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Abstract

Spatial heterogeneity can have dramatic effects on the biochemical networks that drive cell regulation and
decision-making. For this reason, a number of methods have been developed to model spatial heterogeneity
and incorporated into widely used modeling platforms. Unfortunately, the standard approaches for specify-
ing and simulating chemical reaction networks become untenable when dealing with multistate, multicom-
ponent systems that are characterized by combinatorial complexity. To address this issue, we developed
MCell-R, a framework that extends the particle-based spatial Monte Carlo simulator, MCell, with the rule-
based model specification and simulation capabilities provided by BioNetGen and NFsim. The BioNetGen
syntax enables the specification of biomolecules as structured objects whose components can have different
internal states that represent such features as covalent modification and conformation and which can bind
components of other molecules to formmolecular complexes. The network-free simulation algorithm used
by NFsim enables efficient simulation of rule-based models even when the size of the network implied by
the biochemical rules is too large to enumerate explicitly, which frequently occurs in detailed models of
biochemical signaling. The result is a framework that can efficiently simulate systems characterized by
combinatorial complexity at the level of spatially resolved individual molecules over biologically relevant
time and length scales.

Key words Rule-based modeling, Spatial modeling, Particle-based modeling, Stochastic simulation,
Network-free simulation, Compartmental modeling

1 Introduction

Computational modeling has become an important tool for study-
ing the dynamics of complex reaction networks [1]. In traditional
modeling approaches a modeler defines the species of interest
together with a reaction network that specifies the kinetics of the
system. If the number of individual reactant molecules in the system
is high (103 or greater), it is possible to simulate the model deter-
ministically by numerically solving ordinary differential equations
(ODEs). But if the number of individual molecules is on the order
of hundreds or smaller, then stochastic effects may be important
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and stochastic simulation methods, such as Gillespie’s stochastic
simulation algorithm (SSA) [2], are required. A number of software
platforms, such as CellDesigner [3] and COPASI [4], facilitate the
specification, simulation, and visualization of reaction networks and
their dynamics.

Another important consideration in the development of accu-
rate models is the potential importance of spatial effects. Both the
ODE and SSA approaches assume that the involved molecules can
be treated as if they are uniformly distributed in space. That such
models often give accurate representation of observed dynamics
and meaningful predictions is belied by the fact that cells are
anything but well-mixed containers. In fact, spatial models are
required to accurately describe many biochemical phenomena at
the cell level, including transmission of signals in neuronal spines
[5], organization of proteins that control cell division in bacteria
[6], and many other systems [7, 8]. Spatial considerations can be
added to a reaction network model by defining compartments and
compartment boundaries that restrict the movement of molecules
in a system. The spatial description can be further refined by defin-
ing compartment geometries and explicitly representing the species
concentrations as a function of position. If species concentrations
are taken to be continuous, the system can be modeled as a set of
partial differential equations (PDE) that are affected by both the
diffusion of the species and their reactions with each other. The
Virtual Cell is an example of a simulation platform that provides a
general-purpose implementation of this approach for cell biological
models [9]. Spatial simulations feature two distinct approaches to
treating stochastic effects arising from discrete molecular popula-
tions. At the so-called mesoscopic level, space is divided into a set of
voxels, each of which tracks the number of each species it contains
[10, 11]. StochSS is a general-purpose simulation tool that imple-
ments this approach [12]. Diffusion between voxels and reactions
within voxels are tracked as discrete events, but individual particles
are not tracked. At a finer level of resolution, particle-based meth-
ods instantiate every molecule in the system and model their diffu-
sion and reaction explicitly. Smoldyn [13] and MCell [14] enable
the development and simulation of such models.

A common thread connecting these approaches is that the
modeler must define the full reaction network as part of the
model specification. Biochemical networks that regulate cellular
function are often characterized by combinatorial complexity,
which can make manual specification of the reaction network
tedious or even infeasible [15, 16]. For example, a receptor with
10 phosphorylation sites has 210 ¼ 1024 states of phosphorylation
and a correspondingly large number of possible reactions. Aggre-
gation of receptors or binding of adaptor molecules to these sites
can create complexes with an astronomical number of possible
states. Rule-based modeling is a paradigm that was developed to
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deal with combinatorial complexity by building up species and
reaction networks from structured molecules and rules
[17–19]. Its graph-based approach to model specification allows
the full reaction network to be specified by a much smaller number
of reaction rules [20]. The modeling frameworks BioNetGen [21],
Kappa [22], and Simmune [23] are examples of software frame-
works that implement this rule-based approach.

A number of spatial simulators have integrated rule-based
modeling capabilities. Simmune [23] uses a subvolume-based
PDE approach for reaction dynamics such that the necessary equa-
tions are generated on the fly within each subvolume based on local
concentrations and global set of rules. This approach, however,
neglects stochastic effects. BioNetGen has a compartmental exten-
sion that considers the division of the system into well-mixed sub-
volumes [24], which allows for both deterministic and stochastic
simulations, but provides a lower degree of spatial resolution. The
Stochastic Simulation Compiler [25] combines a mesoscopic sto-
chastic spatial approach with rule-based model definition and
pre-compiles the expanded reaction network into assembly lan-
guage for efficient simulation. Unfortunately, the software is no
longer actively maintained or developed, and works on a dwindling
number of platforms, not including Microsoft Windows. SpatialK-
appa [26] is an extension to the Kappa language and simulation
tools that also implements next-subvolume diffusion. Smoldyn was
extended to incorporate rule-based modeling capabilities based on
either a wild card-based syntax (see Andrews, Chapter 8) or BioNet-
Gen language [27]. SpringSaLaD [28] performs Brownian dynam-
ics simulations, which unlike other spatial simulators mentioned so
far include the effects of volume exclusion, based on a multistate
multicomponent specification. The drawback of this approach,
however, is that it requires a much smaller time step compared
with other spatial simulators, which makes it impractical for simula-
tions on the cellular length and timescales. Another platform that
integrates a Brownian dynamics simulator with rule-based model
specification is SRsim [29, 30].

