
Chapter 4

Learning to Evaluate Go Positions via
Temporal Difference Methods

N.N. Schraudolph, P. Dayan, and T.J. Sejnowski

The game of Go has a high branching factor that defeats the tree search
approach used in computer chess, and long-range spatiotemporal inter­
actions that make position evaluation extremely difficult. Development
of conventional Go programs is hampered by their knowledge-intensive
nature. We demonstrate a viable alternative by training neural networks
to evaluate Go positions via temporal difference (TO) learning.

Our approach is based on neural network architectures that reflect the
spatial organization of both input and reinforcement signals on the Go
board, and training protocols that provide exposure to competent (though
unlabeled) play. These techniques yield far better performance than un­
differentiated networks trained by self-play alone. A network with less
than 500 weights learned within 3 000 games of 9 x 9 Go a position eval­
uation function superior to that of a commercial Go program.

1 Introduction

1.1 The Game of Go

Go was developed four millennia ago in China; it is one of the oldest and
most popular board games in the world. Like chess, it is a determinis­
tic, perfect information, zero-sum game of strategy between two players.
They alternate in placing black and white stones on the intersections of
a 19 x 19 grid (smaller for beginners) with the objective of surrounding
more board area (territory) with their stones than the opponent. Adjacent
stones of the same color form groups; an empty intersection adjacent to

N. Baba et al. (eds.), Computational Intelligence in Games
© Physica-Verlag Heidelberg 2001

78 Chapter 4

Cq>yrip ® 1993 N. Sdwalldolph

Learning to Evaluate Go Positions via Temporal Difference Methods 79

a group is called a liberty of that group. A group is captured and re­
moved from the board when its last liberty is occupied by the opponent.
To prevent loops, it is illegal to make certain moves which recreate a prior
board position. A player may pass at any time; the game ends when both
players pass in succession. Each player's score is then calculated as the
territory (number of empty intersections) they have surrounded plus the
number of enemy stones they have captured; the player with the higher
score wins the game.

1.2 Computer Go

Unlike most other games of strategy, Go has remained an elusive skill for
computers to acquire - indeed it is increasingly recognized as a "grand
challenge" of Artificial Intelligence [1]-[3]. The game tree search ap­
proach used extensively in computer chess is infeasible: the game tree
of Go has an average branching factor of around 200, but even begin­
ners may routinely look ahead up to 60 plies in some situations. Humans
appear to rely mostly on static evaluation of board positions, aided by
highly selective yet deep local lookahead. Conventional Go programs
are carefully (and protractedly) tuned expert systems [4]. They are fun­
damentally limited by their need for human assistance in compiling and
integrating domain knowledge, and still play barely above the level of a
human beginner - a machine learning approach may thus offer consid­
erable advantages. Briigmann [5] has shown that a knowledge-free opti­
mization approach to Go can work in principle: he obtained respectable
(though inefficient) play by selecting moves through simulated annealing
[6] over possible continuations of the game.

Creating (respectively preventing) live groups - particular patterns on
the board which are stable against opposing play - is one of the basic
elements of strategy, so there is a large component of pattern recognition
inherent in Go. It is this component which is amenable to connection­
ist methods. Supervised backpropagation networks have been applied to
the game [7], [8], but face a bottleneck in the scarcity of hand-labeled
training data. By contrast, a vast number of unlabeled Go game records
is readily available on the Internet; we therefore propose an approach
which can utilize this rich supply of data.

80 Chapter 4

2 Temporal Difference Learning

We use an algorithm called temporal difference (TD) learning [9] to ac­
quire a function that evaluates board positions. It can be seen as an adap­
tation of Samuel's famous program that learned to play checkers [10].
The idea is to take a representation of the board position Xt at time t
in the game and from it produce a number f(Xt; w) which specifies how
good this board position is. Here w is a set of parameters which are tuned
during learning to tum f(Xt; w) into a good evaluation function - i.e.,
one that accurately reflects the chances of winning the game (against a
strong opponent) from the given position Xt. In our case, f(Xt; w) will
be implemented by a neural network, and w are its weights.

Given an accurate position evaluation function, the computer can choose
good moves by conventional search methods. Since our focus here is on
learning the evaluation function, we use only the most primitive search
strategy: our program typically tries out every legal move, then picks the
one leading to the board position with the highest value of f(Xt; w).

