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Stiefel KM, Sejnowski TJ. Mapping functions onto neuronal
morphology. J Neurophysiol 98: 513–526, 2007; doi:10.1152/
jn.00865.2007. Neurons have a wide range of dendritic morphol-
ogies the functions of which are largely unknown. We used an
optimization procedure to find neuronal morphological structures
for two computational tasks: first, neuronal morphologies were
selected for linearly summing excitatory synaptic potentials (EP-
SPs); second, structures were selected that distinguished the tem-
poral order of EPSPs. The solutions resembled the morphology of
real neurons. In particular the neurons optimized for linear sum-
mation electrotonically separated their synapses, as found in avian
nucleus laminaris neurons, and neurons optimized for spike-order
detection had primary dendrites of significantly different diameter,
as found in the basal and apical dendrites of cortical pyramidal
neurons. This similarity makes an experimentally testable predic-
tion of our theoretical approach, which is that pyramidal neurons
can act as spike-order detectors for basal and apical inputs. The
automated mapping between neuronal function and structure in-
troduced here could allow a large catalog of computational func-
tions to be built indexed by morphological structure.

I N T R O D U C T I O N

Neurons receive incoming synapses on dendritic trees that
are often intricate branching patterns encompassing distinct
subdomains (such as basal and apical dendrites in cortical
pyramidal neurons). The dendritic morphologies can vary
greatly between different classes of neurons, in length, ar-
borization patterns, and presence of dendritic spines. Differ-
ences in the morphologies are believed to be related to func-
tional differences (Krichmar et al. 2002; Mainen and Sej-
nowski 1996; Rall 1995; Vetter et al. 2001). There is, however,
no systematic way to determine what the functions might be. In
this study, we introduce a general method to map1 neuronal
function onto neuronal structure.

We used genetic algorithms (GAs) to optimize the structure
of neuronal dendrites for a number of computational tasks
(Holland 1975; Mitchell 2001). A population of possible solu-
tions was tested against the problem and the individuals with
the best performance (the most fit) were mutated, recombined,
and used to make up the next generation. In this way, the

fitness of the population was increased in every generation, and
a biased random walk toward a local or global optimal solution
is performed. GAs find good solutions that are made up of
good subsolutions (schemes or building blocks) (Mitchell
2001).

Two computational functions were optimized, linear sum-
mation and spike-time order detection, and the resulting struc-
tures were compared with dendritic morphologies. In both
cases, real neuronal morphologies were found to match the
optimized structures, suggesting possible functions that they
might perform.

M E T H O D S

We used a Lindenmayer-system (L-system) (Lindenmayer 1968)
for the algorithmic construction of model neuron morphologies. Sim-
ulations of electrophysiological dynamics were carried out in the
neuronal simulation language NEURON (version 5.7) (Hines and
Carnevale 1997, 2000). The NEURON code used in this study is
available as supplementary material by request from K. M. Stiefel and
will be submitted to the Yale Senselab neuronal model-database
(http://senselab.med.yale.edu/senselab/modeldb/). Further analysis
and display of simulation results was done in Mathematica 4.2.
(Wolfram Research, Champaign, IL). Running one generation of the
GA, including the construction of 64 neurons’ morphologies (averag-
ing 575 compartments/neuron), the electrophysiological simulations
(60 ms) and the selection, mutation and recombination of the genomes
of the initial population took approximately �1 min on an Intel Xeon
2.4-GHz processor. All simulations were run on this processor under
Windows XP or on an Athlon AMD 1.7 GHz processor under Linux.

The optimization of neural structure used in this study is divided
into four separate but linked processes. These are the construction of
the model neuron morphologies, the electrophysiological neuronal
dynamics, the assessment of the fitness value of the neuronal dynam-
ics and reproductive/genetic processes. We want to stress that only the
final morphologies and simulations of the electrophysiological neu-
ronal dynamics should be compared with biological data. The com-
partmental models we used are based on the “well-established”
description of current flow in neurons by the cable equation (Rall
1995).

The four different processes are computed using four sets of
equations (Fig. 1). They are the L-system to generate the neuronal
morphology, the cable equations to calculate the membrane dynamics
of the neurons, the fitness functions, and the genetic algorithm. The
sets of equations are only weakly connected. By this we mean that one
set of equations provides only parameters, initial or boundary condi-
tions to the other set of equations. There is, however, no continuous
coupling with the state variables (and thus dynamics) of the other
equation set. For example, the GA provides parameters and initial
conditions to the L-system. The state variables (m) are not affected by
the GA during the growth of the dendritic tree. At the next stage, the
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L-system sets boundary conditions and parameters for the electro-
physiological simulations. The state variable, (V) is unaffected by the
L-system during the simulations. Similar relationships hold between
the electrophysiological simulations and the fitness function and
between the fitness function and the GA. The four sets of equations
influence each other in a circular, unidirectional manner (Fig. 1). For
example, the L-system influences only the electrophysiological sim-
ulations, but there is no influence in the reverse direction.

Construction and coding of neuronal morphologies

An important choice in applying GAs to a specific problem is how
the possible solutions, in our case neuronal morphologies, are encoded
in the artificial genome. We adopted a method recently proposed by
Ascoli and Samsonovich et al. (Ascoli et al. 2001a,b; Samsonovich
and Ascoli 2003) for constructing neuronal morphologies using a
L-system. L-systems are parallel string rewriting systems in which a
set of rules is applied to all the elements of a string at once. An
L-system is interpreted by assigning a geometric operation to every
symbol of the alphabet producing the string. The string then becomes
a program for a construction process that resembles but does not

model a developmental process. This method encodes dendritic mor-
phologies in a compact way and allows the GAs to search efficiently
for optimized neuronal morphologies. The approach used by Sam-
sonovich and Ascoli (2005) was simplified here to encode the input
parameters and initial conditions to make the search more efficient.
The main, but not only, modifications we made were the omission of
a stochastic component in the recursive morphogenetic algorithm and
the use of a simpler formalism for the determination of branching
angles. The stochastic component was omitted because having such a
component in the calculation of the fitness function of a GA
“smoothes out” the fitness landscape. Fitness peaks become less
pronounced, and the duration of the optimization procedure is pro-
longed. This is because either the GA will miss peaks due to an
unlucky random number generator seed or multiple evaluations have
to be performed for every genome.