One limiting factor for most of these spatial simulators is the
need for the reaction network to be generated from the rule speci-
fication prior to simulation. Even though the rule-based approach
facilitates the specification of a model, in the face of a high degree of
combinatorial complexity pre-computation may become a liability
[16, 31]. For example, it was shown that generating the full reac-
tion network for a model of the CaMKII system on a standard
2.54 GHz Intel Xeon processor would take 290 years [32].

The basic premise of network-free simulators is to individually
store in memory every molecular species in the system as an inde-
pendent object, such that their progress is tracked throughout the
course of the simulation. The algorithm then proceeds to directly
map the set of reaction rules in the system (instead of the full
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reaction network) to these particle agents whenever a biological
event is scheduled to occur. If an event is triggered, then a set of
matching particles is chosen as reactants and transformed to create
the products specified by the reaction rule. This approach avoids
the need to pre-compute the full reaction network at the cost of
keeping the complete set of molecular agents in memory. The
memory cost of this network-free approach scales linearly with the
number of rules and particles instead of the number of possible
species and reactions. Since the number of rules is typically much
lower than the number of reactions, there can be a substantial
memory saving [33]. Some examples of nonspatial simulation plat-
forms that implement a network-free approach are StochSim [34],
RuleMonkey [35], NFsim [16], and KaSim [22].

This chapter presents a new rule-based, spatial modeling frame-
work that provides accurate simulation results at the particle reso-
lution scale and that is not limited by combinatorial complexity in
its simulation efficiency. The simulator we have developed, MCell-
R, integrates two existing simulators that we have mentioned
above: MCell and NFsim. The MCell spatial simulation engine
provides efficient simulation of particle-based reaction-diffusion
dynamics in arbitrarily complex geometries, and NFsim provides a
library of functions to carry out the graph operations required for
efficient network-free simulation in a spatial context. As described
in Subheading 2, MCell’s particle-based simulation algorithm has
been extended to use NFsim to determine reaction probabilities
involving arbitrarily complex multistate and multicomponent spe-
cies. This integrated capability allows models to be simulated effi-
ciently regardless of the size of the reaction network implied by the
rules and without generating the full network. A user is thus free to
explore the effects of features such as multi-site phosphorylation
and multivalent binding without having to worry about the num-
ber of possible species and reactions.

Subheading 3 introduces a language extension that we have
developed for MCell’s Model Description Language (MDL) that
we have called MDL rules or MDLr for short. This extension
incorporates rule-based descriptions of structure molecules and
reaction rules based on the BioNetGen language (BNGL) syntax.
Several examples are provided along with validation tests that dem-
onstrate the accuracy of the MCell-R simulator.

2 Materials

At the time of this writing, MCell-R is currently under active
development. Source code and instructions for compiling MDLr
can be found at the GitHub repository for MCell (http://github.
com/mcellteam/mcell). We also plan to release installation
packages for major platforms including MacOS, Linux, and
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Windows, which will be available on the MCell web site (http://
mcell.org). Work is also under way to incorporate MCell-R into
CellBlender, which is our graphical interface for spatial modeling
that enables interactive specification and simulation of spatial mod-
els without writing MDL files [36]. The main goal of this section is
to present the algorithmic and software extensions to both NFsim
and MCell that were required for the development of MCell-R.
The section is divided into two parts with Subheadings 2.1 and 2.2
describing extensions to NFsim and MCell, respectively, that were
required to construct the integrated simulator.

Currently, MCell-R models are specified in theMDLr language
that will be presented in more detail in Subheading 3. MDLr is an
extension of MDL that allows the user to introduce multistate
multicomponent elements, including molecule components and
states as well as reaction rules that operate on these into an MCell
model definition. As shown in Fig. 1, the MDLr preprocessor
extracts the rule-based graph information from an MDLr input
file and generates two separate input files: an MCell model spatial
definition encoded in MDL and rule-based model definition that is
used for NFsim initialization encoded in BNGL. These model
definitions are then used to initialize MCell and NFsim compo-
nents separately. In order to facilitate efficient simulation, NFsim
functionality has been encapsulated in a software library that is
invoked by MCell at runtime so that the simulator runs in a single
process. To construct the integrated MCell-R simulator, the fol-
lowing extensions were developed to the NFsim and MCell
frameworks:

NFsim

l Encapsulation of the functionality present in NFsim as a stand-
alone API such that it can be incorporated in other simulation
frameworks (Subheading 2.1.1).

l Implementation of the compartmental BioNetGen specification
in NFsim such that spatial considerations can be taken into
account during the selection of graph-based events (Subheading
2.1.2).

Fig. 1 Overview of MCell-R model specification and simulation. The model is defined in an MDLr file and
processed by the MDLr preprocessor, which generates input files for both MCell (MDL) and BioNetGen (BNGL)
that are then used to initialize MCell and libNFsim, respectively
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l Development of methods to determine diffusion constants for
complexes composed of multiple molecules (Subheading 2.1.3).

l Implementation of a hierarchical namespace framework such
that attributes and properties can be attached to complexes,
compartments, molecule types, and reaction rules (Subheading
2.1.4).

MCell

l Extensions to the MCell event scheduler such that it can handle
network-free events, structured objects, and their properties by
communicating with NFsim (Subheading 2.2.1).

l Extensions to the MDL specification language and the MCell
internal model representation to define, initialize, and track
multistate, multicomponent objects (Subheading 2.2.2).

The remainder of this section describes these extensions in
further detail. Readers who are primarily interested in using
MCell-R may safely skip to the tutorial provided in Subheading 3.

