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Chapter 4 
Mappings Between High-Dimensional 

Representations of Acoustic and Visual Speech 
Signals 

Terrence J. Sejnowski* Ben P. Yuhast 

1 Introduction 

The continued dramatic improvements in the speed and accessibility of gen- 
eral purpose digital computers has made it possible to model the brain a t  
many different levels of investigation, from biophysical mechanisms to neu- 
ral systems (Figure 1). However, the disparity between the computational 
power of even the fastest digital computers and that of the brain limits 
present simulations to a tiny fraction of the entire brain (Sejnowski [13]), 
or to creatures with only a few neurons (Selverston 115)). It is possible; 
for example, to model the information flow inside the dendrites and axons 
of single neurons, takiig into account realistic anatomical and physiological 
details (Koch & Segev [8]). The study of networks of model neurons is just 
beginning. Some progress has been made by simplifying the details of single 
neurons in the network; such "neural network" models are primarily con- 
cerned with how the architecture of a network affects its capacity to perform 
a task and how the size of the network scales with the complexity of the 

. task. In addition, systems-level architectural constraints from the brain at 
the level of columns of neurons, maps of neurons, and processing hierarchies 
can also be explored by modeling studies (Sejnowski & Churchland [14]). 

One major difference between digital computers and brains is in the orga- 
nization of memory. In knvel;tio&l digital computers, memory is separated 
from the central processing unit and there is a communications bottleneck 
between them. Memory is expensive so that there is a premium on explor- 
ing algorithms that minimii the need for information storage. In contrast, 
the brain has a much greater capacity for storing information. The nervous 
system of man has approximately 1012 neurons and 1016 synapses, or con- 
nections between pairs of neurons. If every synapse could store only 1 bit 

'The Sallc Institute and University of California, San Diego, La Jolla, CA. 
t ~ e l l  Com~nunications Research, Morristown, New Jersey. 



1 rn 

10 crn 

1 cm 

1 rnm 

100 prn 

1 ~m 

Systems I 
Networks I 
Neurons a 
Synapses Q 
Molecules I 

Figure 1: 
Levels of investigation in the nervous system. The spatial scale on the left of 
the figure is related to the anatomical structures represented by each .box. The 
schematic diagwms on the right illustrate the hierarchy of visual processing centers 
(top), the integration of input &om the-retina to form oriented receptive fields in 
the visual cortex (center), and the structure of a chemical synapse (bottom). 



of information, the total capacity of the brain would still be over 10 million 
megabytes. Furthermore, all of this information is available on line, since 
the nonlinear processing elements in neurons are intertwined with the stor- 
age elements. These numbers probably underestimate the complexity of the 
brain because they do not take into account the continuous variables that 
are dynamically active during the processing within neurons and synapses. 
For example, there are biochemical mechanisms within synapses that mod- 
ulate the strengths of synapses on a short time scale, over milliseconds, and 
others that produce changes that can last for years. It is these biochemical 
mechanisms that allow us to remember what happened a few minutes ago 
and to recall events in our childhood (Squire [16]). 

Another major difference between brains and digital computers is in the 
way that information is manipulated. Algorithms for digital computers ex- 
ploit the ability of a central processing unit to perform sequences of oper- 
ations with great accuracy. In contrast, the logical depth that can be im- 
plemented by neural systems is not nearly as great-our ability to compute 
recursive functions without a paper and pencil is relatively weak. Finally, 
the brain should really be compared to a large number of computers, per- 
haps several hundred, rather than a single one. Each of these subsystems 
is dedicated to a different function, but they are able to communicate and 
cooperate to accomplish difficult tasks in real time. Some of these special 
purpose computers have neural circuits that can be reorganized by learning 
to solve new problems. This type of memory is programmed by experience. 