Our implementation is described in the following text (see also the
NEURON simulation code provided as supplementary material). The
set of structures this L-system can produce is not as rich in variety as
neuronal dendrites. However, they share a number of features with
natural dendrites: they are all branched, noncircular, and progressively
thinning cable structures attached to a common sink, the soma. They

A

B

 Genomes
(Genotypes)

Neurons
(Phenotypes)

Synaptic Potentials

Natural Selection

M
ut

at
io

n 
&

 R
ec

om
bi

na
tio

n,
 E

xp
an

si
on

 to
 n

ew
 G

en
er

at
io

n

Point
Mutation
p = 0.7

Deletion
p = 0.1

Duplication
p = 0.1

Crossover
p = 0.1

Parameter
Strings

Multi-compartmental
Neuron Models

Simulated
Synaptic Potentials

Calculation of
Fitness Values,
Selection

Biological
Analogy

Optimization
Procedure

FIG. 1. Genetic algorithm (GA) used to
optimize neuronal structure. A: flow diagram
of the GA. The population of genomes is
translated into neuronal phenotypes. The
electrophysiological properties of these neu-
rons are then tested in a computational task
(linear summation of 2 input populations).
The performances of the neurons are used to
sort the corresponding genomes. The best-
ranked genome is deterministically promoted
to the next generation in an unchanged state
(elitism). The remaining genomes above a
cut-off are used to randomly draw the re-
maining members of the new generation. The
genomes of the new generation are mutated
and recombined and the algorithm restarts. B:
sources of genetic variation. Genomes were
altered by point mutation, duplication, dele-
tion and crossover between 2 genomes. Prob-
abilities of the respective operations are
noted.

Innovative Methodology

514 K. M. STIEFEL AND T. J.SEJNOWSKI

J Neurophysiol • VOL 98 • JULY 2007 • www.jn.org



project away from the soma with a freely variable direction and
rotational angle. These crucial features together with the ease of
encoding them into a “genome” make them suitable subjects for our
study.

The L-system constructs one dendritic tree (connected to the soma)
at a time (Fig. 2). The parameters for the L-system of one dendritic
tree are encoded in a string of 14 parameters (“genes”, Figs. 1 and 2,
Table 1), and the length of the parameter string (genome), always a
multiple of 14, determines the number of dendritic trees of a neuron.
The parameter values are initially drawn from a normal distribution
with the half-width given in Table 1, and are then subject to mutation,
crossover during the optimization by the GA (see following text).

A dendritic tree starts out with a total terminal degree, m0. At every
branch point, m is asymmetrically distributed to the two daughter
branches, according to

mn
left �

mn�1

a(l)�2
(1)

for the left dendritic branch and

mn
right � mn�1 � mn

left (2)

for the right dendritic branch, where a(l) is the asymmetry as a
function of dendritic path length, l. When a branch reaches m � 1, no
more branching is possible and the dendrite terminates. For technical
reasons, our use of the term asymmetry is different from the more

common use in the literature, where asymmetry is defined as a �
�m/(�m � 2).

The total terminal degree, m0, the branching asymmetry, a(l), and
angle, �(l), the dendritic diameter, d(l), and the length to the next
branch point, L(l) determine the morphology of the dendritic tree. All
but for m0 vary as a function of path distance to the soma, l. Either
they serve as initial conditions (m0) or as parameters (all others) for
the morphogenetic algorithm. They were measured in the case of
Samsonovich et al. and were artificially evolved in our case. The
genome encodes these initial conditions or parameters (see following
text, Table 1). They are grouped in 14-tuples (blocks), each of which
contains the initial conditions or parameters for a morphogenetic
algorithm that will give rise to exactly one dendritic tree of the neuron.
The number of 14-tuples determines the number of dendritic branches
of a neuron. This number, and thus the number of dendritic branches,
is not fixed but can change due to deletion or duplication (see
following text).

The diameter of dendrites in the L-system was a linear function
of l

d�l� � � l�d � d0 (3)

which leads to a progressive thinning of the dendrite as it grows away
from the soma. This is a good approximation of observed dendritic
diameters. In the case of the length to branch point, the function was
a Gaussian
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FIG. 2. Encoding of the neuronal mor-
phology by the genome. One of the 14-tuples
of parameters (left) directly specifies the val-
ues for the initial orientation of the dendrite
(a0, b0) and the terminal degree (m0). The
14-tuples also specifies functions of param-
eters dependent on the path distance to the
soma: the intersection and the slope for the
function determining the dendritic diameter
(d0, �d) and the width, mean and amplitude
(�, �, 0) for the functions determining the
branching angle, asymmetry and length to
branch point (middle). An L system uses
these values and functions to build a den-
dritic tree. At each branch point, m is distrib-
uted onto the 2 daughter branches (hence 2
arrows originating from this box), until m �
1. Synapses are inserted in a location-depen-
dent manner after completion of the dendritic
tree. Right: each 14-tuple of parameters (Ta-
ble 1) codes for 1 dendritic tree connected to
the soma (inset bottom left).
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L�l� � L0e
�l�L��2

L�2 (4)

where � and � are the position of the peak and the half-width of the
function, respectively. The functions for the branching asymmetry,
a(l), and angle, �(l), were analogous to Eq. 4. As in biological
neurons, the dendritic diameter was not allowed to go 	0.2 �m. The
size of the soma was fixed at 20 �m (length � diameter). The
Gaussian function was chosen because it can, depending on the choice
of parameters, approximate a number of other functions, such as
constant or piecewise linear.

Synapses were attached to the dendritic tree whenever it passed
through predetermined spatial regions (1 synapse per 5 �m den-
drite). Two such regions were specified, one for synapses of each
group (termed left and right). These regions were specified as
layers, thus a synapse was attached to every 5 �m of a dendrite
when it was within a pair of z coordinates. A consequence of this
type of assignment of synapses to dendrites is that features of the
dendritic tree which do not influence cable properties, such as the
branching angle, influence dendritic function because they affect
the placement of synapses.

In short, a parameter string composed of 14-tuples specified one
neuron. Each 14-tuple of parameters specified one dendritic tree. The
14 parameters determine how an L-system builds this dendritic tree.
Three of the parameters determined the initial orientation of the
dendritic tree and the tree’s terminal degree. The remaining parame-
ters were used to calculate linear or Gaussian functions of the path
distance to the soma. These functions determined when the dendritic
tree branched, the angle and the terminal degrees of the daughter
branches. They also determined the thickness of the dendrites. When-
ever the dendrites passed through a predetermined region, a synapse
was attached to every 5 �m of its length.