2.1 Extensions to

NFsim

2.1.1 Development of

libNFsim

In order to leverage the simulation capabilities present in NFsim so
that they can be integrated with other simulation frameworks,
including MCell, we designed and implemented an API around
the NFsim engine called libNFsim. libNFsim exposes the model
specification setup and simulation functionality present in the
NFsim suite as a set of library calls that can be integrated into
third-party simulation platforms as a shared library. We show in
Fig. 2 the methods available in the first release of the library, which
is available as a stand-alone package at https://github.com/
mcellteam/nfsimCInterface. The methods can be summarized as
follows:

l Model setup and initialization (Fig. 3a): The model is defined in
an XML encoding of a BNGL file that is produced by BioNet-
Gen and read by NFsim [16]. This specification is used to create
the data structures that NFsim uses during the simulation, which
include parameters, molecule types, reaction rules, and observa-
bles. Once these data structures are created, the model is check-
pointed such that the user can always reset to this point. After
model setup, the model initialization defines the species copy
numbers and reaction rate parameters.

l Model simulation (Fig. 3b, c): libNFsim allows queries of reac-
tion rule rates and control over specific rule firings. This fine-
grained access to simulation functions is required for the inte-
gration with MCell, as discussed further below. For other appli-
cations, libNFsim allows calls to NFsim’s standard simulation
engine to propagate for a fixed number of steps or a fixed
amount of simulation time.
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l Model state querying (Fig. 3d): libNFsim enables the user to
query both static and dynamic properties of the model, such as
the compartment structure, the copy number of species with
specified properties, or the value of an arbitrary function of these
properties.

Fig. 2 Functions available in the libNFsim API classified by their functionality. Model setup methods provide
libNFsim with the basic model definition and check-pointing functionalities. Model initialization methods allow
the user to set the initial species copy numbers and model parameter values. The Experiment setup methods
allow the user to specify a full simulation protocol that may start and stop the simulation, change model
parameters or species concentrations, and query different model observables

Fig. 3 Simulation workflow with libNFsim. The API functions are represented as arrows with the inputs and
outputs shown as tables. (a) Simulation initialization is done by providing a list of reactant species, specified
here using BNGL strings, and copy numbers. In this example, the first BNGL string specifies that a ligand-
receptor complex is initially present. Its overall compartment location is PM, as indicated by the initial “@PM”,
but the L molecule resides in the EC and upon dissociation from the receptor complex the L molecule would be
a species located in EC. (b) A call to the query function “queryActiveReactions” returns a list of reactions rules
with nonzero propensities. (c) The “stepSimulation” function fires a specific reaction rule. This function is used
by MCell-R, which uses an MCell function to select over the active reactions when a species-species collision
occurs. (d) The “queryStatus” function can be used to determine the number of species matching a particular
query pattern. Here, the number of receptor-ligand complexes with two ligand molecules is returned
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2.1.2 Handling of Spatial

Compartments

BioNetGen allows optional specification of compartmental infor-
mation in a rule-based model [24]. Compartments are idealized,
well-mixed spatial subvolumes that restrict how species can interact
based on their location. A compartment is defined by its name, size,
dimensionality, and location in a compartment hierarchy defined by
a tree structure. For example, Fig. 4 shows a compartmental hierar-
chy composed of an extracellular container (EC), which surrounds a
plasma membrane (PM) that encloses the cellular cytoplasm (CP).
Note that in this hierarchy each three-dimensional (3D) container
(EC or CP) can contain an arbitrary number of two-dimensional
(2D) membrane structures (PM), whereas each 2D structure can
enclose just a single 3D one. A species, which is comprised of
molecules, can exist in either a single compartment (Fig. 4a, c) or
can span multiple compartments if one of the constituent molecules
is in a 2D compartment and is bound to molecules in one of the
adjacent volume compartments (Fig. 4b, d).

Prior to the development of MCell-R, NFsim did not handle
compartments in a BioNetGen model specification. Several situa-
tions that arise in spatial simulations, however, require tracking the
location of constituent molecules in complexes. These include the
following:

l Unbinding of volume-surface complexes: For example, in
Fig. 4d, the breaking of the bond between the molecules TF
and R in the membrane-associated complexes should allow TF
to return to the CP compartment, which is facilitated by asso-
ciating the specific TF molecule with the compartment location,
CP, as indicated by the “@CP” tag at the end of the BNGL string
for the complex.

Fig. 4 Representation of multistate molecules and complexes using compartmental BioNetGen language [24].
(a) Ligand dimer located in EC. (b) Tetrameric complex consisting of two L and two R molecules. The species is
localized to the PM by the Rs, but the L molecules remain in the EC. (c) TF dimers localized to CP. The
dimerization component, “d”, must be in the state “pY” for the bond to form. (d) TF bound to a phosphorylated
R molecule in the PM from the adjacent CP compartment
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l Compartment aware reaction rules: The modeler may wish to
restrict the spatial scenarios in which one or more reactants
interact to produce products.

For this reason, a compartment attribute was added to the
molecule data structure in libNFsim, which communicates com-
partmental locations to MCell through the reaction graph strings
used to identify a complex.

2.1.3 Calculation of

Diffusion Constants for

Complexes

In a manually specified reaction network, every species must be
assigned a diffusion constant. In a rule-based model, however,
because application of the rules may generate novel complexes
that are not in the model specification, a method is required to
assign diffusion constants to complexes based on their composi-
tion. The current implementation of MCell-R uses simple combin-
ing rules to determine the diffusion constants of complexes. For
each uncomplexed molecule in the model specification (called a
Molecule Type in BioNetGen), a default radius is specified. For
molecules in a 3D volume, the molecular volume is assumed to be
that of a sphere of the assigned radius. The radius of a complex is
then taken as that of a sphere with a volume equal to the sum of the
volumes of the constituent molecules. Similarly, for a surface mole-
cule, the radius is used to calculate a corresponding surface area and
the radius of a complex is determined by finding the radius of a
circle with an area equal to the sum of areas of the constituent
molecules. Mathematically, these combining rules can be written
simply as

rcomplex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

r3n3

r

r surface ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

r2n2

r

,

where rcomplex is the radius of a complex in a 3D volume, rsurface is
the radius of a surface complex, and the rn are the radii of the
constituent molecules (3D or 2D as appropriate).