What types of algorithms would run efficiently on architectures that re- 
sembled those of brains? Because memory is abundant, it would no longer 
be necessary to form the most compact representation for a problem. Thus, 
objects in the world and relationships between them could be represented 
in high-dimensional spaces, and the entire representation could be perma- 
nently stored. Even the brain, however, does not have enough memory 
capacity to  handle the complexity of the world if the only representations 
available were in the space of the stimuli and all possible relationships had 
to be explicitly stored. For example, the visual representations of objects at 
the level of pixel intensities is not a good one for expressing categorical re- 
lationships. Consequently, visual processing, which comprises nearly half of 
cerebral cortex, extensively modiies the representation of an object to make 
it Partially invariant to photometric variables and spatial transformations. 
Similarly, relationships must also be represented in an invariant way. These 
high-level representations are still very rich ones that contain much informa- 
tion about the physical properties of the stimulus, including properties from 
other modalities and even information about the use of the object (Dama- 
sio [3]). It is these high-level representations that are used by the brain to 
perform content-addressed retrieval, to make perceptual decisions, and to  
perform sensory-motor coordination, such as reaching out and grasping an 



object. -. 
Representations in artificial intelligence are primarily symbolic. Even 

when thinking in terms of massively-parallel networks, there is a tendency to 
use discrete, low-dimensional representations, which have computational as  
well as conceptual advantages (Feldman (51, Valiant [18]). However, at least 
as a working hypothesis we would like to explore the possibility that cognitive 
tasks could be performed in the brain by mappings between high-dimensional 
spaces that constitute high-level representations of the sensory world and our 
possible interactions with it. Thus, the goal of our research is to understand a 
number of interlocking problems: What properties should high-dimensional 
distributed representations have to make them robust, efficient and flexible? 
Can mappings between these representations be performed that honor the 
computational structure of the tasks that must be accomplished? What can 
we learn from human performance that can help constrain possible network 
solutions? 

In this paper we will explore these questions in the context of a specific 
problem in speech processing. The traditional approaches to speech recogni- 
tion start with acoustic signals and end up with symbolic representations of 
distinctive features, phonemes, syllables, words, phrases and sentences. This 
approach ignores the speech information contained in other sensory modal- 
ities, such as the visual speech signals from the face of the speaker. Other 
sources of information relevant to speech include gestures, facial expressions, 
and even face color through stimulation of the autonomic nervous system. 
If the ultimate goal of a speech system is to extract semantic information 
from the speech stream, then these alternative sources of information could 
be important and perhaps make the interpretation of the acoustic signals 
much easier. 

Petajan [ll] has explored the visual speech signals for isolated digit recog- 
nition. In his system, the acoustic and visual speech information were inde- 
pendently reduced to symbol strings, and a set of rules was used to reconcile 
conflicting interpretations. The symbolic intermediates were needed to al- 
low the necessary processing and integration to  be performed in real time 
on the serial digital computers available. The massively-parallel architecture 
of artificial neural networks make it feasible to explore subsymbolic alter- 
natives to Petajan's system. The use of high-dimensional representations 
allows information from several sources to be combined "softly," before be- 
ing reduced to discrete symbols. In addition, learning algorithms provide 
a me&s of training networks to fuse these signals without explicit rules or 
restrictive a priori-models. We will summarize recent results in visual speech 
recognition based on this new approach (Yuhas et al. [21]). 
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'2  Neural Networks 

The primary computational technique we used was mappings between high- 
dimensional vector spaces implemented with multilayer neural network mod- 
els. The key features of these models are a large number of relatively simple 
nonlinear processing units and a high degree of connectivity between these 
units. A unit performs a nonlinear transformation on the sum of its inputs to 
produce a continuous output signal. When this output signal travels across 
a connection to another unit, the signal is attenuated or amplified by the 
weight associated with that connection. Computation is performed by the 
interaction of these units and signals. These models differ significantly from 
actual neural circuits found in the nervous systems. For example, the pro- 
cessing units used in this study simply add their weighted inputs and have 
a static sigmoidal nonlinear output function, while neurons in real nervous 
systems have more complex spatiotemporal nonlinearities and are capable of 
much more complex discriminations. Nevertheless, these networks provide 
a starting point for finding alternative approaches to difficult computational 
problems. 

