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Abstract 

We examine general purpose unsupervised techniques for visual preprocesing in 

machine vision tasks. In particular we analyze a wide variety of principal com- 

ponent and independent component techniques in combination with stepwise re- 

gression methods for variable selection. The task at hand is recognition of the 

first four digits spoken in English using hidden Markov models (HMM) for the 

recognition system. Local representations consistently outperformed global repre- 

sentations in generalizing to new speakers while global representations performed 

better than local ones for speaker identification tasks. In addition, the use of a 

novel regression-based variable selection technique substantially boosted perfor- 

mance. 

1 Introduction 

Supervised recognition systems depend on input representations from which class-dependent struc- 

ture can be easily extracted. In this paper, we explore unsupervised data-driven statistical tech- 

niques to develop such image representations and to automatically select variables of interest from 

high-dimensional outputs. For concreteness we concentrate on the problem of visual speechread- 

ing, but the methods explored are general and can be applied to a variety of problems involving 

recognition of visual sequences. We compare representations obtained with principal component 
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analysis (PCA), independent component analysis (ICA; Bell & Sejnowski [2]) and stepwise multiple 

regression (Walpole, Myers, & Myers [9], p. 438). In addition, we explore the differences between 

local and global image representations, a topic of recent interest in the face processing community 

(Padgett & Cottrell [8]) and in computational neuroscience (Field [4]; Bell & Sejnowski [3]). 

The techniques used in this paper attempt to describe efficiently the probabilistic structure in image 

databases. Such structure can be approached from the point of view of two different probability 

spaces, which we call image space (Rim, Em, E m )  and pixel space (Rpix, Fpix, Ppix). Consider an 

n x m matrix x whose rows contain the images in the database: xi,j is the intensity of pixel j 

in image i. In image space, Rim = {I,.. , n), each element of Rim is given equal probability, 

and I",, is the power set of Rim. In this space, pixel intensities act as random variables (i.e, 

functions Rim 4 X), and it makes sense to talk about independence between pixels. For example, 

pixels Xi and Xj  are independent if knowledge of the value of pixel Xi in one image does not 

help estimate the value of pixel Xj  in the same image. In pixel space, the situation reverses. The 

elementary outcomes label the pixels: Rpix = (1,. - , m), and images act as random variables 

(i.e., functions Rpix + 91). In pixel probability space, two images K and Y j  are independent if 

knowledge about the intensity of a pixel in image 6 does not help estimate the intensity of the 

equivalent pixel in image Y j .  Hereafter we represent pixel intensity with the image-space random 

vector X = (XI,. . . , x,)~,  where Xi(j) = zj,i. 

2 Global Methods 

We evaluated unsupervised techniques that operate on whole images as opposed to portions of 

images. In particular we compared the performace of principal component analysis (PCA) and two 

different versions of independent component analysis (ICA). We worked with the Tulips1 database 

(Movellan [7]): 96 digitized movies of 12 undergraduate students (9 males, 3 females) from the 

Cognitive Science Department at UC-San Diego. The database was normalized by tracking the 

outlines of the lips using point distribution models (Luettin [5]). Based on the tracked contours, the 

lip images were normalized for translation and rotation. Finally, the lip images were symmetrized 

horizontally with respect to the central vertical axis of the image. The images were cropped to 65 

pixels vertically x 87 pixels horizontally (5655 pixels total). 

Global PCA in Image Space Let T = e T x  represent the principal components of X ,  i.e., 

the columns of e are the eigenvectors of the covariance of X. The principal components are 

uncorrelated and the eigenvectors (eigenimages) with largest eigenvalues are an efficient set of 

orthogonal basis images. In our database the first 50 principal components accounted for 94.6% 

of the variance in the data (trace of Cov(X)). Figure 1 shows the first 5 eigenimages, and their 

magnitude spectrum. As observed by previous researchers, the basis images obtained via PCA 

are typically non-local in the spatial domain (i.e., have non-zero energy distributed over the whole 

image). The principal components T were fed to the HMM recognition engine as described in 

Section 4. 
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Figure 1: Global decompositions for the normalized dataset. Row 1: Global kernels of principal 

component analysis ordered with first eigenimage on left. Row 2: Log magnitude spectrum of 

eigenimages. Row 3: Global pixel space independent component kernels ordered according to 

projected variance. Row 4: Log magnitude spectrum of global independent components. 

Global ICA in Pixel Space The main differences between ICA and PCA are: (1) ICA maxi- 

mizes the entropy of outputs, while PCA maximizes their variance, (2) PCA provides orthonormal 

basis vectors, while ICA basis vectors need not be orthogonal, and (3) PCA guarantees uncor- 

related components while ICA aims to make the components independent. For computational 

tractability we applied ICA to the vector of principal components. This results in a vector of 

independent components U = wT, where w is a 50 x 50 matrix found by the ICA algorithm to 

maximize the joint entropy of the logistic transform of U. The independent components U were 

fed to the recognition engine. 

