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ABSTRACT 

Binocular depth perception, or stereopsis, depends 
on matching corresponding points in two images taken 
from two vantage points. In random-dot stereograms the 
features to be matched are individual pixels. We have 
used the recurrent backpropagation learning algorithm of 
Pineda (1987) to construct network models with lateral 
and feedback connections that can solve the correspon- 
dence problem for random-dot stereograms. The network 
learned the uniqueness and continuity constraints origi- 
nally proposed by Marr and Poggio (1976) from a training 
set of dense random-dot stereograms. We also con- 
structed networks that can solve sparse random-dot stere- 
ograms of transparent surfaces. The success of the learn- 
ing algorithm depended on taking advantage of translation 
invariance and restrictions on the range of interactions. 

1. Introduction 
There are many visual cues for depth, but only one 

of them requires two eyes. Binocular depth perception is 
based on the difference between corresponding positions 
on the two retinal images, called the image disparity. 
Random-dot stereograms demonstrate that perception of 
depth does not depend on monocular cues such as the 
recognition and identification of shapes and objects 
(Julesz, 1960). A stereogram is a uniform field of random 
dots, but some of the dots in the left image are shifted 
relative to the corresponding dots in the right image. 
When fused binocularly, the central shifted area is per- 
ceived as floating above the background. An example of 
such a stereogram is shown in Fig. 2a. 

The recovery of depth from a pair of images 
requires a solution to the correspondence problem (Pog- 
gio and Poggio, 1984): Proper matches must be made 
between features (such as pixels, edges, etc.) found in the 
right and left images. For a given feature in the left 
image there may exist more than one feature in the right 
image that can potentially match it. In this paper, we will 
only deal with random-dot stereograms for which the 

natury features are the black dots (one may also use both 
black %nd white dots as matching features or use black- 
white and/or white-black transitions). The matching is a 
nontrivial problem because each dot in one image can 
potentially match all the other dots within a certain range 
along the same horizontal line in the other image. 

Many solutions to the correspondence problem for 
random-dot stereograms have been proposed. The 
present work comes closest to the method of Dev (1975) 
and Marr and Poggio (1976), who used a neural network 
model with binary units and local interactions between 
them. Marr and Poggio determined the connections in 
their network based on two physical constraints: con- 
tinuity of surfaces and uniqueness of depth along lines of 
sight. In this paper we show that these two constraints 
can be learned automatically using recurrent back- 
propagation (Pineda, 1987). Further, we report that the 
learning algorithm can construct networks that solve tran- 
sparent random-dot stereograms, which the network 
model of Marr and Poggio (1976) was not able to handle. 

Other algorithms have been devised that can solve 
transparent random-dot stereograms, such as that of 
Prazdny (1985)' but these methods cannot be imple- 
mented as neural network models. Szeliski and Hinton 
(1985) replaced Prazdny's support function with a net- 
work implementation, but they also selected the match at 
the end with a max function. Hebbian learning has been 
applied to the correspondence problem for stereograms by 
Sun et. al. (1987). Their method depended on the use of 
dense disparity maps and is probably not applicable to 
transparent stereograms. 

2. Learning Algorithm 
The standard backpropagation learning algorithm 

(Rumelhart et al., 1986) is unlikely to solve the stereo 
correspondence problem for random-dot stereograms. 
False matches must be resolved by interactibns between 
the units in the network that represent depth, which can- 
not be easily represented in a strictly feedforward net- 
work. Pineda (1987) has recently generalized the stan- 



dard backpropagation to networks with arbitrary connec- 
tivity. We briefly describe this formalism and then 
m m  it for the stereo problem. 

The dynamics of a recurrent network is determined 
by: 

&,ldt =-xi +. f;(ui) (1) 

u; = Cwijxj +Ii 
i 

where xi represents the activity of ith unit, wij is the 
weight from jth unit to ith unit, and I; represents the 
external input to the ith unit. A commonly used form for 
the nonlinear function f i (u)  is the logistic function 
(1 + e -')-I. A subset of units receive inputs, another sub- 
set are considered outputs, and units that are neither input 
nor output are called hidden units. Within the formalism 
of recurrent backpropagation the same unit can both be an 
input and an output unit. In most of our simulations, the 
input and output units were the same, and there were no 
hidden units. Given initial conditions and an input, the 
network usually evolved toward a fixed point by Eq. (I), 
although this is not guaranteed for an arbitrary set of 
weights. These fixed points can be used to store informa- 
tion. 

The differences between the actual and desired 
fixed points, J;, are propagated to all the other units by 
computing the error signals y ;  obtained as the fixed point 
of a related dynamical system: 

where u c  is the fixed point value of uk . The weights are 
changed according to: 

where E is the leaning rate. In the actual simulation the 
difference equation corresponding to Eq. 3 was modilied 
by the inclusion of a momentum term cc We used the fol- 
lowing parameters in our simulations unless otherwise 
stated: At = 0.9, E = 1.0, and a = 0.9. 