Feedforward network architectures were used in most of this study (Fig- 
ure 2). The units in a feedforward network were arranged in layers, with 
connections only allowed between layers, and only in one direction. The 
units that receive inputs from outside the network are referred to as input- 
units, and those that are observed from outside the network are output units. 
The remaining units are referred to as hidden, because they only exchange 
signals with other parts of the network. The units themselves use a nonlinear 
sigmoid squashing function to transform the sum of their inputs (Figure 2). 
The standard multilayered feedforward networks with arbitrary squashing 
functions are a class of universal approximators (White [19]). Moreover, any 
nonlinear mapping can be learned by a network if there are suflicient data 
to characterize the mapping and if the number of parameters in the network 
matches the information content of the data (White [20]). 

A modified backpropagation algorithm was used to train feedforward net- 
works (Rumelhart et al. [12]). The gradient was calculated in the standard 
manner, but instead of using steepest descent, a conjugate-gradient algo- 
rithm was used to update the weights. The number of adjustable weights in 
a neural network can often exceed the number of training patterns. In these 
cases, the networks have too many free parameters and are subject to the 
problem of overfitting or-averlearning _the training data. The effects of over- 
learning can be minimized by increasing the size of the training data set, by 
reducing the number of hidden units, by adding terms to the cost function 
that penalize unnecessary weights, or by stopping the training before the 
network has completely converged. 

There is a natural statistical interpretation for the signals carried on the 
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Figure 2: 
Network architecture used for estimating the acoustic structure from visual speech 
signals. The .feedforward network has 500 input units all connected to 5 hidden 
'units, each in turn are fully connected to 32 output units. Each output unit rep 
resents the amplitude of the vocal tract transfer function at a particular frequency. 
The processing units in the network have a nonlinear input-output function given 
by: f (x) = 1/(1+ q ( - 2 ) ) .  



, output units when the inputs are noisy. If the probability distribution of 
output units is Gaussian around a desired mean (for a mapping task), then 
the mean squared error used to train the network is the maximum likelihood 
cost function if the output units are linear (Bridle (21; Rumelhart and Durbin, 
personal communication). A similar result holds for the output units if the 
probability distribution is binomial (for a binary categorization task) and 
the output units are sigmoidal. Then the correct maximum likelihood cost 
function is mutual information or information gain (Hinton & Sejnowski [6].). 

3 The Speech Signals 

The speech signals used were obtained from video recordings of a seated 
speaker facing a camera under well-lit conditions. The visual and acoustic 
signals were stored on a laser disc (Bernstein & Eberhardt (11) where the 
individual frames and their corresponding speech segments were indexed. 
The NTSC video standard was used (30 frameslsec) and each frame had 
33 milliseconds (ms) of speech associated with it. Phonemes usually are 
shortened or dropped altogether during fluent speech, so single video frames 
often span more than one phoneme. To avoid this problem, we selected 
speech samples such as stressed vowels in isolated word or consonant-vowel- 
consonant (CVC) type nonsense syllables that change relatively slowly. k.1 
these contexts, the vowels often were steady state over periods of 50 to 
100 ms. For a given phoneme, a preliminary list of candidate words was 
identified from a transcription of the laser disc. Each word was then played 
acoustically to co&m the suspected pronunciation. A representative frame 
for the vowel was then isolated by alternately dropping a frame and then 
listening until the surrounding consonants were removed. The number of 
frames that remained after this process depended upon the degree to which 
that particular vowel was stressed. Stressed vowels, for example, can last 
up to 132 ms or 4 frames, while an unstressed vowel in continuous speech 
will often not last the full 33 ms of a single frame. The acoustic signals of 
the remaining frames were digitized and visually examined to ensure that 
acoustic signal was approximately in steady state. fiom this set, a single 
frame was selected only if the periodic wave form appeared relatively stable, 
neither increasing nor decreasing in amplitude. This paper describes results 
obtained using datafrom a single male speaker. A data set was constructed 
of 108 images of 9 different vowels in 12 sets. The vowels were taken from 
words and CVCs. Because these words and syllables were spoken deliberately 
and in isolation, these vowels were isolated easily. Data from a female speaker 
were also studied. 