These complex radii are then converted to diffusion constants
using either the Stokes-Einstein equation for 3D [37],

D ¼ kBT

6πηr
,

where kB is the Boltzmann constant, T is temperature in Kelvin, η is
the viscosity, and r is the sphere’s Stokes radius, or the Saffman-
Delbrück equation for 2D [38],

D ¼ kBT

4πμh
log

μh

ηr
� γ

� �

,
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where μ is the viscosity of the membrane, h is the thickness of the
membrane, η is the viscosity of the surrounding fluid, and γ is the
Euler constant.

2.1.4 Extensions to the

NFsim Data Model

To enable the features defined in the preceding two sections as well
as other integrations withMCell that are discussed below, we added
to NFsim the concept of hierarchical namespaces: A namespace in
this context is a set of properties associated to a single element in
the BioNetGen object hierarchy. Consider for example the Stokes-
Einstein formula for the diffusion of 3D complexes. The formula is
a function of the Boltzmann constant (a system-wide property), the
temperature (which can either be system-wide or compartment
specific), the compartment’s viscosity, and the complex’s Stokes
radius, which is a function of the radii of its subunits. If we consider
the diffusion of a particular complex it must have access to all the
aforementioned variables. This can be solved if we consider a com-
plex as a part of a hierarchy where it is contained by a compartment
and the system-wide variables while at the same time being a
container for its constituent subunits. Moreover, a complex has
properties associated to itself like its diffusion function.

Implementation of hierarchical namespaces allows a given
entity to access the variables associated with its containers and its
subunits as required. Container relationships are dynamic and
dependent on the state of the system. A property can be assigned
to a given entity in the BNG-XML model specification as a ListOf-
Properties child entry associated with a Model, Compartment,
Molecule Type, Reaction Rule, Species, or another Property.

2.2 Extensions to

MCell

2.2.1 Modification of

MCell’s Simulation

Algorithm to Incorporate

Structured Molecules

To enable simulation of interactions between structured molecules
and complexes, the core simulation algorithm of MCell was mod-
ified so that it queries libNFsim when specific information is
required about possible reactions involving these species. These
query points, indicated by the unshaded boxes in the schematic
description of the MCell-R algorithm shown in Fig. 5, occur fol-
lowing particle creation, particle collision, and reaction firing. In
the remainder of this section we describe how events involving
structured molecules are handled in greater detail.

Particle creation. In MCell when a new particle is created
(“structured molecule is created” in Fig. 5) either as a result of a
reaction firing that creates new products or from a user-defined
species release, MCell determines the set of unimolecular reactions
it can undergo by comparing against a hash lookup table [14]. In
MCell-R this set is determined by a call to libNFsim (“query NFsim
for molecule properties”) that passes the graph pattern associated
with the particle. libNFsim returns the propensities of the unim-
olecular reactions corresponding to the graph pattern, and the
lifetime of the particle and the unimolecular process it undergoes
at that time are chosen assuming that the firing times are

212 Jose-Juan Tapia et al.



exponentially distributed [14] (“lifetime calculation”). Unimole-
cular reactions are placed in a scheduling queue and fired at the
appropriate time (“Unimolecular rule”).

Particle collision. libNFsim is invoked in a similar way following
bimolecular collision events (“detect collision”) in MCell-R, which
passes the graph patterns of both of the involved species (“query
NFsim for bimolecular rules”). libNFsim returns the propensities of
the possible bimolecular reactions that can occur. MCell-R then
determines whether a reaction occurs during the current time step
and, if so, which of the possible biomolecular events occurs (“eval-
uate biomolecular reaction propensities”), according to previously
described procedures [14, 36]. We note that using libNFsim to
calculate the propensities of the colliding particles does not affect
the accuracy of the simulation algorithm, but, in the case of species
exhibiting a high degree of combinatorial complexity, may improve
its efficiency.

Reaction firing. When MCell-R fires a reaction, either unim-
olecular or biomolecular, it queries libNFsim once again to obtain
the graph structure of the corresponding products and associated
properties, most notably the diffusion constant (“query NFsim for
product molecules”).

Fig. 5 MCell simulation algorithm with modifications for MCell-R. The boxes with a white background indicate
the points at which MCell calls functions in the libNFsim API
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2.2.2 Extensions to the

MCell Data Model and MDL

Our implementation of MCell-R allows models to be constructed
that involve both structured and unstructured molecules. The
MCell data model has been extended in the following ways to
distinguish between these types and also to include the necessary
graph information about structured molecules that enables libNF-
sim to perform the necessary operations described in the preceding
section. The primary extensions are as follows:

Proxy molecule types. In MCell-R a given molecule type can be
marked with the EXTERN qualifier in the model definition, which
instructs MCell to delegate all calculations about its reactions and
properties to an external simulation engine (libNFsim in our imple-
mentation). All multicomponent particles are then instances of
these two base proxy types (see Note 1).

Graph patterns. Proxy molecules are distinguished from each
other by an associated graph pattern, stored as a string, which is
used during communication with libNFsim. The graph string,
which is created by libNFsim at initialization based on user input
or when new particles are created by reaction rule firings, has a
format similar to BNGL. The label for each distinct species is
unique because the order of molecules and components is deter-
mined by the NAUTY graph labeling algorithm [39]. See Note
2 for an example.