2.1 Mathematical Derivation

Consider first trying to learn how to evaluate board positions based on
playing a fixed strategy against randomly selected opponents. If we ar­
range for a reward rT = 1 if the game ends at time T and the program
wins, and set rt = 0 if t t= T or if the program loses, then the probability
of winning the game from position Xt can be written as

(1)

where E[·] takes an expectation, in this case starting from position Xt,
over the play of the opponents as well as any randomization in the pro­
gram's own moves.

The TD approach provides a learning rule for changing the parameters
w to improve the fit of our evaluation function f (Xt; w) to the true value
function V (Xt). Separating the first and subsequent terms of the sum in

Learning to Evaluate Go Positions via Temporal Difference Methods 81

(1) gives

V(Xt) E[r,] + E [,~,r'l (2)

E[Tt] + E[V(XH1)] (3)

f"V Tt + V(Xt+l) (4)

~ Tt + f(xt+l; w) (5)

where the second expectation in (3) is over the value of Xt+l, (4) uses
random samples of Tt and Xt+l instead of their expectations (making this
a Monte Carlo method), and (5) replaces the true value V(Xt+l) with its
current approximation f(XH1; w). Using the right-hand side of (5) as a
target for f (Xt; w), we construct a prediction error term

(6)

which is used to change the weights w. The simplest TD rule, called
TD(O), changes the weights according to

(7)

where \7 w f (Xt; w) is the vector of partial derivatives of the evaluation
function with respect to the parameters. This can be shown under very
particular circumstances to make f(x; w) converge to V(x). (Our model,
together with many other applications of TD, uses the learning rule suc­
cessfully in a regime where these guarantees do not hold.) There is a
refinement ofTD(O) called TD()'), which instead uses

~ w ex: Ot ft, where

ft \7 wf(xt; w) +). ft - 1

(8)

(9)

and whose free parameter 0 ~). ~ 1 can be shown to trade off bias against
variance in the weight changes [11].

2.2 Use for Game Playing

Once appropriate parameters ware learned, the evaluation function can
be used to choose moves - naturally favoring those that lead to better

82 Chapter 4

board positions. In this case, as w changes, the program's strategy will
change, leading to different outcomes of the game, which in tum will
trigger yet other changes in w. Done carefully, this process is related to
the engineering optimization method of dynamic programming [9], [12].
However, even when done in a more heuristic manner, as we are forced
to, this can work quite well.

Using the TD approach, a program can thus learn to playa game without
ever having been trained on explicitly labeled examples of good vs. bad
play. In fact, any generator of legal moves - game records, other com­
puter programs, random move generators, and so forth - can in principle
be used for TD training. At the most extreme, the TD learner itself can
be used to play both sides of the game according to its current evalua­
tion function. Learning from such self-play is intriguing in that in this
setup the program has no access at all to even implicit knowledge about
the game it is to learn, beyond its bare rules (which must necessarily be
hardcoded into the program).

TD learning has been successfully applied to the game of backgammon
by Tesauro [13]. His TD-Gammon program used a backpropagation net­
work to map preselected features of the board position to an output re­
flecting the probability that the player to move would win. It was trained
by TD(O) while playing only itself, yet learned an evaluation function
that - coupled with a full two-ply lookahead to pick the estimated best
move - made it competitive with the best human players in the world
[14], [15].

2.3 Naive Application to Go

In an early experiment we investigated a straightforward adaptation of
Tesauro's approach to the Go domain. Go is similar to backgammon in
that complete expansion of the search tree at even moderate levels is fu­
tile. In contrast to backgammon, however, it has no random element to
ensure adequate exploration, or to render extended strategies ineffective.
We thus had to supply the stochasticity necessary for TD learning by ran­
domizing our network's self-play. This was achieved by picking moves
through Gibbs sampling [16], that is, with probability proportional to
ef3!(xt +l), over the board positions Xt+1 reached by all legal moves (i.e.,

Learning to Evaluate Go Positions via Temporal Difference Methods 83

a full single-ply search). The pseudo-temperature parameter (3 was grad­
ually increased from zero (random play) towards infinity (best-predicted
play) over the course of training [6].

We trained a fully connected backpropagation network on a 9 x 9 Go
board (a standard didactic size for humans) in this fashion. The network
had 82 inputs (one for each point on the board, plus a bias input), 40 hid­
den units with hyperbolic tangent activation function, and a single output
learning to predict the difference between the two players' scores. Inputs
were encoded as + 1 for a black stone, -1 for a white one, and zero for
an empty intersection. Reward rt was given for captured enemy stones at
the time of capture, and for surrounded territory at the end of the game.