Instead of searching for an optimal encoding of the input images, we chose 
a simple representation that seemed to contain the relevant information. A 



rectangular area-of-interqst was automatically defined and centered about 
the mouth. The image was further reduced to produce an image that could 
be comfortably handled by our network simulations. Within the rectangle, 
the average value of each 4 x 4 pixel square was computed to produce a 
topographically accurate grey-scale image of 20 x 25 pixels. Rather than 
attempt to extract special features, this encoding represented a form that 
could be obtained easily through an array of analog photoreceptors. Two 
methods of processing these images of the speaker's mouth were explored. 
In the first approach, we treated the images categorically and attempted 
to make hard phonemic decisions directly from the images. Such linguistic 
identifications can be used to constrain the linguistic interpretation of a 
noise-degraded acoustic signal. In the second approach, we obtained acoustic 
information directly from the images by estimating the transfer function of 
the vocal tract. These independent estimates were then used to constrain 
the acoustic interpretation of the noise-degraded acoustic signal directly. 

The acoustic speech signal emitted from the mouth can be modeled as 
the response of the vocal-tract filter to a switchable sound source. In a 
first-order vocal-tract model, the configuration of the articulators (e.g, the 
mouth opening, the lips, teeth, tongue, velum and glottis) defines the shape 
of the vocal tract filter, which then determines the filter's frequency response. 
The resonances of the vocal tract filter appear as peaks in the envelope of 
the short-term power spectrum of the acoustic signal and are called for- 
mants. While some of the articulatory features are often visible (e.g., the 
lips, teeth and sometimes the tongue), other components of the articulatory 
system, such as the glottis and velum, are not. Those articulators that are 
visible tend to modify the acoustic signal in ways that are more suscepti- 
ble to acoustic distortion than those effects due to the hidden articulators. 
This complementary structure can be exploited to improve the perception 
of speech in noise. 

4 Categorization 

Neural networks were trained t o  identify the vowel directly from the image. 
The images were presented across 500 input units, and the output consisted 
of 9 output units, each representing one of the nine vowels in the data. 
An k p u t  image was correctly categorized when the activation value of the 
correct vowel unit was larger than all the-&her output units. The data 
set of 108 images was split into a test set and a training set of 54 images, 
each containing a balanced set of vowels. The number of hidden units were 
varied. A network was trained until the categorization of all 54 images in 
the training set was perfect. Overtraining was minimized by immediately 
terminating the training at this point, before the output units were driven to 



60 TERRENCE J .  SEJNOWSKI AND BEN P. YUHAS 

,saturation. After the network was trained, it then was tested on the second 
set of 54 images from the same speaker. 

Performance levels were averaged across eight networks having five hid- 
den units, each initialized with different random weights. The networks were 
trained on 54 patterns. For half of the networks, the training and test sets 
were reversed. The eight networks trained on the male data obtained an av- 
erage performance of 76% correct categorizations for the images in the test 
set. A nearest neighbor classifier was constructed using the training data a s  
the set of stored templates and the results compared with the performance 
of the neural network model. The individual images from the test set were 
correlated with the stored templates, and the image was classified according 
to its closest match. The process was repeated again, but with the test and 
training sets reversed. The nearest neighbor classifier correctly classified 
the male data set with an average accuracy of 79%. The performance of 
the network also compared favorably with two human subjects tested and 
trained on the same data. After 5 training sessions, the two subjects ob- 
tained an average of 70% on the images in the test set, with performances 
in some follow-up sessions approaching 80%. The types of errors made by 
the human subjects in these experiments were similar to those made by the 
network as judged by comparing the confusion matrices. 

5 Precategorical Fusion 

Summerfield 1171 concluded from psychoacoustic experiments that informa- 
tion from the visual and acoustic modalities must be integrated before pho- 
netic or lexical categorization takes place. The implication was that the 
acoustic and visual signal streams shared a common representation at their 
conflux. We have used the vocal tract transfer function as a model for this 
common representation, and we have shown that networks can be designed 
for integrating visual and acoustic speech signals using this representation 
(Yuhas et al. [21]). An estimate of the vocal tract's acoustic characteristics 
was obtained directly from images of the speaker's mouth. This estimate 
then served as an independent source of acoustic information and was used 
to  constrain the interpretation of the acoustic signal. 