Global ICA in Pixel Space The procedure described in the previous section maximized joint 

entropy with respect to the image probability space. An alternative ICA method maximizes entropy 

with respect to the pixel probability space. This approach has been explored for face recognition 

tasks (Bartlett et al [I]) and for the analysis of functional magnetic resonance imaging (fMRI) data 

(McKeown et a1 [6]) with good results. The approach works as follows: We define a 50-dimensional 

random vector E in pixel space whose values are the eigenvectors of Cov(X). We then define the 

random vector V = sE, where s is a 50 x 50 matrix chosen by the ICA algorithm to maximize 

the joint entropy, in pixel space, of the logistic transform of V. 

McKeown et a1 [6] propose using the independent components in pixel space as basis images in 

image space. To do so, construct a matrix v whose columns are the pixel-space independent 

components (i-e., vi,j = &(j)). The goal is to obtain the coordinates of X with respect to the 

basis formed by the columns of v, and approximate the coordinates of X using the coordinates of 

X,,, = eT, the reconstruction of X based on the first 50 principal components in image space. It 
follows that X = X,,, = e T  = vW where W are the desired coordinates of X,,, with respect to 

v. It can be shown that the previous equation is solved for Wj(i) = where a i j  = Tj(i). 
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The coordinates W were the input to the HMM recognition engine. 

The first 5 columns of v (accounting for the largest amounts of projected variance) obtained via 

ICA analysis in pixel space are shown in the third row of Figure 1. The fourth row shows their 

magnitude spectrum. 

3 Local Decompositions 

Recent research has placed strong emphasis on the importance of recognizing local structure in 

images. Analysis of natural images by Field [4] and Bell and Sejnowski [3] has suggested that they 

can be efficiently represented by spatially localized basis images a t  a variety of scales. To test the 

idea that local basis images may be better, we tested a variety of kernels that were spatially local 

(i.e., had non-zero energy only in a small region of the image). Local PCA and ICA kernels were 

developed based on the statistics of local image regions. Small image patches (12 pixel x 12 pixel) 

were chosen from random locations in the lip images (similar to Padgett & Cottrell [8]). Twenty 

patches were randomly collected from each of the 934 images in the dataset for a total of 18680 

patches. A sample of these random patches (superimposed on a lip image) is shown in the top 

panel of Figure 2. This dataset of local patches (144 pixels x 18680 patches) formed the input 

to PCA and ICA. Hereafter we refer to the 12 pixel x 12 pixel images obtained via PCA or ICA 

as "local kernels". For each kernel, basis images were generated by centering a local PCA or ICA 

kernel onto a particular location of a 65 x 87 matrix and padding the rest of the matrix with zeros, 

as displayed in Figure 2 (lower left panel). 

The efficacy of the local PCA and ICA kernels for recognition was explored using three different 

approaches: a single filter with linear shift invariant (LSI) filtering, and a bank of filters using 

blocked or unblocked variable selection. 

Single LSI Filtering Images were convolved with a single local ICA kernel, local PCA kernel or 

a Gaussian kernel. This effectively implemented linear shift invariant (LSI) filters. The top 5 local 

PCA and ICA kernels were each tested separately. We also tested 4 Gaussian kernels of different 

size. The outputs of these 14 filters were subsampled and independently fed to the recognition 

engine. We report below the performance of the best local PCA filter, the best local ICA filter 

and the best Gaussian filter. 

Bank of LSI Filters with Stepwise Selection Multiple filter representations were used to 

explore the possibility that combining the outputs of several filters would improve generalization 

performance. Filter outputs from the top 10 local ICA (or PCA) kernels resulted in a 1500 

dimensional representation (10 filters x 150 locations) for each of the 934 images in the dataset. 

Due to the large dimensionality of the output, we used a stepwise multiple regression procedure 

to select variables and locations of interest (Walpole, Myers, & Myers [9], p. 438). This method 

automatically selected those variables that were most informative for reconstruction of the original 

images. At the first iteration, we constructed 1500 linear regression models, one for each of the 

1500 variables. The models were evaluated in terms of their ability to reconstruct the original 
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Figure 2: Upper left: Lip patches (12 pixels x 12 pixels) from randomly chosen locations used 

to develop local PCA and local ICA kernels. Lower left: Four orthogonal basis images generated 

from a single local PCA kernel. Right: Top 10 Local PCA and ICA kernels ordered according to 

projected variance (highest at top left). 

image dataset. The variable that proved best for reconstruction was "tenured". In subsequent 

iterations we constructed 1500 - t different multiple regression models. Each model contained 

the t tenured variables plus a non-tenured variable. The variable that provided the best image 

reconstruction in coordination with the already tenured variables was tenured. The process was 

stopped when the desired number of tenured variables was reached. 

Variable Selection Blocked by Location In this method (Blocked Filter Bank), the images 

were passed through a bank of 10 LSI filters where the impulse response of each filter corresponded 

to one of the local PCA or local ICA kernels (Figure 2). After subsampling, this resulted in a 1500 

dimensional representation. The stepwise forward multiple regression procedure (described in the 

previous section) was then used to identify regions of interest. The selection was done in blocks 

of 10 variables where each block contained the outputs of the 10 filters at a specific location. If a 

location was chosen, the outputs of the 10 filters in that location were automatically included in 

the final image representation. Thus the number of outputs per location was either 0 or 10. 