This network did learn to squeak past Wally, a weak public domain pro­
gram [17], but it took 659000 games oftraining to do so. One reason for
this sloth lies in the undifferentiated nature of the fully connected net­
work, which fails to capture any of the spatial structure inherent in the
game. Another another contributing factor is the paucity of the scalar re­
inforcement signal. An important difference to backgammon is that the
terminal state of a Go board is quite informative with respect to the play
that preceded it: much of the board will be designated as territory be­
longing to one or the other player, indicating a positive local outcome for
that player. Finally, while self-play did suffice for TO-Gammon, Go is a
game of far higher complexity, and exposure to somewhat more compe­
tent play may be required in order to achieve results within reasonable
training time.

We have found that the efficiency of learning to play Go by TO meth­
ods can indeed be vastly improved through appropriately structured net­
work architectures, use of a richer local reinforcement signal, and train­
ing strategies that incorporate but do not rely exclusively on self-play.
In the remainder of this chapter, we will describe these improvements in
detail.

3 Network Architecture

Figure 1 illustrates the neural network architecture we propose for TO
learning of a position evaluation function for Go. Its particular features

84 Chapter 4

1: va lue

~ 7 Drocessed
~------"::..:.:.:..;-- -~-:-=--'-----'- features

t
(constraint satisfaction) • .

t raw feature maps "\ ~ connectiv ity map

c:c:;; \ ,,~--------~~~ i I f ~I
=[. =-=. =-'=.::-C.="] [••••] symmetry (;::J (••) •••• • •••••• gfoups •• ••

~GO board M ~
Figure I. A network architecture that takes advantage of board symmetries,
translation invariance and localized reinforcement. Also shown is the proposed
connectivity prediction mechanism (Section 3.4).

are described in detail below. In our experiments we implemented all of
them except for the connectivity map and lateral constraint satisfaction,
which are the subject of future work.

3.1 Local Reinforcement

One of the particular advantages of Go for predictive learning is that
there is much rieher information available at the end of the game than
just who won. Unlike chess, checkers or backgammon, in which pieces
are taken away from the board until there are few or none left, Go stones
generally remain where they are placed. This makes the final state of the
board richly informative with respect to the course of play; indeed the
game is scored by summing contributions from each point on the board.

We make this spatial credit assignment accessible to the network by hav­
ing it predict the fate of every point on the board rather than just the
overall score, and evaluate whole positions accordingly. (This bears some

Learning to Evaluate Go Positions via Temporal Difference Methods 85

similarity with the Successor Representation [18] which also integrates
over vector rather than scalar destinies.) Specifically, the network now
has an output for each point on the board, which receives a reward r t
of ±1 for the capture of a prisoner at that point (during the game), and
likewise for that point being black or white territory at the end of the
game.

For reasons of computational efficiency, it is desirable to combine the
gradient information with respect to all outputs into a single scalar for
each hidden unit of a backpropagation network; this forces us to use>. =
o when implementing of TD(>') with local reinforcement signals (i.e.,
multiple outputs). Note that although Tesauro did not have this constraint,
he nonetheless found TD(O) to be optimal [13]. Our experience has been
that the advantages of incorporating the much richer local reinforcement
signal by far outweigh the disadvantage of being limited to >. = O.

3.2 Symmetries

Given the knowledge-based approach of existing Go programs, there is
an embarrassment of input features that one might adopt for Go: Wallyal­
ready uses about 30 of them, stronger programs disproportionately more.
In order to demonstrate reinforcement learning as a viable alternative
to the conventional approach, however, we require our networks to learn
whatever set offeatures they might need. The complexity of this task can,
however, be significantly reduced by exploiting a number of symmetries
that hold a priori in this domain. Specifically, patterns of Go stones retain
their properties under color reversal, reflection and rotation of the board.
Each ofthese invariances should be reflected in the network architecture.

Color reversal invariance implies that changing the color of every stone
in a Go position, and the player whose turn it is to move, yields an equiva­
lent position from the other player's perspective. We build this constraint
directly into our networks by using antisymmetric input values (+ 1 for
black, -1 for white) and hidden unit activation functions (hyperbolic tan­
gent) throughout, and changing the bias input from + 1 to -1 when it
is white's turn to move. This arrangement obviously guarantees that the
network's outputs will have identical magnitude but opposite sign when
the input position is color-reversed.