The &coustic speech signal is produced by a source signal that passes 
through the v o d  tract and is emitted from the mouth. For voiced speech, 
the driving signal is a quasi-periodic pulse train convolved with the glottal 
wave form. This driving signal's contribution to the short-term acoustic 
spectrum is a series of harmonics reducing in amplitude by -12 dB per octave. 
This reduction is partially compensated by the radiation of the acoustical 
sig* from the lips, wkich produces an effective gain of +6 dB per octave. 
The spectral envelope of the short-term spectrum that remains after these 



two effects are removed i,s the frequency response of the vocal tract filter. 
The transfer function of the vocal tract can be estimated by measuring the 
short-term spectral amplitude envelope (STSAE) of the acoustic signal. 

There is not enough information in the visual speech signal to completely 
specify the vocal-tract transfer function. Many different acoustic signals can 
be producedhy vocal tract configurations that correspond to the same visual 
signal. Thus, the visual signals can provide only a partial description of the 
vocal tract filter. Nonetheless, it may be possible to obtain a good estimate 
of the vocal tract transfer function if additional constraints are considered. A 
feedforward neural network was trained to estimate the STSAE of the acous- 
tic signal directly from the visual signals around the mouth. The estimate 
of the STSAE was then combined with estimates from acoustic information 
to improve the signal-to-noise ratio prior to recognition. The same images of 
the male speaker used in the categorization experiments were used in these 
experiments. Each video frame had 33 ms of acoustic speech associated with 
it. The short-term power spectra of the corresponding acoustic data were 
calculated and the spectral envelopes were obtained using cepstral analysis. 
Each smoothed envelope was sampled a t  32 frequencies to produce a vector 
of scalar values. These vectors were used to represent the vocal-tract transfer 
functions corresponding to the images. 

Vowels are largely identified by their spectral shape, and in particular by 
the location of their spectral peaks, or formants. Nevertheless, evaluating the 
quality of these spectral estimates is significantly more difficult than judging 
the accuracy of a categorization because the perceptual processes involved in 
processing the spectral peaks is not a well-understood process. To assay our 
spectral estimates, a simple vowel recognition system was constructed using 
a simple feedforward network trained t o  recognize nine vowels from their 
STSAEs. The network was trained on 6 examples each of 9 different vowels 
until its performance was 100% on the training data. This network served as 
a perfect recognizer of the noise-free data  and was used to  assess the benefit 
of the visually-estimated spectra when combined with the noise-degraded 
acoustic spectra. 

The vowel recognizer was presented with a STSAE through two channels. 
The path shown on the right in Figure 3 was for the information obtained 
from the acoustic signal, while the path on the left provided spectral esti- 
mates obtained independently from the corresponding visual s p d -  signal. 
The first step was to test the performan& of therecognizer when the acous- 
tic spectral envelopes were degraded by noise. Zero-mean random vectors 
were normalized and added t o  the training STSAEs t o  produce signals with 
signal-to-noise ratios ranging from -12 dB t o  24 dB. Noise corrupted vectors 
were produced a t  3 dB intervals from -12 dB to 24 dB. At each noise level, 
12 different vectors were produced for each of the STSAEL the set. At 

- 

each level, the performances of the recognizer on the degraded signals were 
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Figure 3: 
System used to combine visual and acoustic speech information. A simple vowel 
recognizer was constructed to receive speech signals from the two modalities. In- 
dependent estimates of the vocal tract transfer function were produced and then 
combiied with a weighted average before being passed to the recognizer. A neural 
network was trained to perform the mapping of the image into the estimated enve 
lope of the acoustic spectra. Noise was introduced into the acoustic speech signal 
and the improvement due to the visual information was assessed. 
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Figure 4: 
Intelligibility of noise-degraded speech as a function of speech-to-noise ratio in dB. 
The lower curve shows the performance of the recognizer under varying signal-to- 
noise conditions using only the acoustic channel. The intermediate dashed curve 
shows the performance when the two independent estimates are equally weighted. 
The top curve shows the improved performance by using a weighting function based 
on the signal-to-noise. When the visual signal is used alone, the percent correct is 
55% across all S /N  levels. 

averaged. The overall performance on the training data fell with decreased 
signal-tenoise ratios. At -12 dB, the recognizer operated at the chance level, 
which was 11% with nine vowels in the data set. 