Test of computational performance:
electrophysiological simulations

Simulations of the neuronal dynamics were run after the L-system
constructed the dendritic trees. The simulations consisted of solving
the coupled ordinary differential equations describing a circuit-equiv-
alent multi-compartmental model of a neuron (Johnston and Wu 1995;
Rall 1995). The membrane potential was governed by

cm

dVn

dt
� � gl�Vn�El� � gax�Vn�Vn�1� � gax�Vn�Vn�1�

� H�ts�gs�V�Es��e
t�ts

�2 � e
t�ts

�1 � (5)

where cm is the membrane capacitance, Vn, Vn-1 and Vn�1 are the
voltages of the current and adjacent compartments, El and Es are the
reversal potentials of the leak and synaptic currents, gl, gax, and gs are
the conductances of the leak, axial, and synaptic currents, respec-
tively, H(t) is the Heaviside function and �1 and �2 and ts are the
synaptic time constants and onset time.

The last term was included only in compartments with a synapse
and gave rise to an excitatory postsynaptic potential (EPSP). The
synaptic onset time was set by a presynaptic input stream. There were
two inputs streams, right and left (giving rise to EPSPr and EPSPl),
one for each subsection of synapse-space. The coincident activation of
both inputs is denoted as EPSPrl, the activation of the right synapses
15 ms before the left synapses as EPSPrl(�t � 15 ms) and the inverse
order as EPSPlr(�t � �15 ms). The maximum amplitude of these
EPSPs is denoted as M, with the corresponding subscripts.

We did not include voltage-dependent (active) currents in the
model. Although active currents are important, the first step is to
explore the influence of the passive properties, which are the under-
lying basis for the electrophysiological behavior of a neuron. Many
aspects of neuronal signal processing can already be explained due to
passive properties (Rall 1995). The effects of active properties build
on passive properties and often act synergistically with them. There-
fore we expect that their inclusion would modify, but not necessarily
qualitatively change our results. Below spiking threshold, many as-
pects of synaptic integration (saturation, shunt) are governed by
passive properties. Here we set out to develop a novel method for
mapping neuronal function onto structure, and demonstrate its use-
fulness. In the interest of simplicity, we are using a passive model at
this stage (but see DISCUSSION).

Linear summation task

The fitness of each neuron was determined by a cost function that
was chosen to measure its performance on a computational task. The
greater the fitness value, the better the performance. The first task was
the linear summation of synaptic potentials (EPSPs). This is a non-
trivial but relatively simple problem for which a solution is known and
should thus serve as a good starting point: nontrivial because a linear
input-output relationship runs counter to the sublinear nature of the
cable properties of passive dendrites; simple because it can be de-
scribed in a few words or with a short equation. Second, there is a
class of neurons in the avian auditory brain stem (nucleus laminaris,
Fig. 3C) that is believed to perform a similar function (Carr et al.
2005). These neurons compute interaural time differences. They react
to the simultaneous activation of two groups of synapses but not to
massive activity of a single input stream. This is difficult to compute
with a neuron because cross-saturation occurs between co-activated
spatially adjacent synapses. Cross-saturation is the reduction of each
other’s driving force [of the term (V � Es) in Eq. 5] and local input
resistance, and leads to a reduced compound EPSP. The compound
EPSP will be smaller than the algebraic sum of the individual EPSPs
and sum sublinearly. To maximize the compound EPSP, cross-
saturation has to be avoided. The neurons in the nucleus laminaris
achieve this by placing their synapses at the ends of two long and thin

TABLE 1. Encoding parameters and initial conditions of the
recursive algorithm used to generate the neuronal morphologies

Index Parameter Encodes Initial Values for GA

0 m0 Terminal degree 32
16
1 L0 Peak length to branch point 100
100
2 L� Position of the peak length to

branch point
100
10

3 L� Half width of the Gaussian
determining the length to
branch point.

200
100

4 a0 Peak asymmetry for the
splitting of m.

0.5
0.2

5 a� Position of the peak
asymmetry for the splitting
of m.

100
10

6 a� Half width of the Gaussian
determining the asymmetry
for the splitting of m.

100
10

7 �0 Peak branching angle. �/10
�/105

8 �� Position of the peak
branching angle.

10
10

9 �� Half width of the Gaussian
determining the branching
angle.

100
10

10 d0 Initial dendritic diameter. 10
2
11 �d Slope of the change of the

dendritic diameter.
0.04
0.004

12 	0 Initial orientation. �/2
4�
13 
0 Initial orientation. 0
4�

The values are means 
 SD of the respective values in the initial population
of neurons. Each 14-tuple parameters codes for one dendritic tree. The number
of such 14-tuples in a parameter string determines the number of dendritic trees
of a neuron.
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dendrites originating from the soma. Due to the large electrotonic
distance between them, the mutual influence on the driving force will
be minimized. This class of neurons is one of the few for which the
structure–function relationship is understood. The function performed
by these neurons can be interpreted as an AND operation or as a linear
summation. Irrespectively, they are optimized to react as strongly as
possible to the joint activation of two groups of synapses. A linear
sum of the individual EPSPs is the best possible performance which
can be reached with a passive neuron model. We chose this problem
to see if the optimization procedure finds a solution similar to the one
observed in biological systems.

The goal was to select for small dendritic trees that summed large
EPSPs of equal size in a linear manner. The fitness function for this
task, F, was

F��
Mr � Ml � Mrl

Mrl

� 	1�Ml

Mr

�
Mr

Ml
�� 	2log�Mrl� � 	3

c

c0

(6)

where Ml, Mr, and Mrl are the peak amplitudes of the excitatory
postsynaptic potentials caused by synapses activated by a right, left,
and both input streams, respectively, c and c0 are the current and
average initial dendritic tree sizes and 	1, 	2, and 	3 are weighing
factors for terms two to four. This function is small when the
arithmetic sum of the amplitudes of the individual EPSPs (Ml and Mr)
is close to the EPSP amplitude observed when both synapses are
activated at the same time (Mrl). Simulations with only the left, right,
or both sets of synapses active were run, and the peak EPSP ampli-
tudes were calculated from these simulations.

The second term in the fitness function punished unequal EPSP
sizes to avoid the trivial solution of achieving linear summation by
summing two EPSPs of very unequal sizes. A neuron which, due to
the spatial configuration of its dendrites, received input not exceeding
0.2 mV from only the left or right group of synapses was assigned an
extremely poor fitness value (�99).

The third term selected for large compound EPSPs.

The fourth term penalized unnecessarily large dendritic trees and
was included to avoid the inclusion of superfluous, nonfunctional
dendritic segments and to steer the optimization toward small neurons.
c is the total number of segments of the current neuron and c0 is the
average number of segments in the initial population of neurons. The
three additional terms were weighted with factors of 	1 � 0.1, 	2 �
0.1, and 	3 � 0.1 relative to the term testing for linear summation.
These values were selected according to the perceived relative impor-
tance of these terms.