In the present network we wanted the output values 
to be 0 or 1, so that a continuous-valued output unit was 
considered to be on if its output exceeded 0.5, the mid- 
point of the output range, and off if the value was less 
than 0.5. The correct output values in our training exam- 
ples were mainly off when sparse disparity maps (see 
Section 4) were used. This typically caused the learning 
algorithm to make all of the weights in the network inhi- 
bitory which would turn all the units off. We modified 

classified correctly (above or below 0.5) even though it 
was not perfect (zero or one). This is equivalent to using a 
margin of 0.5. After the success rate of the network lev- 
eled off, we sometimes used the unmodified learning 
algorithm with a margin of 0.45 to further improve the 
performance. The activation of a unit in the resulting net- 
work was on average above or below the midpoint by 0.2. 
This modification also made the weights grow more 
slowly and the leaming was considerably faster. With the 
unmodified learning algorithm, the weights in a network 
tended to grow fast and the convergence of Eqs. 1 and 2 
become slower and slower. 

3. Network Architecture 
The neural network model was similar to that of 

Marr and Poggio (1976), except that our units had con- 
tinuous rather than binary values. The network consisted 
of sevexal disparity levels, which can also be considered 
as depth levels because depth and disparity are monotoni- 
cally related. Processing units represented possible 
matches between the two images and were located at the 
intersections of the depth planes with lines of sight from 
the observer, as shown in Fig I. The zero disparity layer 
is the plane of fixation. 
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Fig. 1: Network architecture. Each horizontal line actually 
represents a 2-D surface. Although the two lines of sight should 
be symmetric, it is more convinient to "tilt" the netwolk to the 
left a little so that the units are lined up along the z-axis. 

this problem: the error Ji of a unit was set to zero if it was 
the &or  backpropagation procedure slightly to reduce 



Each unit in the network was labeled by its integer 
coordinates (x, y , z )  and each weight can be specified by: 

which represents a connection from a unit at location 
(x ,, y ,) in layer z , to a unit at location (xz  y 2)  in layer z2. 
Since the problem is translationally invariant, this sym- 
metry was designed into the network explicitly by setting: 

where M and N are arbitrary integers (Giles, et al., 1988). 
This greatly reduced the number of independent weights 
in the network as well as the amount of training time and 
the number of training examples needed. Thus, each 
independent weight in the network was denoted by a qua- 
druple: 

which represents the weight connecting a unit in Iayer z  

to a unit in layer z 2  offset in x and y directions by Ax and 
A Y .  

Each unit is connected only to those nearby units 
that are relevant to the solution of the problem. For solv- 
ing random-dot stereograms with fronto-parallel planes, 
the networks were connected in the following way: Each 
unit made connections, A ,  with set of units in the same 
layer and also a set of connections, B ,  to units in other 
layers that were along the two fines of sight of the right 
and left eyes. Each unit also had a bias that was treated as 
a weight from a unit that was always on. Formally, 

where R is an integer which determines the size of the 
neighborhood and 

The number of connections in A depends on the value of 
R ,  the range of interaction in E!q. 6.  For example, if 
R = 1, there will be four connections on each disparity 
level, so the total number of connections in A is 4 x D 
where D is the total number of disparity levels con- 
sidered. Similarly, the number of connections in B is 
2 0  (D -1). Variations on the architecture described above 
will be mentioned later. 

4. Input and Output Representations 
The compatibility map for an input to a network is 

defined as al l  the possible matches between dots along the 
same horizontal lines in two images within a certain range 
(corresponding to all the disparity levels represented in 
the network). One may consider matches between two 
points of the same intensity (black-black or white-white) 
or only between two black points. The resulting data in 
the former case will be called the dense compatibility 
map, C d ,  while the later will be called the sparse compa- 
tibility map, C, (Szeliski, 1986). More precisely: 

and 

where L [x , y ] and R [x , y ] are the binary values of the 
left and right image intensities at ( x ,  y ). Of all possible 
matches in a compatibility map, the sublet that are correct 
is called the disparity map. In our models, only sparse 
compatibility maps were used as inputs, but both sparse 
and dense disparity maps were used as outputs. 

In our first attempt to train a network to solve the 
correspondence problem, we set the initial states of the 
units to the compatibility map, let the network settle down 
into a final state, and used the correct disparity map as the 
target to compute the errors. This procedure failed. An 
explanation, suggested in Pineda (1988), is that a network 
with an initial set of random weights may not have 
enough attractors to store all the different disparity maps. 
Two or more desired attractors may be located within the 
basin of one attractor in the initial network and the learn- 
ing algorithm can only drive this single attractor to the 
average position of the desired attracton. However, the 
attractors and the basin boundaries depend on the input I; 
as well as the weight matrix, so clamping the inputs could 
help to break the degeneracy. This was an effective solu- 
tion and, as shown below, clamping I;  also helped to 
solve the correspondence problem for transparent 
random-dot stereogram. 