The next step was to compensate for the noise degradation by providing 
an independent estimate of the STSAE from the visual signal, as shown 
on the left side of Figure 3. The network on this pathway was trained 
to estimate the spectral envelopes corresponding t o m e  input images. The 
data used to train this network were different from the data used to train the 
recognizer. The noise-degraded acoustic signal was then combined with the 
output from the network processing the images to provide a single estimate 
which is then passed on to the recognizer. The acoustic and visual signals 
were weighted according to their relative information content to compensate 
for the -degraded performance at  the signal-to-noise ratio extremes. The 
optimal value of the weighting was found empirically to vary approximately 
linearly with the signal-to-noise ratio in dB, from 1 at  -12 dB signal-tenoise 
ratio to 0 at  24 dB. The performance is shown in Figure 4. Another method 
of fusing the two spectra was accomplished using a sigma-pi neural network 
(Rumelhart et al. [12]). These second-order networks took the estimated 
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STSAE, the noisedegraded acoustic STSAE and a measure of the signal-to- 
noise ratio as input, and tried to produce a noise-free STSAE as output. In  
contrast to the simple weighted sum used by first-order units, the units in 
these second-order networks determine the activation level by summing the 
weighted product or other units' output. The results from this method were 
mixed: while the squared-error between the estimated and actual spectra was 
significantly lower, their categorization was poorer. These results suggest 
that the vowel recognizer is doing something more complicated than simply 
making a comparison based upon a squared-error measure. It also raises 
questions as to the appropriateness of the mean squared-error measure used 
for training. 

The quality of the estimates made by the networks were compared to a 
combination of two optimal linear-estimation techniques. The first step was 
to encode the images using a Hotelling or Karhunen-Loeve transform. The 
images were encoded as five-dimensional vectors defined by the largest prin- 
cipal components of the covariance matrix of the images in the training set. 
This is an optimal encoding of the images with respect to a least-squared- 
error (LSE) measure. The next step was to find a mapping from these en- 
coded image vectors to their corresponding short-term spectral amplitude 
envelopes (STSAEs). The fit was found using a linear least-squares fit. The 
estimates obtained by this two stage process were significantly poorer in 
overall mean-squared error. The mean-squared error of the estimates made - 
by the networks were 46% better on the training set and 12% better on the 
test set. This comparison shows that arbitrary encoding of the images may 
result in a loss of relevant information. In contrast, the network learning al- 
gorithm allows the network to  produce its own encoding at the hidden layer 
based upon relevant features. The activation levels of the five hidden units 
served to encode the image as did the five-dimensional vectors obtained using 
principal components. The primary difference is that the encoding found by 
the network optimized the desired output, while the principal components 
optimized the LSE reconstruction of the images. 

6 Dynamics and Speech 

In the models described thus far, attention was restricted to static visual 
images, which were inherently ambiguous because they contain incomplete 
information about the speech articulators. Speech is a dynamic process and 
the articulators are physical structures that move. Their current positions 
are part of larger dynamic trajectories. These trajectories are constrained 
by the mechanics of the physical system and by the linguistic rules of the 
language. Dynamic dependencies could provide additional constraints that  
can serve t o  restrict the acoustic interpretation of the visual speech signal. 
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Figure 5: 

Spectrograms created from the actual acoustic spectra are compared to visually- 
estimated spectra for the sentence: "We will weigh you". Individual spectral esti- 
mates were converted to a grey scale and then aligned by frequency as  a function 
of time. Actual acoustic data from the test set are shown on the left and estimates 
produced by the feedback neural network model are shown on the right. 

In this section, we outline an approach to introducing dynamic constraints in 
neural network models. One approach is to have projections from the output 
units to the input layer (Jordan [7]) or from hidden units to the input layer 
(Elman [4]). 