Spike-order detection task

The second task was spike-order detection, which could be used in
neural coding (VanRullen et al. 2005). We selected neuronal mor-
phologies capable of distinguishing the temporal order in which
EPSPs occur. A neuron successful in this task should react strongly
(with a large compound EPSP) when the EPSPs were evoked in the
temporal order left e right, but weakly when they were evoked in the
order right e left, with onset times separated by 15 ms.

The fitness function for the spike-order detection task was

F � �
Mrl��t�15ms�

Mlr��t�15ms�

� 	1�Ml

Mr

�
Mr

Ml
�� 	2log�Mrl� � 	3

c

c0

(7)

with 	1 � 0.1, 	2 � 0.1, and 	3 � 0.02. As before, better perfor-
mance in the task corresponded to larger fitness values and the
additional terms penalized small or unequal EPSP amplitudes and a
large dendritic tree.

Selection

The initial population of genomes was drawn from a Gaussian
distribution with the means and SDs given in Table 1. From these
genomes, or from the genomes resulting from later generations,
neurons were constructed and their membrane dynamics were simu-
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FIG. 3. Selection for linear summation. Simulations
using a GA with 64 parameter strings and 400 genera-
tions. Time-resolved fitness-histograms (only the 1st 100
generations are shown). The number of parameter
strings, n, in the vertical axis is plotted as a function of
generation and fitness. Morphologies of the best solu-
tions from at different stages of the optimization are
shown. The red and blue dots correspond to right and left
synapses.
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lated. The results of these simulations were used to calculate fitness
values, and the neurons were ranked according to their fitness values
(Fig. 1A). The genomes giving rise to the neurons with the best ranks
were then selected to populate the next generation. The selection
probability was a half-Gaussian function of the rank with a peak at the
best rank and a half-width equivalent to 50% of the population size.
The selected genomes were used to replace 80% of the population
drawn randomly in each generation. A randomly chosen proportion of
the genomes (the remaining 20%) were carried over to slow down the
loss of genetic diversity. Therefore not every genome in any given
generation was present because of its success in the previous round of
testing and selection.

The best individual genome was deterministically carried over to
the next generation, a process called elitism. This avoided losing a
rare beneficial genetic event due to the probabilistic selection process.

Mutation and recombination

Two types of genetic operators were used to introduce variation
into the population, mutation and recombination (Fig. 1B). After
creating a new generation of parameter sets, 50% were randomly
drawn to be the subject of a stochastically chosen genetic operator.

The parameters were mutated by point mutations (relative proba-
bility of alteration of one parameter string, P � 0.7), deletions (P �
0.1), and duplications (P � 0.1). Point mutations consisted of multi-
plying a randomly chosen parameter with a random variable drawn
from a Gaussian distribution with 1 
 0.25 SD.

Care had to be taken to ensure the preservation of correct coding of
the parameter sets for the L-system under the mutational operators (to
not leave the language of the L-system). To that end, only complete
sets of 14 parameters, each containing all the specifications for one
dendritic tree, were subjected to deletion and duplication. A duplica-
tion consisted of taking a randomly chosen 14-tuple of parameters and
attaching a copy of it at the end of the parameter string. This lead to
the addition of a new dendritic tree. The two parameters specifying the
initial orientation were newly drawn for this 14-tuple to avoid super-
position of the dendritic tree it specifies on the parent tree.

A deletion consisted of the opposite, deleting a randomly chosen
14-tuple and thus a dendritic tree. Deletions were not applied to
neurons with only one tree.

The only type of recombination used was crossover, which oc-
curred with P � 0.1. Two parent parameter string, M and N with m
and n parameters gave rise to two daughters GN 0 �(x � 1), GM x
�m � 1 and GM 0 � (x � 1), GN x � n � 1 with x being the crossover
point. Thus the parameters were switched between strings up to the
crossover point.

The parameter string of the neuron that performed best (the subject
of elitism, see preceding text) was not subjected to the operators
introducing genetic variation.

This population of neurons generated by selection and variation
was used as a starting point for the next generation. Four hundred
generations (25,600 fitness tests) were computed and the genomes,
their fitness values and ranks were saved after every generation.

The parameters and exact algorithms used for the GA were chosen
on a heuristic basis, and they produced successfully performing
dendritic trees sometimes within only a few generations (see follow-
ing text). It is not the objective of this study to explore the multiple
parameter dimensions or implementation details of a GA. Rather we
want to show that it is possible to use GAs to achieve a function-
structure mapping of neuronal dendritic trees.

All values are given as means 
 SD.
Note that the terms gene, genome, mutation deletion, duplication,

and recombination are used here in the sense of the genetic algorithm
literature (Holland 1975; Mitchell 2001) in analogy to the genes
encoded in the DNA of real biological organisms. We do not expect
actual biological genes to individually determine the diameter,

branching angle, symmetry, and number of endpoints of dendrites as
in our simulations (see Table 2).

The genetic algorithm, although inspired by real biological evolu-
tion and sharing some of its algorithmic structure (the interplay
between selection and the introduction of variability), lacks its com-
plexity. We use it only as an optimization technique and not as a
model of evolutionary biology. Similarly, the construction of the
dendritic tree is not a model of dendritic development but a method to
parameterize branched, three-dimensional structures. The goal is not
to simulate the evolution of vertebrate neurons, but to discover
possible mapping of neuronal function to structure.

R E S U L T S

Selection for linear summation

The first task was to select for neurons performing well in
linear summation of a compound EPSP. This necessitates the
reduction of synaptic cross-saturation between two groups of
synapses.

We ran 10 GA simulation runs with populations of 64
neurons for 400 generations using different random number
generator seeds. In every GA run, the best neuron found was
not present in the initial population but rather was generated by
mutation and recombination from the neurons contained in
previous generations.

The evolutionary development of neuronal shape in all runs
qualitatively followed the same time course. In the time-
resolved fitness histogram (Fig. 3), the initial population was
represented as a shallow elevation at the bottom right edge, an
initially relatively widely spread distribution of fitness values.
Selection enriched a narrower ridge on the left side of the
initial population. This ridge represents the currently best
performing neuron. To its right, in lower-fitness bins are
isolated, less fit genomes. These genomes remain from previ-

TABLE 2. Parameters of GA runs and electrophysiological
simulations

Property Value

GA
Generations 400
Number of parameter strings (genomes) 64
Number of dendritic trees neuron 1–12
Parameters specifying one dendritic tree 14
Selection probability half-width 0.5 number of

parameter string
Proportion of parameter strings replaced per generation 0.8
Total mutation & crossover probability per parameter

string
0.5

Relative point mutation probability per parameter
string

0.7

Relative deletion probability per parameter string 0.1
Relative duplication mutation probability per parameter

string
0.1

Relative crossover probability per parameter string 0.1
Electrophysiology

Compartments per segment 2 � 1 per 30 �m
Ra 100 � cm
Cm 0.8 pF �m2

El �70 mV
gl 2 10�5 pS �m2

�s on/off 0.2, 1 ms
gs 6 10�4 pS
simulated time 20 to 100 ms

GA, genetic algorithm.
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ous generations or have a decreased fitness due to deleterious
mutation or recombination events after the last generation.