86 Chapter 4

Go positions are also invariant with respect to the eightfold (reflection x
rotation) symmetry of the square.! We provided a mechanism for con­
straining the network to obey this invariance by creating symmetry groups
of eight hidden units, each seeing the same input under a different reflec­
tion/rotation, with appropriate weight sharing and summing of deriva­
tives [19] within each symmetry group.

Although this was clearly beneficial during the evaluation of the net­
work against its opponents, it appeared to actually impede the course of
learning, for reasons that are not clear at this point. We settled on using
symmetry groups only in play, using a network trained without them.

3.3 Translation Invariance

Modulo the considerable influence of the board edges, patterns of Go
stones also retain their properties under translation across the board. To
implement translation invariance we use convolution with a weight ker­
nel rather than multiplication by a weight matrix as the basic mapping
operation in our network, whose layers are thus feature maps produced
by scanning a fixed receptive field (the weight kernel) across the input
[20]. One particular advantage of this technique is the easy transfer of
learned weight kernels to different Go board sizes.

It must be noted, however, that strictly speaking, Go is not fully
translation-invariant: the edge of the board not only affects local play
but modulates other aspects of the game, and indeed forms the basis of
opening strategy. We currently account for this by allowing each node
in our network to have its own bias weight, thus giving it one degree of
freedom from its neighbors. This enables the network to encode absolute
position at a modest increase in the number of adjustable parameters. Fur­
thermore, we provide additional redundancy around the board edges by
selective use of convolution kernels twice as wide as the input. Weights
near the edge of such extra-wide kernels are used only for points near
the opposite edge in the feature map, and are thus free to specialize in
encoding hoard edge effects.

I There are human conventions about the propriety of starting the game in a particular
comer, which is a concern in teaching the network from recorded human games.

Learning to Evaluate Go Positions via Temporal Difference Methods 87

For future implementations, we suggest that it is possible to augment the
input representation of the network in such a way that its task becomes
fully translation-invariant, by adding an extra input layer whose nodes
are activated when the corresponding points on the Go board are empty,
and zero when they are occupied (regardless of color). Such a scheme
represents board edges in precisely the fashion in which they influence
the game: through the absence of free board space beyond them. This
consistency should make it possible for the network to encode reasonable
evaluation functions with fully translation-invariant receptive fields, thus
eliminating the need for any special treatment of the board edges. As
an additional benefit, the augmented input representation also makes the
three possible states of a point on the board (black stone, white stone, or
empty) linearly separable - hence easier to process - for the network.

3.4 Connectivity

The use of limited receptive field sizes raises the problem of how to ac­
count for long-ranging spatial interactions on the board. In Go, the dis­
tance at which groups of stones interact is a function of their arrangement
in context; an important subproblem of position evaluation is therefore
to compute the connectivity of groups of stones. We propose to model
connectivity explicitly by training the network to predict the correlation
pattern of local reinforcement from a given position. This information
can then be used to inform the lateral propagation of local features in
the hidden layer through a constraint satisfaction mechanism. The task
is to segment the board into groups of stones that are (or will be) effec­
tively connected; image segmentation algorithms from computer vision
may prove useful here.

4 Training Strategies

Temporal difference learning teaches the network to predict the conse­
quences of following particular strategies on the basis of the play they
produce. The question arises as to which strategies should be used to
generate the large number of Go games needed for training. In principle,
any generator of legal Go moves could be used to play either side of the
game; in practice, a carefully chosen combination of move generation

88 Chapter 4

Table I. Comparison of alternative move generation strategies.

I move generator I speed quality quantity coverage flexibility I
game record fast high limited conventional none
Go program slow medium unlimited questionable some
TDnetwork slow low unlimited questionable high
random play fast none unlimited ergodic high

strategies is key to achieving good TD learning performance.

We evaluate particular move generators according to five criteria: the
speed with which they can provide us with moves, the quality of the
moves provided, the quantity of moves we can obtain from the genera­
tor, to what extent these moves cover the space of plausible Go positions,
and finally the flexibility of the move generator. We regard a move gen­
erator as flexible if it can be used in arbitrary board positions and against
arbitrary opponents. Table 1 lists four types of move generators, and how
they fare in regard to these criteria. In what follows, we shall discuss each
type in greater detail.