3 Methods

The current interface to MCell-R uses a hybrid language that
extends the Model Description Language (MDL) of MCell with
elements of the BioNetGen language (BNGL) to enable specifica-
tion of multicomponent molecules and rules. The graphical inter-
face for MCell, called CellBlender, will allow interactive
specification of MCell-R models without requiring knowledge of
MDLr (see Note 3). In this section we describe the main elements
of MDLr and present two models that demonstrate the basic
capabilities of the MCell-R simulator. We conclude with a discus-
sion and the current limitations and future plans.

3.1 Specifying an

MCell-R Model

Using MDLr

MDLr is an extension of the MDL language defined as a set of
preprocessor directives that allow the user to introduce multistate
multicomponent elements into an MCell model definition. The
basic syntactic features are described below, but for more details
about MDL see the MCell Quick Reference Guide and MCell
Reaction Syntax documents available at http://mcell.org/docu
mentation. The preprocessor is invoked on MDL sections that are
preceded with the hash symbol. Sections have been modified to
enable introduction of structured molecules, definition of reaction
rules that operate on features of structured molecules, definition of
a compartment hierarchy, release sites for structured molecules, and
definition of output observables that track features of structured

214 Jose-Juan Tapia et al.

http://mcell.org/documentation
http://mcell.org/documentation


molecules and their complexes. Examples of each of these exten-
sions are provided in the following subsections. A full grammar
definition of the MDLr language extension is given in [40].

3.1.1 Definition of

Molecule Types

Molecules are the basic building blocks of both MCell and BioNet-
Gen models, but they have a different meaning in each that must be
reconciled. In MCell, molecules represent the chemical species that
function independently for the purpose of diffusion and/or reac-
tion. Thus, in MCell, a complex between two molecules, a ligand
and a receptor for example, is represented as a distinct molecule.
When a reaction occurs in MCell, the reactant molecules are
deleted and replaced by the product molecule or molecules. In
BioNetGen, molecules represent the building blocks of complexes.
They may contain components that serve as binding sites to other
molecules or that take on different states, which can represent
covalent modification (e.g., phosphorylation) or conformations.
When a reaction occurs in BioNetGen, the reacting molecules are
transformed to match the product specification. For example, a
ligand-receptor binding reaction may be carried out by adding a
bond between components of a ligand molecule and a receptor
molecule. In this way, BioNetGen tracks explicitly the binding and
internal states of all species in the system, which include both
individual molecules and complexes of molecules. MDLr expands
the syntax for MCell molecule definition to include the BNGL
syntax for defining structured molecules [20, 21, 41]. In this
syntax, components are defined within parentheses and the allowed
states of a component are defined by strings beginning with the “~”
character. A pair of structured molecules representing ligand and
receptor could be specified as follows in MDLr:

#DEFINE_MOLECULES {

Lig(l,l){

DIFFUSION_CONSTANT_3D = "Einstein_Stokes"

}

Rec(a,b~Y~pY,g~Y~pY){

DIFFUSION_CONSTANT_2D = "Saffman_Delbruck"

}

}

The ligand molecule, “Lig”, has two identical components
called “l”, and the receptor molecule, “Rec”, has three compo-
nents, “a”, “b”, and “g”. Both the “b” and “g” components have
an associated state representing the unphosphorylated (“Y”) and
phosphorylated (“pY”) states of tyrosine residues associated with
specific receptor subunits. The diffusion constants associated with
each of these molecule types are specified using the MDL keywords
DIFFUSION_CONSTANT_3D and
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DIFFUSION_CONSTANT_2D, which identify the
corresponding molecule types as volume and surface molecules,
respectively.

3.1.2 Definition of

Reactions

Reactions in BioNetGen are generated by reaction rules that
describe the properties that structure molecules must have in
order to undergo a reaction and how the reaction transforms
these molecules when it fires. To enable specification of rules,
MDL’s reaction syntax has been extended to allow BNGL-style
rules to be entered in the DEFINE_REACTIONS block. The
BNGL syntax was also slightly modified to require enclosing of
rate constants in square brackets (the MDL convention). In addi-
tion, the rate constants must be specified in units following the
MCell convention: s�1 for unimolecular reactions, M�1 s�1 for
bimolecular volume reactions, and μm2 s�1 for bimolecular surface
reactions. An example of reaction specification in MDLr is as
follows:

#DEFINE_REACTIONS{

/* Ligand-receptor binding */

Rec(a) + Lig(l,l) <-> Rec(a!1).Lig(l!1,l) [kp1, km1]

/* Receptor-aggregation */

Rec(a) + Lig(l,l!+) <-> Rec(a!2).Lig(l!2,l!+) [kp2, km2]

/* Constitutive Lyn-receptor binding */

Rec(b~Y) + Lyn(U,SH2) <-> Rec(b~Y!1).Lyn(U!1,SH2) [kpL, kmL]

}

The second rule provides an example of using a bond wildcard,
“!+”, to specify binding of a receptor to a ligand molecule that is
already bound at one of its l components. The third rule specifies
the binding of a Lyn molecule to a Rec molecule at its b compo-
nent, which must be both unbound and in the unphosphorylated
(“Y”) state.