When a neuron with a better fitness value was stochastically
generated by mutation or recombination, it accumulated in the
population, which led to a collapse of the old ridge and the
erection of a new ridge. Between these transitions the ridges
were stable for 2–120 generations. These events were stochas-
tic and varied between simulation runs, reflecting the stochastic
nature of our simulations. In general, transitions became rarer
with time. The magnitude of the jump to the left in the
time-resolved fitness histogram corresponds to the amount of
improvement in the computational task (increase in the fitness
value). This magnitude was determined by the mapping of the
genotype onto the phenotype as determined by the electrophys-
iological simulations. It varied around 0.02 and was not cor-
related with the generation at which the jump occurred. Al-
though later increases in fitness value occurred, in most cases
no or only minor improvements of the best performing neuron
occurred after generation 100.

The best neurons, all of which had similar morphologies
(Fig. 5D), generally had two thin dendrites (at the base: 0.89 

1.92 �m, range: 0.2–8.98 �m) projecting in different direc-
tions from the soma. Only one type of synapse was located on
each dendrite. The dendrites thinned out further and branched
once they entered the subspace containing synapses. The
highly branched dendritic barbarizations were only 0.2 �m
thin, the minimum diameter allowed by the L-system.

This dendritic tree was electrotonically large, especially
during the activation of the synaptic conductances, and the
distal tips were electrotonically isolated (Fig. 4). This led to a
minimal change in input resistance and depolarization at the
site of one set of synapses caused by activity at the other set of
synapses. Cross-saturation between groups of synapses was
thus minimized and the summation of the two EPSPs was close
to linear (Mrl � 14.7 
 2.87 mV, Ml � 7.66 
 1.8 mV, Mr �

6.53 
 1.31 mV). In fact, the amplitude of the compound EPSP
(Mrl) was 0.992 times the arithmetic sum of the individual
EPSP amplitudes (Mr � Ml). This is only 0.82% below opti-
mum of 1 that is theoretically attainable with a passive den-
dritic tree. The average best fitness value reached after 400
generations was 0.233 
 0.018.

Comparison to nucleus laminaris neurons

The best performing neurons from each simulation run (Fig.
5) resembled the nucleus laminaris neurons in the crocodilian
and avian brain stem and the medial superior olive neurons in
the mammalian brain stem in a number of morphological and
anatomical respects.

First the groups of synapses carrying each input stream were
restricted to different primary dendrites in all classes of real
neurons and in the artificial neurons (Grau-Serrat et al. 2003).
In the real neurons, axons with auditory information originat-
ing from one ear synapse onto only one of the dendritic trees.
This is reproduced in the artificial neurons. This is not an
artifact of the zonal way of assigning synapses in our simula-
tions, as a sideward oriented primary dendrite could carry
synapses of both input populations.

The dendrites were thin (0.89 �m for artificial neuron and
the 1.78 �m for the real avian neuron) (Grau-Serrat et al. 2003)
and elongated. The lengths of the dendrites of auditory brain
stem neurons is dependent on the sound frequency they are
encoding and a quantitative comparison in this respect is
therefore not possible since we stimulated the model neurons
with only one EPSP. The dendrites of both the “artificially
evolved” as well as the real neurons were, however, both
morphologically as well as electrotonically significantly elon-
gated. This led to an electrotonic separation of the synapses
carrying the two input streams.
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FIG. 4. The electrotonic properties of the
best neurons optimized for the task of linear
summation. A: excitatory postsynaptic poten-
tials (EPSPs) at the soma and at the sites of
the synapses with both groups (black) or only
1 group of synapses active (red/blue) Middle:
neuronal morphology, indicating synapse po-
sition. B: voltage attenuation as a function of
distance to the soma before (0 ms) and during
the peak (5.9 ms) of the synaptic conduc-
tance. C: somatocentric electrotonic transfor-
mation of the neuronal morphologies before
(0 ms, left) and during the peak (5.9 ms,
right) of the synaptic conductance.
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Next we analyzed the parameter values that the GA had
converged to when finding the most successful solutions. We
compared the parameters of the best performing neurons after
400 generations from 10 different runs (using different random
number generator seeds). We pooled the parameters of den-
drites containing the right and left synapses, as their functions
are symmetric. One exception are the initial orientation and

rotational angles, 	0, and 
0, which we treated separately for
left (	0l, 
0l) and right (	0r, 
0r). We computed the mean and
coefficient of variation (CV � SD/mean) of the parameters
over all runs (Table 3). Surprisingly, only three parameter were
conserved over all 10 runs (CV 	 0.15), L�, 	0r, and 	0l. These
parameters specify the half-width of the Gaussian function
determining the length to branch point, and the initial orienta-
tion of both dendrites. What is therefore important for this task
is that the length to branch point is initially large, but then
drops quickly, so that a large number of short dendritic seg-
ments are localized in the synaptic regions. In addition, the
dendrites must point in the correct direction. However, other
similarities of the neuronal morphologies, such as the small
diameter of the dendrites, are not reflected in values conserved
across several genomes. This indicates that with the L-system
and computational task used, the optimal type of morphology
can be obtained in more than one way.

Active, voltage-dependent currents, have also been shown to
contribute to the computational properties of the neurons in the
nucleus laminaris (Parameshwaran-Iyer et al. 2003). These
properties were not included in our simulations. However, they
act synergistically with the passive properties, and the passive
properties alone allow a good approximation of the behavior of
these cells. Active currents can also be included in the optimi-
zation process, as discussed in the DISCUSSION.

There are also obvious differences between the “artificially
evolved” neurons and nucleus laminaris neurons. The real
neurons have more secondary dendrites branching off along the
stem of the primary dendrite. This indicates that although a
reduction of cross-saturation is one of the functions these
neurons may have, there might be additional functions. Also
the curvature of the real dendrites was not reproduced, al-
though this was not relevant for their electrical properties.

Despite these minor differences, the “artificially evolved”
neurons function according to the same principle as nucleus
laminaris neurons (Carr et al. 2005), by electrotonic separation
of groups of inputs. We have used the GA to automatically
establish a mapping of a function, linear summation, to a
neuronal structure, elongated dendrites with separate sets of
synapses, and have found a real type of neuron that resembles
this structure. These results confirm the structure–function
relationship believed to exist in auditory brain stem neurons.
The GA produced dendritic trees which are optimized for
linear summation, and they resembled the nucleus laminaris
neurons in important respects.