4.1 Recorded Games

The growth of the Internet, and the popularity of Internet Go Servers -
where Go aficionados from all over the globe congregate to play net­
worked games - has led to an explosion in the amount of machine­
recorded Go games. We estimate that at present about 500000 recorded
games between Go professionals and serious amateur players are avail­
able in machine-readable format. They offer a supply of instantaneous
(since prerecorded), high-quality Go moves for TD training. As to their
coverage, these games naturally represent conventional human play,
which might help a trained network in routine play against humans but
exposes it to brittleness in the face of unconventional moves by the op­
ponent.

There are other drawbacks to training from recorded games: there is no
flexibility (the game record must be played through from the start), and
the supply of suitable games can be quite limited. Specifically, most ma­
chine learning approaches to Go use the smaller 9 x 9 board due to com­
putational limitations; among humans, this board size is used only by

Learning to Evaluate Go Positions via Temporal Difference Methods 89

rank beginners to learn the basics ofthe game. Thus only a few thousand
9 x 9 games, and of questionable quality, have been recorded to date.

Another major obstacle is the human practice of abandoning the game
once both players agree on the outcome - typically well before a posi­
tion that could be scored mechanically is reached. While the game record
typically contains the final score (sufficient for our naive TD-Go net­
work), the black and white territories (required for local reinforcement)
are rarely given explicitly. This issue can be addressed by eliminating
early resignations from the training set, and using existing Go programs
to continue the remaining games to a point where they can be scored me­
chanically. For verification, the score thus obtained can then be compared
to that given in the game record, with mismatches also eliminated from
the training set.

4.2 Other Go Programs

Existing computer Go programs can also be used as a source of data for
TD training. Although these programs are not as good as typical human
players, they do incorporate a significant body of knowledge about the
game, and provide reasonable moves in unlimited quantity, albeit at rela­
tively slow speed. Regarding coverage, these programs typically respond
reasonably to conventional human play, but can react in rather bizarre
ways to unconventional moves (e.g., those ofa computer opponent). The
major practical issues in using computer Go programs for TD learning
are the tradeoff between their speed and quality of moves, and their flex­
ibility (or lack thereof). We have explored the use of two Go programs in
this fashion: Wally and The Many Faces of Go.

Wally [17] is a rather weak public domain program based on simple pat­
tern matching. It does have the advantages of being quite fast, purely
reactive, and available in source code, so that we were able to seamlessly
integrate it into our TD-Go system, and use it as a move generator with
full flexibility.

The commercial Many Faces [4], by contrast, is a self-contained DOS
program. To use it, we had to hook a spare PC to our system via serial
cable, and pretend to be a modem through which a remote opponent (i.e.,

90 Chapter 4

our system) was playing. Since it was not possible to set up arbitrary
board positions by modem, we always had to play entire games. Parame­
ters such as its skill level and handicap had to be set manually as well, so
overall flexibility was low, as was the speed of move generation. These
drawbacks are redeemed by the fact that for a computer program, Many
Faces delivers comparatively high-quality moves.

4.3 TD Network Moves

Tesauro trained TD-Gammon by self-play - i.e., the network's own po­
sition evaluation was used (in conjunction with a full search over all legal
moves) to pick both players' moves during TD training. This technique
is impressive in that does not require any external source of expertise be­
yond the rules of the game: the network is its own teacher. We already
adopted this approach for 9 x 9 Go in our "naive" TD-Go network (Sec­
tion 2.3); now we re-examine it as one possible move generation strategy.
As a move generator, the TD network is comparable to Go programs like
Wally, providing (with full flexibility) an unlimited supply of relatively
slow and (at least early in training) low-quality moves.

As for coverage, Go (unlike backgammon) is a deterministic game, so
we cannot always pick the estimated best move when training by self­
play without running the risk of trapping the network in some suboptimal
fixed state. Theoretically, this should not happen - the network playing
white would be able to predict the idiosyncrasies of the network playing
black, take advantage of them thus changing the outcome, and forcing
black's predictions to change commensurately - but in practice it is a
concern. We therefore pick moves stochastically by Gibbs sampling [16],
in which the probability of a given move is exponentially related to the
predicted value of the position it leads to, through a pseudo-temperature
parameter that controls the degree of randomness. It is an open ques­
tion, however, just how much stochasticity is required for TD learning to
proceed most efficiently.