5. Results 
AU the network performances reported below were 

measured on testing patterns not used for training. The 
performance figures are the percentages of the output 
units with correct activation values. 



Dense disparity. In most of the simulations, we 
used only three disparity planes and 30 x 30 random-dot 
stereograms, so there were a total of 2,700 units in the 
network. However, the resulting set of weights can be 
used to solve stereograms of any size because of transla- 
tional invariance. For R = 1 in Eq. 4 there were 12 
weights in A ,  12 weights in B and 3 biases, for a total of 
27 independent weights. These were assigned random 
values at the beginning of learning. The 6 training exarn- 
ples were balanced so that there wea: about an equal 
number of 1's in each of the three disparity planes. A 
dense disparity map was used as the desired output so that 
our results could be compared with those of Marr and 
Poggio (1976). The performance of the network on new 
stereograms was 99% after 250 presentations of random- 
dot stereograms. An example is shown in Fig. 2. 
Although the inputs were clamped to the compatibility 
map during the learning, they do not have to be clamped 
during testing after training. 

The learning was much faster when further con- 
straints were placed on the weights. All the weights in 
group A have a similar role, and following learning they 
were all within 10% of the average. Learning is faster 
when all the weights in A were made identical, all the 
weights in B were identical, and all the biases were the 
same. Table I shows the three independent weights that 
were found. Additional ways to speed up the learning 
were also examined. Networks with units having values 
in the interval (-1, I)  by using f (u ) = tanh (u 12) learned 
faster, as reported earlier for standard back- propagation 
(Stornetta & Huberman, 1987). Only 7 presentations 
were required to achieve a performance of 99% for three 
independent weights and values of (- 1.1). 

Table 1 : Weights for Dense 
and Sparse Disparity Map 

AU weights within sets A, B and biases were constrained to be 
the same (see text). 

The addition of irrelevant weights had the opposite 
effect and slowed down the learning. In one experiment 
one connection was added, (2, 0, 0, -1). and in a second 

experiment two weights were added, (-1, 0, 0, - 1) and (1, 
0, 0, 1). In both cases, these extra weights gradually 
decayed to zero, ending with a good solution, but requir- 
ing more presentations were required to reach the solu- 
tion. If there were too many extra weights, however, the 
learuing failed to find a solution, and instead made all the 
weights negative. This is a local minimum with all the 
units turned off. 

Sparse disparity. The network model of Marr and 
Poggio (1976) used a dense disparity map (see Fig. 2b) 
for the ouput, which prevented the network from solving 
transparent random-dot stereograms. The stereograms in 
Fig. 2a is, in fact, perceived as a square with black dots 
on it floating above the background, and not as a dense 
square. We show here that recurrent back-propagation 
can construct a network that computes a sparse disparity 
map as the output and that the same set of weights also 
solves transparent random-dot stereograms. 

Assume that the density of black dots in stereogram 
is p .  From the definition of compatibility and the con- 
struction of stereogram, the compatibility map will have 
regions of correct matches where the density, p ,  of black 
dots is high, and regions of false matches where the den- 
sity, p 2 ,  is low, as shown in Fig. 2b. Units in a high den- 
sity area are more likely to be turned on than units in the 
low density area because the initial state of the network is 
set to the compatibility map and the connections within 
the same disparity level are excitatory. For the stereo- 
gram in Fig. 2a there is almost no overlapping high den- 
sity areas along lines of sight so that, with the help of the 
inhibitory connections, all units in the high density areas 
are turned on while all the units in low density areas are 
turned off. This gives a dense disparity map as output. 

For a sparse disparity map, only those units that 
represent an actual match should be turned on in the high 
density regions. This cannot be accomplished simply by 
reducing the excitatory connection strengths because the 
units, including those that were on initially, do not receive 
enough positive input and will gradually decay to zero. 
One way to solve the problem is to bias each unit with its 
compatibility value to prevent decay. This bias, by itself, 
tends to keep the network in its initial compatibility state. 

Recurrent backpropagation was used to train a net- 
work on sparse random-dot stereograms. The inputs I, in 
Eq. 1 were clamped to the compatibility map (something 
introduced earlier simply to help the leaaing algorithm 
converge). Letting every unit have an excitatory connec- 
tion to itself also helped somewhat. Fig. 3 showk that the 
performance of the trained network on sparse disparity 
was almost 100% for a testing stereogram not included in 
the training set The weights, shown in Table 1, are 



Fig. 2: (a) A random dot stereogram with black dot density 0.5, 
(b) Compatibility map. (c) Disparity map. (d) Performance of 
network. For the display of the compatibility and the disparity 
maps in Figs. 2 to 5, the depth "stack" shown in Fig. 1 has been 
unfolded by laying the depth layers side by side (the leftmost 
plane is the nearest). 