3.1.3 Compartment

Hierarchy and Molecule

Release

The INSTANTIATE Scene command in MDL is used to define the
compartments and the initial placement of molecules in the simu-
lation. Compartments are defined using surface meshes, which are
called OBJECTs in MDL. In MDLr, surface meshes must be closed
and placed in a hierarchical structure corresponding to the specifi-
cation of compartments in the INSTANTIATE Scene block. The
MDL commands used to construct the actual triangulated surface
meshes are omitted here for space reasons, but extensive examples
and documentation can be found at the http://mcell.org web site,
which also provides tutorials on mesh construction using the Cell-
Blender GUI (see also [36]). The following MDLr code provides
an example of compartment and molecule release site definition:
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#INSTANTIATE Scene OBJECT {

EC OBJECT EC {

VISCOSITY = mu_EC

}

CP OBJECT CP {

PARENT = EC

VISCOSITY = mu_CP

MEMBRANE = PM OBJECT CP[ALL]

MEMBRANE_VISCOSITY = mu_PM

}

ligand_rel RELEASE_SITE{

SHAPE = Scene.EC[ALL] - Scene.CP[ALL]

MOLECULE = @EC:Lig(l,l)

NUMBER_TO_RELEASE = Lig_tot

}

receptor_rel RELEASE_SITE{

SHAPE = Scene.CP[PM]

MOLECULE = @PM:Rec(a,b~Y,g~Y)

NUMBER_TO_RELEASE = Rec_tot

}

}

Two nested volume compartments are defined here, the extra-
cellular compartment (EC) contains the cytoplasmic compartment
(CP) with the plasma membrane surface compartment
(PM) forming their boundary. The MCell OBJECTS EC and CP
are both meshes whose geometry is defined in a separate file. In
order to match BioNetGen’s nested compartment hierarchy,
MCellr extends mesh objects with the several attributes. The PAR-
ENT attribute defines the volume compartment inside which the
current compartment resides. In this example, the parent compart-
ment of CP is thus EC, whereas EC, because it is outermost in the
hierarchy, does not have a PARENT. The MEMBRANE attribute
defines the name of the surface compartment that forms the
boundary between the current compartment and its parent. For
CP, the MEMBRANE compartment is given the name
PM. Naming membrane compartments is required for molecule
placement in them. The string “CP[ALL]” after OBJECT in the
MEMBRANE definition defines the mesh elements that make up
the surface compartment. In the current implementation of MCell-
R surface compartments must be made up of closed meshes, so the
membrane of any volume compartment must always be made up of
the entire mesh that defines it.

In addition to these attributes, MDLr also allows the definition
of viscosities associated with both the compartment and its asso-
ciated membrane using the attributes VISCOSITY and MEMBRA-
NE_VISCOSITY, as shown (note that the parameters following
these declarations are defined elsewhere).
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Particle placement is performed in MCell using the RELEA-
SE_SITE object. Release sites are defined in the example above for
both ligand and receptor molecules, “ligand_rel” and “receptor_-
rel”, respectively. The SHAPE attribute is used to define the region
into which particles will be released. Here, ligand molecules are
released into the volume region between the mesh that defines EC
(“Scene.EC[ALL]”) and the mesh that defines CP (“Scene.CP
[ALL]”). Receptor molecules, on the other hand, are released
onto the surface mesh PM (“Scene.CP[PM]”) (see Note 4). In
MDLr the allowed syntax of the MOLECULE attribute is
extended to include BNGL specification of complexes. The com-
partmental attribute in the BNGL string, “@EC” for Lig molecules
and “@PM” for Rec molecules, specifies the compartment over
which molecules will be randomly placed. The number of mole-
cules to be placed is set by the attributes
NUMBER_TO_RELEASE.

3.1.4 Specifying Outputs In MDL the REACTION_DATA_OUTPUT command is used to
define properties to track during a simulation. An example of such a
property is the number of instances of species having a specified
property, e.g., phosphorylation of a particular component or a
bond between components of different molecules. In BioNetGen
these outputs are called “Observables” and are specified using
BNGL strings that may contain wild cards called “Patterns”
[21, 41]. In MDLr, BNGL patterns may be used in the REAC-
TION_DATA_OUTPUT block to specify outputs that are written
to files during the simulation. Several examples are provided in the
following MDLr code:

#REACTION_DATA_OUTPUT{

STEP = 1e-6

{COUNT[Rec(a!1).Lig(l!1,l), WORLD]} =>

"./react_data/RecMon.dat"

{COUNT[Rec(a!1).Lig(l!1,l!2).Rec(a!2), WORLD]} =>

"./react_data/RecDim.dat"

{COUNT[Lyn(U!1).Rec(b~Y!1,a), WORLD]} =>

"./react_data/LynRec.dat"

{COUNT[Rec(b~pY!?), WORLD]} =>

"./react_data/RecPbeta.dat"

. . .

}

The STEP keyword indicates the frequency (in seconds) at
which observables are to be calculated and output to file. Each
COUNT statement produces a count of the number of species in
the simulation matching the specified pattern at each output time.
The four patterns shown above correspond to the number of
receptors bound to singly bound ligands, the number of receptors
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bound to doubly bound ligands (and hence in dimers), the number
of Lyn molecules bound to unphosphorylated Rec molecules, and
the number of Rec molecules that are phosphorylated on their b
components, respectively. For further details about BioNetGen
pattern syntax see Ref. [21] and http://bionetgen.org. The
WORLD keyword here as the second argument to COUNT indi-
cates that species at any location are to be included in the count. It
may be replaced by any valid MDL specification of a spatial region
or mesh region, such as those discussed above in the definition of
RELEASE_SITES. The arrow followed by a string indicates that
the data at each output time is to be written to a file with the
given path.

3.2 Examples and

Validation

We now present two examples of models that we have used to
validate the correctness of our MCell-R implementation and also
illustrate the types of biochemical complexity that can be naturally
represented using rules. Full MDLr code for each of these examples
is available at http://mcell.org.