Selection for spike-order detection

Next we used a GA to find neurons that performed spike-
order detection (Figs. 6 and 7). The desired performance in this
task was to react strongly when the EPSPs were evoked in the
temporal order left e right, but weakly when evoked in the
order right e left. As in the first task, high-performance solu-
tions evolved that were not present in the initial population.
The evolutionary dynamics were similar to those observed
when selecting for linear summation, although the best per-
forming neurons were found more slowly.

The best neurons responded differentially to the order of
inputs by making the low-pass filter properties of the dendrites
carrying the two groups of synapses as different as possible.
This was achieved by placing the two groups of synapses on

D
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FIG. 5. Morphology of synaptically early auditory brain stem coincidence
detector neurons. Golgi-stained neurons from an alligator nucleus laminaris
(A), a bird nucleus laminaris (B), and a mammalian medial superior olive (C).
Reproduced with permission from Carr et al. (2005). D: neurons artificially
evolved toward linear summation of 2 groups of coincident inputs. The best
performing neurons after 400 generations from 5 simulation runs with different
random number generator seeds are shown.
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dendrites with different diameters. The dendrites carrying the
right synapses were thick (at the base: 1.5 
 1.23 �m),
unbranched, and were thus weak low-pass filters. They did not
strongly filter the EPSPr and its waveform was preserved at the
soma. In contrast, the dendrites carrying the left synapses were
thin (at the base: 0.8 
 0.72 �m) and branched into the
segments (0.2 �m diam) carrying the synapses. These den-
drites strongly low-pass filtered the EPSPl and its waveform
was much flatter at the soma than at the synapse. A side effect
of the increased low-pass filtering was an increased amplitude
reduction during propagation to the soma compared with the
other group of inputs (Fig. 8).

Because of the different waveforms, the EPSPs summed
differently when the order was interchanged. When EPSPl
(Ml � 10.91 
 0.78 mV) preceded EPSPr (Mr � 7.13 

0.59 mV) by 15 ms, EPSPr started from a higher voltage,
bringing the peak amplitude of the compound EPSPlr(�t�15ms) to
Mlr(�t�15ms) � 16.89 
 1.01 mV. In contrast, when EPSPl
followed EPSPr by 15 ms, EPSPl started from a lower voltage
and EPSPrl(�t�15ms) reached only Mrl(�t�15ms) � 10.99 
 0.69
mV, which was only 0.08 mV larger than the amplitude of the
individual Mr. The ratio Mlr(�t�15ms)/Mrl(�t�15ms) in these neu-
rons was 1.54, and their average fitness value was 0.041 

0.023. In summary, the different low-pass filter properties of
the dendrites bearing the two groups of synapses lead to

different EPSP shapes and thus to summation properties sen-
sitive to the temporal order of EPSPs.

We analyzed the parameter values of the most successful
solutions. In the case of the spike-order detection task, the two
groups of dendrites carrying the right and left synapse had
different properties so we calculated the mean and CV sepa-
rately from the best performing neurons of 10 runs after 400
generations for both groups (Tables 4 and 5). As found in the
first task, only a few parameters each were conserved over all
10 runs (CV 	 0.15).

The first group of dendrites were the ones carrying the left
synapses to which the neuron was supposed to react strongly
when they were activated first and were therefore strong
low-pass filters in all the optimized neurons. In these dendrites,
a� and �s were conserved over all parameter sets. These
parameters specify the position of the peak of the Gaussian
function determining the asymmetry for the splitting of m, and
the half-width of the Gaussian function determining the
branching angle. These two parameters work in conjunction to
place the dendrites appropriately in the synaptic zones.

The second group of dendrites were the ones carrying the
right synapses to which the neuron was expected to react
strongly when they were activated second and were therefore
weak low-pass filters in all the optimized neurons. In these
dendrites, L0 was conserved over all parameter sets. This

TABLE 3. Parameters of best-performing neurons in the linear summation task

Parameter m0 L0 L� L� a0 a� a� �0 �� �� d0 �d 	0r 	0l 
0r 
0l

Mean 8.57 316.4 67.2 200.6 0.82 102.6 106.0 0.35 13.9 96.06 2.92 0.1 0.92 2 0.9 0.02
CV 0.36 0.23 0.47 0.06 0.87 0.23 0.19 0.16 0.43 0.28 0.59 0.57 0.109 0.006 2.82 89.7

Mean and coefficient of variation (CV) of parameters of the best-performing neurons in the linear summation task after 400 generations from 10 different runs
(using different random number generator seeds). All parameters but 	0l and 
0r, were pooled for the dendrites carrying the left (n � 14) and right (n � 15)
type synapses.
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FIG. 6. Selection for spike-order detection. Simu-
lations using a GA with 64 genomes and 400 genera-
tions. Time-resolved fitness-histograms (only the 1st
150 generations are shown). The number of genomes,
n, in the vertical axis is plotted as a function of
generation and fitness. Morphologies of the best solu-
tions from at different stages of the optimization are
shown. The red and blue dots correspond to right and
left synapses.
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parameter specifies the value of the peak of the Gaussian
function determining the length to branch point.

The relatively small number of conserved parameters indi-
cates that the task under investigation can be computed by
neurons in a number of ways.

Comparison to cortical pyramidal neurons

Cortical pyramidal neurons, particularly the large pyramids
of layer V, have two types of primary dendrites of significantly
different diameter. In these neurons, the apical dendrites are
�5 �m in diameter, whereas the basal dendrites are �1 �m. A

prediction of our function-to-structure mapping is that EPSPs
evoked in the apical and basal dendrites should sum with a
higher peak amplitude when the EPSPs are first evoked in the
basal dendrites compared with the reverse temporal order. This
prediction should hold for EPSPs evoked at synapses at an
approximately equal distance from the soma. Active, voltage-
dependent properties, which are known to be different in basal
and apical dendrites, can potentially modify the result of the
passive dendritic signal processing. However, the responses
obtained with passive properties are a good first approximation
in many cases, especially when the EPSPs are small (Rall

FIG. 7. Neurons artificially evolved toward spike-order detection. The best performing neurons after 400 generations from 5 simulation runs with different
random number generator seeds are shown. The red and blue dots correspond to right (red) and left (blue) synapses.
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difference between Mrl(�t�15ms) and Mlr(�t�15ms). Middle: neuronal morphology. The red and blue dots correspond to right and left synapses. Inset:
low-pass filter path properties as a function of the frequency of the dendritic branches indicated by color.
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1995). This study thus suggests that one possible function of
cortical pyramidal neurons is to more strongly respond to basal
EPSPs followed by apical EPSPs than to the reverse order.
This is an experimentally testable prediction of our theoretical
approach.