Although it offers the unique opportunity for the TD network to learn
from its own idiosyncrasies, we found self-play alone to be rather cum­
bersome for two reasons: firstly, the single-ply search used to evaluate all
legal moves is computationally intensive - and although we are investi-

Learning to Evaluate Go Positions via Temporal Difference Methods 91

gating faster ways to accomplish it, we expect move evaluation to remain
a computational burden. Secondly, learning from self-play is sluggish as
the network must bootstrap itself out of ignorance without the benefit
of exposure to skilled opponents. When we do use the TD network as a
move generator for its own training, we thus find it generally preferable
to let the TD network play against another Go program, such as Wally or
Many Faces. This also provides a convenient way to monitor the progress
of training, and to determine whether the architectures we have chosen
provide enough flexibility to represent a useful evaluation function.

4.4 Random Moves

Recorded games aside, the fastest way to generate legal Go moves is to
just pick a random one. Although this approach doesn't generate play of
any appreciable quality, we found that TD networks can learn a surpris­
ing amount of basic Go knowledge by observing a few thousand quick
games of random Go; this accords well with Briigmann's results [5]. In
particular, this proved an effective way to prime our networks at the start
of training.

The random move generator combines the advantages of high speed and
ergodicity, i.e., it explores all legally reachable Go positions. In order to
provide a minimum of stability and structure to its play, we do prevent
it from filling in its own single-point eyes - a particular, locally (and
easily) recognizable type of suicidal move.

4.5 Matching Opponents

Sufficiently flexible move generators can in principle be arbitrarily com­
bined to playa game between two players. In order to create useful train­
ing data, however, the two opponents should be well-matched in their
skill level. Otherwise, trivial predictions of the game's outcome (such
as "white always wins") become possible, which undermines the net­
work's learning process. Human Go players are matched using a system
of ratings and handicaps; our TD-Go framework permits at least three
additional ways to ensure that opponents are of equal strength:

• use the same move generator on both sides (self-play),

92 Chapter 4

• have the players trade sides several times during the game, or

• dilute the stronger player by interspersing it with an appropriate
proportion of random moves.

For move generators that are sufficiently flexible to support it, we favor
the dilution approach, since it has a number of advantages: firstly, the
proportion of random moves can be changed adaptively, based on the
outcome of past games. When one of the players is the TD network, this
not only keeps the opponents well-matched while the network improves
over time, but also - secondly - provides us with a convenient on-line
performance measure. Finally, the injection of random moves also serves
to guarantee sufficient variety of play (i.e., coverage) in cases where this
would otherwise be in doubt.

Since, in all cases, the strategies of both players are intimately inter­
twined in the predictions, one would never expect them to be correct
overall when the network is playing a real opponent. This is a particular
problem when the strategy for choosing moves during learning is dif­
ferent from the policy adopted for "optimal" network play. Samuel [10]
found it inadvisable to let his checker program learn from games which
it won against an opponent, since its predictions might otherwise reflect
poor as well as good play. This is a particularly pernicious form of over­
fitting - the network can learn to predict one strategy in exquisite detail,
without being able to play well in general.

5 Empirical Results

In our experiments we trained many networks by a variety of methods.
A small sample network that learned to beat Many Faces (at low playing
level) in 9 x 9 Go within 3 000 games of training is shown in Figure 2.
This network was grown during training by adding hidden layers one at a
time; although it was trained without the (reflection x rotation) symme­
try constraint, many of the weight kernels learned approximately sym­
metric features. The direct projection from board to reinforcement layer
has an interesting structure: the negative central weight within a positive
surround stems from the fact that a placed stone occupies (thus loses) a
point of territory even while securing nearby areas. Note that the wide
17 x 17 projections from the hidden layers have considerable fringes -

Learning to Evaluate Go Positions via Temporal Difference Methods 93

hO-treinf hl-treinf architecture

I r reJ.nf II r value

n~ Ir hO Nr-r-h1:"'-"'--'"

~~t
Ir board Ilr tum

g •••••
board-thO turn-thO board-thl tum-th 1 board-treinf turn-treinf

Figure 2. A small network that learned to play 9x9 Go. Boxes in the archi­
tecture panel represent 9x9 layers of units, except for turn and value which
are scalar. Arrows indicate convolutions with the corresponding weight ker­
nels. Black disks represent excitatory, white ones inhibitory weights; within each
panel, disk area is proportional to weight magnitude.

ostensibly a trick the network uses to incorporate edge effects. (Absolute
position is also encoded explicitly in the bias projections from the turn
unit.)