When working with static images, it was possible to use a simple vowel 
recognizer to test the quality and utility of the acoustic spectra estimated - -- 
from static images. The success of the vowel recognizer depended on the 
careful selection of vowels from isolated words or syllables. For continuous 
speech, however, it is difficult and often impossible to make these definitive 
identifications of short speech segments taken out of context, so alternative 
assessments are necessary. Networks with feedback were used to estimate the 
STSAE from images within a larger context. The performance of the network 
on continuous speech was evaluated on its ability to preserve the salient 
features of the spectral sequences, such as the resonances, or forplants, of the 
estimated vocal tract filter. To see how well these formants were identified 
by the network, the sequences of spectra were arranged in a visual display 
similar to a spectrogram. The spectrogram shown in Figure 5 was created 
from spectra estimated from a sequence of images not in the training set. In 
this form, we can observe the changes of energy in the different frequency 
bands as a function of time. Clearly, much of the acoustic structure was being 
estimated in these sequences. The ultimate test will be to either resynthesize 
the acoustic speech signal from these estimated acoustic parameters, or to 
feed the fused spectra into a full-scale speech recognizer. 



7. Discussion 
-. - 

Under noisy conditions, speech recognition using acoustic information alone 
degrades and performance can be aided by extracting information from the 
visual speech signals and combining it with residual acoustic information. 
Two representations for the speech information in the visual signal were 
studied. In the first case the visual signal was treated symbolically, while in 
the second it was used to provide subsymbolic information about the cor- 
responding acoustic signal. These are two points on a continuum of speech 
descriptions. Other representations of the speech signals, such as descrip 
tions of the articulators themselves, could also have been used. It would 
valuable to know what representations are used in the brain. A better un- 
derstanding of the visual and acoustic sensory systems in humans and other 
animals will lead to better artificial sensors and their effective integration. 

By combining the visual and acoustic sources of speech information, we 
have demonstrated that the visual signal can be used to improve the perfor- 
mance of automatic vowel recognition in the presence of noise. This approach 
did not require categorical preprocessing or explicit rules. The performances 
of these neural networks compared favorably with human performance and 
with other pattern-matching and estimation techniques. Our results were 
based on vowels spoken by single speakers, but this same approach can be 
extended to multiple speakers and to consonants. Improvements can also - 
be made in the input representations. Synthetic cochleas that can process 
massive amounts of sensory data in real time already have been fabricated in 
analog VLSI (Mead [lo]). The output of these chips is a highly distilled, par- 
allel and distributed representation of the acoustic signal. These front-ends 
could improve the overall level of performance of acoustic speech recognition 
systems, but they would not change our conclusions concerning the need to 
compensate for noise - they only put off the inevitaxe. 

The results from the specific examples studied in this paper can be gen- 
eralized to many other problems that depend on the fusion of information 
from several cues or from several modalities (Lehky et al. (91). The key 
idea is to  represent the information in a distributed way and to rely on 
high-dimensional mappings from these cues into a common representation. 
Learning algorithms can be used to seamlessly combine the two informa- 
tion streams, and to  continuously adapt in nonstationary environments. At 
present, we are only able to guess which representations are likely to be 
good ones, based in part on what we know about the representations in the 
brain. We need a deeper understanding of distributed representations that 
can guide us in these choices. It  is also likely that more sophisticated neural 
architectures will be needed to deal with the fusion of information, especially 
when there are conflicting sources of information. 

Nature has been a n  inspiration for many mathematical discoveries. Much 



of functional analysis grew out of attempts to understand the physical world. 
The biological world is also a source of inspiration but the complexity of 
biological systems often exceeds our abilities to develop simple, analyzable, 
mathematical models. This is especially true in the study of the brain, a 
biological system with a degree of complexity greater than that of any other 
known system. As we learn more about the brain, and as we explore the 
function of the brain with a wide variety of mathematical and computational 
models, we may begin to develop an understanding of the computational 
principles of the brain comparable to our mathematical understanding of 
the physical world. 
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