D I S C U S S I O N

This study is the first report of the optimization of biophys-
ically realistic neurons for solving a computational task. GAs
acting on the parameters of an L-system are capable of finding
neuronal morphologies for nontrivial computational tasks.
Starting from random initial values, similar solutions were
found by an optimization process composed of fitness value
jumps at variable times of variable magnitudes. The number of
generations needed to reach the best solution was about the
same for a given task.

Two different computational functions were studied. When
selecting for linear summation of EPSPs, neuron morphologies
were found that had groups of synapses located distantly from
each other on long, thin dendrites that were electrotonically
isolated and thus ideally suited for the task of linear summa-
tion.

When selecting for temporal spike-order detection, neuron
morphologies were found that made the low-pass filter prop-
erties of the dendrites carrying the two groups of synapses as
different as possible. By comparing the morphology to real
neurons, we were able to predict a new property of cortical
pyramidal cells that had not been suggested previously: They
should react more strongly to compound EPSPs evoked in the
proximal basal before the apical dendrites than to the reverse
order. This novel prediction can be tested experimentally,
possibly using laser-uncaging of glutamate at two different
sites on the dendrite, milliseconds apart, in both temporal
permutations (Shoham et al. 2005). There are, of course,
features of pyramidal neuron morphology that are not repli-
cated by the artificially evolved morphologies. This indicates
that spike-order detection may be only one of the functions of
dendrites in pyramidal neurons. In general, the mapping from
functions to morphologies is many to one.

Although a human armed with knowledge of dendritic cable
properties (Rall 1995) could have designed neuronal morphol-
ogies to perform these tasks, this knowledge was not explicitly

built into the GA. Rather solutions were independently discov-
ered by the GA on the basis of variation and selection. By
examining these models, two insights can be gained: first, that
synaptic cross saturation can be minimized by electrotonically
separating synapses on long and thin dendrites or by minimiz-
ing the input resistance of a neuron and second, that the
low-pass filter properties of dendrites vary as a function of their
thickness. These are well-known properties of dendrites (Rall
1995). What is novel is that the method automatically redis-
covered these dendritic properties.

The relatively small number of parameters that were con-
served over all the dendrites fulfilling one type of function is
indicative of a one-to-many mapping of structures to functions.
In the study of Achard and De Schutter (2006), the regions of
parameter space leading to a satisfactory fit of the model results
to experimental data were “foam”-shaped and connected but
irregular. In our study, combinations of parameters rather than
definite values of single parameters were important for the
generation of functional neurons.

The broader significance of our study is that the same
method can be used for automatically establishing function-
structure relationships for many other neuronal functions (Fig.
9). Only a few such relationships are known with any certainty.
Previously, such relationships could only be found by the
unreliable process of guessing and testing. Humans will inev-
itably have biases that might prevent the discovery of certain
hypotheses. The automated optimization method presented
here significantly speeds up the process of discovery with
different biases.

Comparison of artificial and biological neurons

L-systems, which were used in this study to generate neural
morphologies, can generate artificial morphologies that are
statistically virtually indistinguishable from real neurons (Sam-
sonovich and Ascoli 2005).

A class of solutions for the task of linear summation was
found that resembles the neuronal morphologies of real neu-
rons believed to carry out a task we selected for: synaptic
summation avoiding cross-saturation. These neurons, located
in the auditory brain stem of birds and mammals, react most
strongly when auditory signals from both ears coincide but
respond suboptimally to massive input from one ear only. This

TABLE 4. Parameters of best-performing neurons in the spike-order detection task, left synapses

Parameter m0 L0 L� L� a0 a� a� �0 �� �� d0 �d 	0 
0

Mean 32 191.76 104.84 234.92 0.62 100.17 108.19 0.26 11.18 102.86 5.36 0.13 2.24 0.37
CV 0.53 0.88 0.6 0.32 0.39 0.01 0.3 0.46 0.45 0.09 0.65 0.64 0.46 1.09

Mean and CV of parameters of the best-performing neurons in the spike-order detection task after 400 generations from 10 different runs (using different
random number generator seeds). These are the values of the dendrites carrying the left synapses (n � 15), which the neuron is supposed to react strongly to
when activated first. Therefore these dendrites are strong low-pass filters.

TABLE 5. Parameters of best-performing neurons in the spike-order detection task, right synapses

Parameter m0 L0 L� L� a0 a� a� �0 �� �� d0 �d 	0 
0

Mean 5.67 305.4 101.95 171.43 0.63 106.7 90.85 0.23 13.03 132.3 4.99 0.1 0.07 �0.05
CV 1.12 0.09 0.46 0.4 0.31 0.26 0.32 0.58 0.66 0.61 0.22 0.46 1.3 �2.87

Mean and CV of parameters of the best-performing neurons in the spike-order detection task after 400 generations from 10 different runs (using different
random number generator seeds). These are the values of the dendrites carrying the right synapses (n � 12), which the neuron is supposed to react strongly to
when activated second. Therefore these dendrites are weak low-pass filters.
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can be achieved by electrotonically isolating the inputs from
the left and right ear, something that can be implemented by
separating them on two long thin dendrites. We did not include
active currents in the dendrites, which might have altered the
solutions (Agmon-Snir et al. 1998).

The solutions found for spike-order detection had one set of
thick and one set of thin primary dendrites. This is a salient
feature of cortical pyramidal neurons.

These two examples demonstrate the usefulness of our
method (Fig. 8). In both cases, a computation was first pro-
posed. Then the optimization was used to automatically deter-
mine neuronal morphologies capable of carrying out these
computations. It essentially found an L-system that maps from
a function in function space to a set of morphologies in
morphology space. A comparison was made in morphology
space between the artificial neuron and a real neuron. The
similarity suggested that the real neuron could perform the
computation that the artificial neuron was selected for. In the
case of selection for linear summation, a similarity was found
between the artificial neurons and neurons of the avian brain
stem nucleus laminaris. This confirmed a hypothesis about the
structure-function relationship in these neurons. In the case of
selection for spike-order detection, a similarity was found
between the artificial neurons and cortical pyramidal neurons.
This generated a hypothesis about the structure-function rela-
tionship in pyramids that can be experimentally tested.

Collecting input signals constitutes another evolutionary
pressure on neural morphology. This would mean optimizing
axonal arbors as well as dendritic trees. In axons, the propa-
gation of an action potential is regenerative, and therefore the
addition of more axonal length would not change the height or
shape of the signal at the termination of the axon. Axons are
thus more flexible than the dendrites in terms of morphology.
Where this might prove to be essential is in structures like the
cerebellum where the geometry may be dominated by the need
to maximize synaptic inputs. Some work along these lines has
already been taken up by Chlovskii and colleagues (Chen et al.
2006).