We compared training this network architecture by self-play versus play
against r- Wally, a version of Wally diluted with random play in adap­
tive proportion. Figure 3 show the network's performance during train­
ing against both r-Wally and (to evaluate generalization) Many Faces.
Although the initial rate of learning is similar in both cases, the net­
work playing r- Wally soon starts to outperform the one playing itself;
this demonstrates the advantage of having a skilled opponent. After about
2 000 games, however, both start to overfit their opponents, and conse­
quently worsen against Many Faces.

Switching training partner to Many Faces - set to a skill level of 2-3,
out of a maximum of 20 - at this point produced after a further 1 000
games a network that could reliably beat this opponent (dotted line in
Figure 3). The low skill setting we used essentially disabled Many Faces'

94 Chapter 4

TD-Network Performance

• against r-Wally against ManyFaces +
40 50

~ trained against: itself -~ If r-Wally '" ~ -c
a!. 30 ManyFaces ::I

til

~ 25 '" .c
- -+ Q

." '" ~ - - - - - - - -~ 20 -c 0

e ~
e = -. - - ~ .. ------.. 0 ::I c '< 'C 10 Iotj = ---- . = ~ n ,., til

~ '"
0

0 -25
0 1000 2000 3000

games of Go played

Figure 3. Performance of our 9x9 Go network, measured against two oppo­
nents - Wally diluted with random moves (boxes, left axis), and Many Faces
(diamonds, right axis) - when trained by playing against itself (dashed), the
randomized Wally (solid line), or Many Faces (dotted).

deep lookahead mechanisms [21]; since our TD network move generator
does not search any deeper than a single ply either, this can be viewed as
a fair test of static position evaluation and move selection capabilities.

Although less capable, the self-play network did manage to edge past
Wally after 3 000 games; this compares very favorably with the undif­
ferentiated network described in Section 2.3. Furthermore, we verified
that weights learned from 9 x 9 Go offer a suitable basis for further train­
ing on the full-size (19 x 19) Go board. Computational limitations did
not permit comprehensive training on the full-size board though, where
recorded games would offer a rapid source of high-quality play.

Subjectively, our networks appear more competent in the opening than
further into the game. This suggests that although reinforcement infor­
mation is indeed propagating all the way back from the final position,
it is hard for the network to capture the multiplicity of mid-game sit­
uations and the complex combinatorics characteristic of the endgame.

Learning to Evaluate Go Positions via Temporal Difference Methods 95

These strengths and weaknesses partially complement those of symbolic
systems, suggesting that hybrid approaches might be rewarding [22],
[23].

6 Summary

We have shown that with sufficient attention to network architecture
and training procedures, a neural network trained by temporal difference
learning can achieve significant levels of performance in this knowledge­
intensive domain. Specifically, we have identified salient characteristics
of Go, such as the informative nature of the final state of every game, the
mixture of translation variance and invariance, and color reversal sym­
metry, and have shown how to capture them efficiently in the network
architecture. Networks with a relatively small number of weights learn
very quickly to beat complicated conventional programs, and, judging
from the mistakes they exhibit, would perform substantially better yet if
given a small amount of "symbolic" help.

Acknowledgements

We are grateful to Patrice Simard and Gerry Tesauro for helpful discus­
sions, to Tim Casey for game records from the Internet Go Server, and
to Geoff Hinton for CPU cycles. A condensed description of this work
has previously appeared at the NIPS conference [24]. Support was pro­
vided by the McDonnell-Pew Center for Cognitive Neuroscience, SERe,
NSERC, the Howard Hughes Medical Institute, and the Swiss National
Fund.

96 Chapter 4

References

[1] Rivest, R. (1993), invited talk, Conference on Computational
Learning Theory and Natural Learning Systems, Provincetown,
MA.

[2] Johnson, G. (1997), "To test a powerful computer, play an ancient
game," The New York Times, July 29, http://www.cns.nyu.
edu/-rnechner/cornpgo/tirnes/.