3.2.1 Bivalent Ligand

Bivalent Receptor

The bivalent ligand bivalent receptor (BLBR) model [42] is a
simple model of polymerization of cell surface receptors by a solu-
ble ligand. This model tests the ability of MCell-R to handle
simulation in a case where the network size is potentially very
large. Indeed, the BLBR system can create polymer chains as long
as the number of receptors in the system. A simple version of BLBR
can be encoded by the following three BioNetGen rules:

L(r,r) + R(l) -> L(r!1,r).R(l!1) kp1 #Binding of free

ligand

L(r,r!+) + R(l) -> L(r!1,r!+).R(l!2) kp2 #Cross-linking of

ligand bound to receptor

L(r!1).R(l!1) -> L(r) + R(l) koff #Unbinding of ligand

The first rule describes the binding of free ligand from solution
to a receptor. The requirement for free ligand is specified by the
pattern “L(r,r)”, which requires two unbound r sites on the react-
ing ligand molecule. The second rule describes the binding of the
second site on the bivalent ligand once the first site is bound. Here,
the pattern “L(r,r!+)” specifies an L molecule with one free site and
one bound site (indicated by the wild card “!+”) as one of the
reactants, and the unbound site is bound to the free receptor site
specified by the reactant pattern “R(l)”. The third rule specifies that
dissociation of the ligand-receptor bond happens at the same rate
regardless of whether the other site on the L molecule is bound.
The full set of model parameters is shown in Table 1. For testing
purposes, both ligand and receptor molecules are simulated as
diffusing in a single-volume compartment (CP).
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To validate the accuracy of the simulations performed by
MCell-R, we compared with results generated by execution of an
equivalent reaction model using NFsim under conditions for which
the well-mixed assumption is valid. Two thousand trajectories were
generated using each simulator, and probability distributions were
generated for two different observables, the number of doubly
bound ligands and the number of ligand-receptor bonds, at a
range of simulation times (Fig. 6). We then applied the
two-sample Kolmogorov-Smirnov (K-S) test and found that the
resulting p-values had a mean of greater than 0.6 with a minimum
value greater than 0.1, demonstrating that the results produced by
the two simulators are statistically indistinguishable.

3.2.2 The FcεRI

Signaling Network

The high-affinity receptor for immunoglobulin E (IgE), known as
FcεRI, plays a central role in inducing the inflammatory response of
the immune system to allergens [43]. Figure 7 presents the ele-
ments of an early rule-based model that was developed to describe
the molecules and reaction events downstream of ligand engage-
ment with this receptor [44, 45]. In this model, the receptor binds
monovalently through its “a” component, which represents the
alpha-subunit of the receptor complex, to a bivalent ligand, which
represents a covalently cross-linked dimer of IgE molecules. The
interactions in this model imply a large biochemical network con-
taining 354 unique species and 3680 different reactions. This
network is small enough to be generated in full by BioNetGen
and simulated using MCell, which enables us to benchmark against
simulations performed byMCell-R. This model is a good test of the
spatial accuracy in the simulator given that it contains volume-
surface and surface-surface reactions of varying timescales and in
sufficient numbers. We simulated 2700 trajectories using both
MCell and MCell-R versions of the model and computed probabil-
ity distributions for different observables and time points as shown

Table 1
Parameters for the BLBR model

Category Parameter Description Value

Initial populations L0 Number of ligand molecules 5973

R0 Number of receptor molecules 300

Reaction rates kp1 Free ligand-binding rate constant 1.084e6 M�1 s�1

kp2 Ligand cross-linking rate constant 3.372e8 M�1 s�1

koff Ligand-receptor unbinding rate constant 0.01 s�1

Spatial parameters Vol_CP CP volume 39 μm

D_3D Diffusion constant for volume molecules 10�4 cm2/s
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Fig. 6 Validation of MCell-R simulation results for the BLBR model. Probability
distributions are shown for two observables (columns) at five different time



Fig. 7 Graphical representations of the model of early events in FcεRI signaling from [44, 54]. (a) Contact map
of the model, which includes four molecule types—Lig, Rec, Lyn, and Syk—as rendered by RuleBender, a
graphical interface for BioNetGen models [55, 56]. Components with purple background indicate the presence
of multiple component states, which in this model represent phosphorylation. (b) Bipartite representation of
the model using the atom-rule graph defined in Ref. [57]. Unbound components, component states, and bonds
comprise one type of node (shaded pink) in the graph, and rules (shaded purple) comprise the other. Darker
edges are used to indicate nodes that are consumed (outgoing) or produced (incoming) by the corresponding
rule. Lighter edges indicate nodes that are required for the corresponding rule to fire. The rule nodes labeled
“RG” correspond to groups of nodes that have the same effect but may have different requirements

�

Fig. 6 (continued) points (rows) computed from 2000 simulations using either
MCell-R (green lines) or NFsim with the well-mixed version of the model (blue
lines). Applying a two-sample Kolmogorov-Smirnov test over the set of distribu-
tions confirms the accuracy of the results because no statistically significant
differences are observed between the distributions
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in Fig. 8. As with the BLBR model, applying the K-S test to these
distributions showed that the results of the two simulators are
statistically equivalent.

3.3 Conclusions

and Outlook

In this chapter we have presented a spatial modeling framework
that combines the particle-based reaction-diffusion simulation cap-
abilities of MCell with a network-free approach to multistate and
multicomponent molecules and complexes that enables simulation
of systems exhibiting large-scale combinatorial complexity. We
tested and validated our framework with two systems that present

Fig. 8 Validation of MCell-R simulation results for the FcεRI model. Probability distributions are shown for five
observables (columns) at five different time points (rows) computed from 2700 simulations using either MCell-
R (green lines) or MCell with a pre-generated reaction network (blue lines). Applying a two-sample Kolmo-
gorov-Smirnov test over the set of distributions confirms the accuracy of the results because no statistically
significant differences are observed between the distributions
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combinatorial complexity: the bivalent ligand bivalent receptor
(BLBR) system and the network of early events in FcεRI signaling.
These are prototypes for many other cell-regulatory networks in
biology that exhibit combinatorial complexity and in which spatial
effects may play an important role, including nephrin-Nck-N-Wasp
signaling [46], aggregation of transmembrane adaptors in immu-
noreceptor signaling [47], and signaling in the postsynaptic density
of neurons [32, 48, 49].

