerations alone. Yet cells
with faster-activating potassium channels, and thus with thinner
action potentials, also contain faster-inactivating sodium channels
(Fig. 6D, ii). This relationship cannot be predicted from functional
constraints alone, because fast sodium inactivation is not required
for thin spikes or fast action potential generation. Yet this re-
lationship is required for cells to minimize energy costs subject to
functional constraints (i.e., while preserving the ability to spike
quickly). Similarly, during development, the calyx of Held devel-
ops the ability to spike progressively faster, through progressive
speeding of its potassium channel kinetics (as predicted above).
During the same period, sodium channel inactivation kinetics
become faster (40). Again, this relationship is predicted by mixed
functional and metabolic, not purely functional, considerations.

Discussion
Neural tissue is inordinately expensive. Brain ranks behind only
heart and kidney in glucose used per gram (10, 41, 42), and the
human brain accounts for one-fifth of the body’s total energy con-
sumption (43, 44). Much of this cost derives from the essential on-
going neural activity (14, 45, 46) that maintains the circuit context
in which sensory processing, planning, decision making, and motor
control canoccur(46–55).Expensive functionsprompt theevolution
of expense-minimizingadaptations (56), andenergy availability does
appear to have constrained the evolution of macroscopic brain
features, resulting in minimization of brain volume subject to func-
tional requirements (44, 57–59). We propose that the same prin-
ciple holds on a microscopic level. One aspect of this optimization
involves the kinetics and densities of the ion channels underlying
spikes, but this principle may have driven other aspects of ion chan-
nel expression. Substantial energy is expended on ion transport in
nonspiking neural tissue such as retina (9, 60) and on synaptic and
integrativeactivity in spikingneurons (15, 16, 25, 61–64). If evolution
has optimized theexpressionof the spike- generating ion channels to
minimize metabolic cost while preserving spiking bandwidth, per-
haps it has also optimized expression of the ion channels involved
in subthreshold input integration to minimize metabolic cost while
preservingcomputational ability.This is an extremely general frame-
work for interpreting neurons’ biophysical specializations.
We have not found any data to contradict the broader con-

clusion that evolution has honed the properties of ion channels
and their densities to minimize energy consumption while en-

suring sufficient bandwidth to perform necessary computation.
This analysis focused on ATP consumption, the coin of the cel-
lular realm, and should not depend on details regarding glucose
consumption, such as whether activity-related glycolysis occurs in
glia or neurons. The results are also independent of the fraction
of energy used for action potential generation, compared with
that needed to support other activity-dependent processes such as
dendritic integration and vesicle recycling.
The results presented here build on a long tradition of research

on optimality in neural signaling (21–23, 44, 65), including more
recent studies examining the cost of single action potentials (25,
66). Consistent with prior studies, our results confirm that mis-
matches between Na+ and K+ kinetics are likely to be a primary
contributor to the cost of action potential generation. Our results
extend the previous work in several major ways. First, by using
a dynamic clamp, we assessed, in actual neurons, how their diverse
ensembles of hyperpolarizing currents interact with simple depo-
larizing conductances to control spike cost and function. Second,
by using Hodgkin–Huxley-style models rather than bulk conduc-
tance models (25), we linked our models to the actual biophysical
mechanisms—channel gating kinetics and voltage dependence—
that could be altered in each cell type to optimize energy cost, and
by using dynamic clamp to simulate changes in gating parameters,
we confirmed these models’ predictions in real neurons. Third, we
considered not only the cost of a single action potential, but also
energetic cost in the context of broader functional requirements,
such as the ability to support sustained spiking. For example, we
showed that highmaximum spike rates carry a highmetabolic cost.
This result implies that neurons that do not need to fire at high
frequencies are likely to adopt different solutions to optimization
of spike cost. Finally, by examining neurons’ biophysical special-
izations in the context of cost optimization, we combined data from
functionally diverse neurons spanning brain structures and species
to support the hypothesis that neurons’ biophysics are tuned to
minimize metabolic cost subject to functional constraints. We
propose that this principle generalizes broadly and constrains the
range of solutions neurons might adopt to satisfy competing func-
tional and energetic requirements.

Materials and Methods
Model. Simulations were performed using a single compartment, Hodgkin–
Huxley-style model (details given in SI Materials and Methods). Action poten-
tials were required to begin and end below −50 mV and cross at least 0 mV at
maximum. The cost of a single action potential was determined by finding the
smallest-amplitude 1-ms current pulse that evoked an action potential, in-
tegrating the sodium current during the 20-ms poststimulus, and converting
integrated sodium current to ATP required to transport the Na+ ions using the
3:1 stoichiometry of the Na+, K+ ATPase. Spike trains were elicited from 200-ms
current pulses. The cost per spike for spikes in a train was determined by ap-
plying a 200-ms current pulse, integrating the sodium current over the pulse
and the following 20ms, and dividingby the number of spikes evoked. In Figs. 2
and 3, gate kinetics were speeded or slowed by multiplying the time constants
calculated at each time step by a constant factor. In Fig. 4, maximum sodium or
potassium conductances were scaled by a constant factor.

Dynamic Clamp. Sliceswerepreparedandneuronsrecordedusingstandardpatch-
clamp techniques (detailed in SIMaterials andMethods). TTX (1 μM)was applied
toblockvoltage-gatedsodiumcurrents,andsodiumcurrentblockwas confirmed
using current pulses. To “replace” the blocked sodium current, a fast real-time
dynamic clampwas implementedusinganRTLDC-baseddynamic clamp (67)with
cycle speed of 25–35ms. This systemgenerated an artificial sodium conductance
(kinetics described in SI Materials and Methods) that interacted with the cell’s
intrinsic potassium conductances to produce action potential-likewaveforms (as
in Fig. 5). Dynamic-clamp generated spikes were required to be at least 80% as
tall as the cell’s natural spikes. Single spikes were elicited from 0.2-ms current
pulses. Spike trains were elicited from 500-ms current pulses. Costs were de-
terminedby integrating the dynamic clamp sodium current over the duration of
the spikeor train.Toaggregatedatafromcellswithdifferent sizesandpotassium
channel kinetics, group data were constructed by normalizing each parameter-
rate curve to have amaximumof 1 or normalizing each parameter-cost curve by
the maximum cost per spike for a single spike.
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