[3] Mechner, D.A. (1998), "All systems go," The Sciences, vol. 38, no.
l,pp.32-37,http://www.cns.nyu.edu/-rnechner/cornpgo/
sciences/.

[4] Fotland, D. (1993), "Knowledge representation in the Many Faces
of Go," ftp: / /www.joy.ne.jp/welcorne/igs/Go/computer
Irnfg. z.

[5] Briigmann, B. (1993), "Monte Carlo Go," ftp: / /www.joy.ne .
jp/welcorne/igs/Go/cornputer/rncgo.tex.Z.

[6] Kirkpatrick, S., Gelatt Jr., c., and Vecchi, M. (1983), "Optimization
by simulated annealing," Science, vol. 220, pp. 671-680, reprinted
in [25].

[7] Stoutamire, D. (1991), "Machine learning applied to Go," Mas­
ter's thesis, Case Western Reserve University, ftp: / /www. joy.
ne.jp/welcome/igs/Go/cornputer/report.ps.Z.

[8] Enderton, H.D. (1991), "The Golem Go program," Tech. Rep.
CMU-CS-92-101, Carnegie Mellon University, ftp: I Iwww. joy.
ne.jp/welcome/igs/Go/cornputer/golern.sh.Z.

[9] Sutton, R.S. and Barto, A.G. (1998), Reinforcement Learning: an
Introduction, The MIT Press, Cambridge, MA.

[10] Samuel, A.L. (1959), "Some studies in machine learning using the
game of checkers," IBM Journal of Research and Development, vol.
3, pp. 211-229.

[11] Watkins, C. (1989), Learningfrom Delayed Rewards, Ph.D. thesis,
University of Cambridge, England.

Learning to Evaluate Go Positions via Temporal Difference Methods 97

[12] Bertsekas, D.P. and Tsitsiklis, IN. (1996), Neuro-Dynamic Pro­
gramming, Athena Scientific, Belmont, MA.

[13] Tesauro, G. (1992), "Practical issues in temporal difference learn­
ing," Machine Learning, vol. 8, p. 257.

[14] Robertie, B. (1992), "Carbon versus silicon: matching wits with
TD-Gammon," Inside Backgammon, vol. 2, no. 2, pp. 14-22.

[15] Tesauro, G. (1994), "TD-gammon, a self-teaching backgammon
program, achieves master-level play," Neural Computation, vol. 6,
no. 2, pp. 215-219.

[16] Geman, S. and Geman, D. (1984), "Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images," IEEE Trans­
actions on Pattern Analysis and Machine Intelligence, vol. 6,
reprinted in [25].

[17] Newman, W.H. (1988), "Wally, a Go playing program," ftp: / /
www.joy.ne.jp/welcome/igs/Go/computer/wally.sh.Z.

[18] Dayan, P. (1993), "Improving generalization for temporal differ­
ence learning: the successor representation," Neural Computation,
vol. 5,no.4,pp.613-624.

[19] LeCun, Y., Boser, B., Denker, 1, Henderson, D., Howard, R., Hub­
bard, W., and Jackel, L. (1989), "Backpropagation applied to hand­
written zip code recognition," Neural Computation, vol. 1, pp. 541-
551.

[20] Fukushima, K., Miyake, S., and Ito, T. (1983), ''Neocognitron: a
neural network model for a mechanism of visual pattern recogni­
tion," IEEE Transactions on Systems, Man, and Cybernetics, vol.
13, reprinted in [25].

[21] Fotland, D. (1994), personal communication.

[22] Enzensberger, M. (1996), "The integration of a priori knowledge
into a Go playing neural network," http://www . cgl. ucsf.
edu/go/programs/neurogo-html/NeuroGo.html.

98 Chapter 4

[23] Dahl, F.A. (1999), "Honte, a Go-playing program using neural
nets," http:j jwww.ai.univie.ac .atjicml-99-ws-gamesj
papersjdahl.ps.gz.

[24] Schraudolph, N.N., Dayan, P., and Sejnowski, TJ. (1994), "Tem­
poral difference learning of position evaluation in the game of Go,"
in Cowan, J.D., Tesauro, G., and Alspector, J. (Eds.), Advances in
Neural Information Processing Systems, vol. 6, pp. 817-824, Mor­
gan Kaufinann, San Francisco.

[25] Anderson, J. and Rosenfeld, E. (Eds.) (1988), Neurocomputing:
Foundations of Research, MIT Press, Cambridge.