The development of the MCell-R framework required exten-
sions to both NFsim and MCell, including the development of
libNFsim as a general application programming interface (API)
for network-free modeling capabilities and MDLr to incorporate
rule-based elements into MCell’s language for model specification.
Central to the development of an efficient simulator was the modi-
fication of MCell’s reaction-diffusion algorithm to obtain diffusion
and reaction parameters based on the molecular composition of
species.

The development of libNFsim also opens the door for the
integration of the network-free framework with other platforms.
For example, the WESTPA package [50] implements the weighted
ensemble algorithm for the accurate and efficient sampling of rate
events in models of complex dynamical systems. Although we have
been able to integrate WESTPA with network-based modeling
capabilities in BioNetGen and MCell [51, 52], the lack of a clear
programming interface to NFsim has prevented integration of
network-free capabilities, which will now be possible.

The current implementation of MCell-R has several limitations
that need to be addressed in future versions of the software. The
first limitation is revealed by our preliminary attempts to perform
simulations of the trivalent ligand bivalent receptor (TLBR) model,
which is a simple extension of the BLBR model we used to validate
the simulator above. For certain parameters, this model is known to
exhibit a phase transition in which all receptor and ligand molecules
in the system can form a single complex [53]. NFsim has been
shown to perform accurate and efficient simulations in this region
of parameter space [16], but the MCell-R version of this model
does not produce accurate results under conditions in which large-
scale aggregates form (10–100 s of molecules) unless the time step
is set to an impractically small value (results not shown). The reason
for this loss of simulation accuracy is that reaction rates increase
with the number of ligand molecules in an aggregate, eventually
becoming too large for any given choice of minimum time step in
MCell. Identifying a robust solution to this issue that will preserve
accuracy while not drastically increasing simulation time is a topic
for future research. For now, we recommend that before
performing simulations in MCell-R of systems where such phase
transitions are possible, one first uses NFsim to simulate the system
under well-mixed conditions to determine whether large scale
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aggregates are formed. These simulations can also be used to
benchmark subsequent simulations in MCell-R.

Another issue that is inherent in the simulation of molecular
complexes is that the MCell algorithm currently treats all com-
plexes as point particles. Thus, effects like volume exclusion and
the effect of complex structure on reactivity are not considered,
limiting the accuracy of the resulting dynamics. We are currently
working to extend the internal representation of complexes to
incorporate 3D structure, which will affect both the particle move-
ment and bimolecular reaction components of the MCell simula-
tion algorithm.

Finally, the initial implementation of MCell-R lacks the visuali-
zation capabilities that are provided for MCell models by the Cell-
Blender interface [36]. Work is currently under way to enable
model specification, simulation, and visualization of MCell-R mod-
els using CellBlender and we encourage readers to check the MCell
web site for the latest information about software availability. Cur-
rent plans include explicit rendering of the 3D structure of molec-
ular complexes based on either default assumptions or user
specifications. While such an approach enables fine-grain represen-
tation of complexes and sets the stage for modification of the
simulation algorithm to use 3D structure to affect reactivity, a
more coarse-grained visualization approach will also be required
to visualize configurations with a large number of species. We plan
to use graph patterns that will alter glyph properties used to repre-
sent species, such as size and color. For example, glyph size might
be tied to the number of molecules in a complex, and the number
of specific molecule types or modifications might be used to set
color and intensity. We anticipate that such visualization capabilities
will facilitate analysis of spatial effects for many cell-regulatory
processes that are mediated by complex molecular interactions.

4 Notes

1. MDL definitions for structured volume and surface molecules
used in MCell-R interface have the additional keyword
EXTERN to indicate that an external library is to be called to
invoke specified functions on these molecule types. The MDL
generated by the MDLr preprocessor is

DEFINE_MOLECULES

{

volume_proxy //proxy molecule type.

{

DIFFUSION_CONSTANT_3D = KB*T/(6*PI*mu_EC*Rs)

EXTERN //new element
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}

surface_proxy //proxy surface type.

{

DIFFUSION_CONSTANT_2D =

KB*T*LOG((mu_PM*h/(Rc*(mu_EC+mu_CP)/2))-

gamma)/(4*PI*mu_PM*h)

EXTERN //new element

}

}

2. The GRAPH_PATTERN keyword is used to add a graph label
to a structured molecule definition in MDL. In this example,
structured ligand molecules are included in a RELEASE_SITE
definition. The GRAPH_PATTERN keyword is followed by
the NAUTY-ordered canonical representation of the BNGL
string which is commented out on the line where the RELEA-
SE_SITE is defined. This MDL code is generated automatically
by the MDLr preprocessor:

INSTANTIATE Scene OBJECT

{

...

Release_Site_s1 RELEASE_SITE //bng:@EC::Lig(l,l,s~Y)

{

SHAPE = Scene.EC[ALL] - Scene.CP[ALL]

MOLECULE = volume_proxy

NUMBER_TO_RELEASE = 50

RELEASE_PROBABILITY = 1

GRAPH_PATTERN =

"c:l~NO_STATE!3,c:l~NO_STATE!3,c:s~Y!3,m:Lig@EC!0!2!1," //new

element

}

...

}

3. As of this writing, source code is available for prototype ver-
sions of MCell-R at the MCell repository on GitHub (https://
github.com/mcellteam/mcell). See http://mcell.org for the
latest availability and documentation.

4. In principle the SHAPE attribute is redundant when the com-
partment location of species to be placed is specified. We antic-
ipate that future versions of MCell-R will perform particle
placement without the need to explicitly define the SHAPE
attribute, whose use will be reserved for situations where more
specific control over the release location is desired.
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