Unblocked Variable Selection In this method (Unblocked Filter Bank), the images were 

passed through the same bank of 10 LSI filters as in the previous approach. However, the forward 

selection procedure was used without blocking variables by location. Thus the number of selected 

ouputs per location could vary from 0 to 10. 
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Image Processing 

Global PCA 

1 Single-Filter LSI ICA I 89.6 f 3.0 

Performance & s.e.m. 

79.2 f 4.7 

Global Methods 

1 Single-Filter LSI Gaussian 1 90.6 f 3.8 

Local Methods I Blocked Filter Bank PCA I 85.4 f 3.7 

Global ICA Image Space 

Global ICA Pixel Space 

Sigle-Filter LSI PCA 

1 Blocked Filter Bank ICA I 85.4 f 3.0 

61.5 f 4.5 

74.0 f 5.4 

90.6 f 3.1 

I Unblocked Filter Bank PCA I 91.7 f 2.8 

1 Unblocked Filter Bank ICA 1 91.7 f 3.2 

Table 1: Best generalization performance (% correct) f standard error of the mean for all image 

representations. 

4 Results 

The image representations obtained using each of the processing methods were fed to a recognition 

engine. This engine first computed delta vectors (the difference between temporally adjacent input 

vectors) and scaled the vectors using an adaptive thresholding procedure. The scaled vectors were 

fed to  a bank of HMMs consisting of 4 HMMs separately trained on each digit. The architecture 

was left-right with state skips allowed. The density model for the observations was a mixture of 

Gaussian distributions. Nine different HMM architectures were tested for each visual represen- 

tation: 5, 7, and 9-state HMMs with mixture models of 3, 5, or 7 Gaussians to represent each 

state. Generalization performance for each visual representation was computed based on the jack- 

knife procedure. This was repeated 12 times, each leaving out a different subject. This procedure 

also allows obtaining classical confidence intervals on the generalization score. Table 1 shows the 

best generalization performance (of the 9 HMM architectures tested) for all visual representations 

tested. The local decompositions significantly outperformed the global representations: t(106) = 
4.10, p < 0.001. In addition, for the filter bank representations, the unblocked approach yielded 

better results than the blocked: t(46) = 1.95, p < 0.06. 

The image representations obtained using the bank of filter methods with unblocked selection 

yielded the best recognition results. Figure 3 shows, for 2 local PCA kernels, the first 10 variables 

chosen for each particular kernel using the forward selection multiple regression procedure. The 

numbers on the lip images in this figure indicate the order in which particular kernel/location 

variables were chosen using the sequential regression procedure: "1" indicates the first variable 

chosen, "2" the second, etc. In total, there were 50, 100, or 150 kernel-location variables chosen 

for the PCA and ICA representations (see Section 3). 
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pm?q 
PCA Kernel 1 PCA Kernel 2 

Figure 3: Kernel-location combinations chosen using unblocked variable selection. Top of each 

quadrant: Local ICA or PCA kernel. Bottom of each quadrant: Lip image convolved with corre- 

sponding local kernel, then downsampled. The numbers on the lip image indicate selected variables. 

There are no numbers on the right side of the lip images because only half of each lip image was 

used for the representation. 

5 Discussion 

The experiments described here yielded two primary findings. First, unsupervised statistical image 

decompositions with local basis images outperformed decompositions with global basis images. The 

highest generalization performance reported here (91.7% with the bank of filters using unblocked 

variable selection) surpasses the best published performance on this dataset (Luettin [5]). Even a 

simple decomposition with local Gaussian kernels significantly outperformed global decompositions 

obtained via PCA or ICA. Second, the stepwise regression technique used to select variables and 

regions of interest led to substantial gains in recognition performance. Figure 3 shows the first 

8-10 points chosen from the local PCA and ICA kernel outputs. The chosen locations (variables) 

roughly followed the contour of the lips. 

The superior performance of local representations is consistent with current ideas on the importance 

of locality (see Section 3). One possible explanation for the advantage of local representations 

(Padgett & Cottrell [8]) is that global unsupervised decompositions emphasize subject identity 

since it is an important source of variation. In speaker independent tasks (e.g. recognizing the word 

being said), subject identity is precisely what needs to be deemphasized. We tested this idea with 

a simple subject recognition task on the Tulips1 database. The task was to recognize the identity 

of the speaker in each of the 934 images in the database. The recognition engine was a simple 

prototype classifier (a bank of HMMs, one per subject to be identified, with a single state and a 

single Gaussian for the observation density). We compared subject identification performance using 

our best global representation (Global PCA) and our best local representations (Unblocked Filter 

Bank ICA and PCA). The difference in performance between the local and global representations 

was astounding. For the local representations, subject identity was recovered with 39.0% accuracy 
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(ICA) and 44.5% accuracy (PCA). Global representations recovered subject identity with a 94.8% 
accuracy. Thes results suggest that local representations are better for speaker-independent tasks 

and that holistic representations may be more appropriate for speaker identification problems. 
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