In most instances, the real and the artificially optimized
neuron will not be completely identical. Rather they will share

only certain aspects of their morphologies, which are the
critical ones for the computation under question. Typically, we
expect the real neurons to be more complex as they most likely
evolved to fulfill more than one function.

We also asked whether the solutions found by nature are
unique or one of several possible solutions (whether or not the
function to structure mapping is degenerate). If alternative
solutions are found by the optimization, the question arises
whether the alternative are found in nature. If not, it is possible
that additional biological constraints are needed in the optimi-
zation.

Rather than trying to guess the function of a particular
neuron, it should be possible to generate a large dictionary of
morphologies, based on a large set of possible functions, and to
find the closest of the neurons in the dictionary because each
entry in the dictionary is labeled with the function that gener-
ated it. The match automatically provides a possible computa-
tional function for the neuron (Fig. 9).

An important point is to distinguish between finding a
structure-function relationship and understanding the nature of
this relationship. The first can be achieved automatically by our
method. The second, once a neural model able to perform the
desired function has been found, still needs the knowledge and
insight of the scientist. In this sense, our method does not
replace the human but acts as an “intuition pump.”

Relation to previous work

GAs have been applied to L-systems modeling plant growth
(Jacob 1995). The aim was to maximize the number of leaves
and flowers on a plant. GAs were extremely successful in
solving this problem. Solutions were found in even fewer
generations than in our study possibly because leaf and flower
number is a more direct consequence of the structure generated
by the L-system than electrophysiological performance.

GAs have also been used to evolve highly abstract models of
nervous systems, artificial neural networks. These approaches
have led to useful solutions for problems in machine learning
(Jacob 1993; Moriarty 1997, 1998).

FIG. 9. Mapping of neuronal function to
structure. Schematic depiction of the func-
tion space (left), which is automatically
mapped onto the morphology space (right)
by the L-system. The GA finds the L-system
for the mapping that maximizes the fitness
function F. The computation of spike-order
detection is a member of the function space.
It is mapped onto the 2 populations of best
performing artificial neurons found (gray).
They are then compared with a reconstruc-
tion of a real neuron (blue). Similarities
(indicated by alignment along 1 axis) sug-
gest a common function. The traditional ap-
proach of the discovery of neuronal struc-
ture-function relationships, going in the re-
verse direction, is indicated below.
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There have been a number of studies where GAs were used
to search the parameter space of biophysically realistic single-
neuron simulations (Achard and De Schutter 2006; Eichler
West 1997; Keren et al. 2005; Vanier and Bower 1999). In
these studies, GAs were used to find the conductance densities
for a model of a hippocampal pyramidal neuron so that it
would most closely reproduce experimental data. This ap-
proach successfully solved the problem, frequently encoun-
tered in neuronal modeling, of fitting a model to experimental
data. This serves a different purpose than our approach, which
searches for neurons that optimally perform a certain compu-
tation.

Future directions

We included only passive properties in the neuron model
used in this study as a first step. The next step is to include
active conductances in the optimized neurons. As with den-
dritic morphologies, there is a wide variety of active conduc-
tances in neurons (Johnston and Wu 1995) that are differen-
tially distributed on the dendritic trees (Colbert et al. 1997;
Hoffman et al. 1997; Magee 1999). The application of our
method will help elucidate the computational significance of
these differences. The studies mentioned in the preceding text
that use GAs to fit models to experimental data (Achard and De
Schutter 2006; Eichler West 1997; Keren et al. 2005; Vanier
and Bower 1999) indicate that GAs can find solutions in
higher-dimensional parameters spaces that include the param-
eters for active conductances.

In principle, active properties of neurons can be encoded in
the parameters of an L-system along with passive parameters,
such as the dendritic diameter or branching angle. The in-
creased dimensionality and the stronger parameter sensitivity
of active systems will, however, make this a more challenging
task for the method presented here. It remains to be seen how
successful it will be in such tasks. A fine tuning of the GA
(mutation rate, population size etc.) might be necessary to
tackle these advanced problems. In this sense, the current
report constitutes a first step in a research program designed to
automatically determine function-structure relationships in
neurons.

Some computational functions of neurons are more reliant
on the passive properties of dendrites, others on active prop-
erties. The two functions we investigated in this report are of
the first type. The GA found neurons that could perform these
functions quite well. There may be other functions that cannot
be easily computed with passive dendrites. It will be interesting
to investigate which functions necessitate the presence of
active currents.

The present study has investigated instances of the mapping
of computational tasks onto neural morphologies. Libraries of
reconstructed neurons are available as well as sophisticated
software packages to determine their statistical properties (As-
coli et al. 2001b; Samsonovich and Ascoli 2003, 2005). It
would be intriguing to comprehensively map computational
tasks onto morphologies. An automatization of not only the
first step, the mapping of function to structure, but also the
second step, the comparison of the optimized neurons to real
neurons, will further increase the power of this method. This
would generate predictions for the types of computations that

different classes of neurons evolved to perform in the func-
tioning brain.

A P P E N D I X : U S A G E O F T H E S I M U L A T I O N C O D E

The simulation code used in this study is available via the Senselab
model database (http://senselab.med.yale.edu/senselab/modeldb/) or
can be obtained from K.M.S. To run the simulations, install NEURON
(www.neuron.yale.edu), and execute GA.hoc.

To look at the best-performing neuron in every generation, execute
LOAD_WINNER.hoc, enter the desired generation and press the
“load” button. To modify the basic parameters of the GA (mutation
rates, population size, random number generator seed), change them
in the first block of GA.hoc. The procedure performing the fitness test
is celled lineartest(), executed at line 99 of GA.hoc and contained in
the file lineartest.hoc. The actual score of a neuron is computed in a
subroutine of lineartest() called scoreme(), at line 11. There, score[]
is assigned the sum of the variables linearity (computing the linearity
of the EPSP summation), equalsize (computing how close in size the
EPSPs are), and dsize (computing the size of the dendritic tree as a
fraction of the average dendritic tree of the 1st generation). The user
can easily change the calculation of score[] here and for instance
select for neurons that sum EPSPs in a particular sublinear manner.

In lineartest() and linearrun(), contained in lineartest.hoc, the times
at which the EPSPs are evoked are specified, and the simulations are
executed. A wide variety of computational functions can be specified
by altering these routines,. The user can also execute a completely
different procedure at line 99 in GA.hoc. The fitness values need to be
passed into the array variable score[] (with the array size equal to the
population size) and the electrophysiological simulations should then
be executed.
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