Fig. 3: (a) A sparse disparity map for a stereogram with black 
dot density 0.2, (b) Performance of netwodc. 

Fig. 4: (a) Tnrget disparity map with black dot density 0.2 in the 
solution mas.  (b) Performance of network. 





weaker that those for dense disparity maps, as expected. 

Without any modification, the sparse-disparity net- 
work gives a performance of 97% on transparent 
random-dot stereograms. After being trained on tran- 
sparent stereograms, the network performance on a test- 
ing set of stereograrns is improved slightly to 97.7%, but 
never reached the nearly perfect performance achieved 
for non-transparent stereograrns. An example on a testing 
pattern is shown in Fig. 4. It is worth noting that humans 
also mislocalize isolated dots in transparent stereograms. 

There are two reasons why transparent random-dot 
stereogram are harder to solve: 1) the difference in the 
density of black dots between solution and non-solution 
areas of the compatibility map is smaller than that for the 
non-transparent case, and 2) according the construction 
method for a transparent random dot stereogram (Szeliski, 
1986), only a proportion, 1/(1 + 2p - 3p + p 3), of the 
black dots in the solution area of the compatibility map 
are correct matches assuming that the black dot density 
on the solution areas of the sparse disparity maps is p .  
There is no way to tell the false matches from correct 
ones based on compatibility map only. Some information 
was lost when a transparent stereograms was converted 
into a compatibility map. 

We also trained a number of networks with five 
disparity planes and with stereograms as large as 
100x100. The learning algorithm successfully solved the 
problem but much more computer time was needed. Fig. 
5 shows the result on a transparent stereogram of a net- 
work trained on sparse disparity maps. 

6. Discussion 
In all networks that we successfully trained, the 

weights between units in the same disparity plane were 
excitatory and the weights between units along the two 
lines of sight were inhibitory. Thus, the recurrent back- 
propagation was able to learn from examples the con- 
tinuity and uniqueness constraints proposed by Marr and 
Poggio (1976). This success should be tempered with the 
finding that a successful solution and the rate of learning 
were closely related to the constraints that were imposed 
on the connectivity and the number of independent 
weights in the network. For a problem where intuition is 
not available for a good initial architecture, the recurrent 
back-propagation learning may not find a good solution, 
or may find one only after an excessive number of train- 
ing examples. 

There are many problems for which lateral and 
feedback connections may be essential, such as the prob- 

lem that we have studied, so that recurrent back- 
propagation should have wide applicability. However, 
randomly wiring up a network or simply using a Nly- 
connected network with the hope that the leaming algo- 
rithm will find a solution automatically is unlikely to 
succeed for a large-scale problem. 

Even though the network was initialized with asym- 
metric connection strengths, the learning procedure 
developed weights that were approximately symmetrical. 
Thus, the final network is similar to a continuous Hopfield 
netw~&~(Hopfield, 1984) and the process of settling can 
be considered a form of content-addressable memory, 
with a compatibility map as a recall cue and the 
corresponding disparity map as the closest local 
minimum. For networks that can store sparse disparity 
maps, the total number of stored local minima is very 
large, much larger than the number of neurons in the net- 
work. This is possible partly because the stored vectors 
are quite sparse (many fewer 1's than O's), but more 
importantly, all the local minima follow certain inherent 
rules and the information is redundant. However, the 
redundancy is not at all apparent by casual inspection of 
the stored vectors. This suggests that the capacity of a 
given network for correlated patterns can be enormous. 

All the network models proposed so far for solving 
the correspondence problem for random-dot stereograms, 
including the ones in this paper, have used a local encod- 
ing of disparity; that is, each unit in the network 
corresponded to a possible match of a paaicular point in 
the left image and a particular point in the right image. 
The "tuning curve" (response verses disparity) for such a 
unit had a width that was approximately equal to the 
visual angle spanned by one dot in a random-dot stereo- 
gram. However, disparity sensitive neurons in the visual 
system are broadly tuned (Poggio & Fischer, 1977; 
LeVay & Voigt, 1988). Psychophysical measurements of 
stereo hyperacuity and stereo interpolation are consistent - 

with these coarsely-tuned mechanisms (Lehky and 
Sejnowski, 1988). Coarse coding is more efficient and 
noise resistant than local representations (Sejnowski, 
1988). Attempts to use coarse coding for disparity in our 
networks have not yet been successful. There may be 
something missing in our understanding of biological cir- 
cuits that must be added to our models before we can 
solve the stereo problem with coarsely-tuned units like 
those found in the visual system. 
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