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Abstract. In natural visual experience, different views of an object or face tend to appear 
in close temporal proximity as an animal manipulates the object or navigates around it, or 
as a face changes expression or pose. A set of simulations is presented which demonstrate 
how viewpoint-invariant representations of faces can be developed from visual experience by 
capturing the temporal relationships among the input patterns. The simulations explored the 
interaction of temporal smoothlng of activity signals with Hebbian learning in both a feedforward 
layer and a second, recurrent layer of a network. The feedforward connections were trained by 
competitive Hebbian learning with temporal smoothing of the post-synaptic unit activ~ties. The 
recurrent layer was a generalization of a Hopfield network with a low-pass temporal filter on 
all unit activities. The combination of basic Hebbian learn~ng with temporal smoothlng of unit 
activrties produced an attractor network learning rule that associated temporally proximal input 
patterns into basins of attraction. These two mechanisms were demonstrated in a model that 
took grey-level Images of faces as Input. Following training on image sequences of faces as 
they changed pose, multiple views of a given face fell into the same basm of attraction, and the 
system acquired representations of faces that were approximately viewpoint-invariant. 

1. Introduction 

Cells in the primate inferior temporal lobe have been rqported that respond selectively to 
faces despite substantial changes in viewpoint (Perrett et a1 1989, Hasselmo et a1 1989). A 
small proportion of cells gave responses that were invariant to angle of view, whereas other 
cells that have been classed as viewpoint dependent had tuning curves that were quite broad. 
Perrett et a1 (1989) reported broad coding for five principal views of the head: frontal, left 
profile, right profile, looking up, and looking down. The pose tuning of these cells was on 
the order of &40°. The retinal input changes considerably under these shifts in viewpoint. 

This model addresses how receptive fields with such broad pose tuning could be 
developed from visual experience. The model touches on several issues in the psychology 
and neurophysiology of face recognition. Can general learning principles account for the 
ability to respond to faces across changes in pose, or does this function require special- 
purpose, possibly genetically encoded, mechanisms? Is it possible to recognize faces across 
changes in pose without explicitly recovering or storing the three-dimensional (3D) structure 
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of the face? What are the potential contributions of temporal sequence information to the 
representation and recognition of faces? 

Until recently, most investigations of face recognition focussed on static images of faces. 
The preponderance of our experience with faces, however, is not with static faces, but with 
live faces that move, change expression, and pose. Temporal sequences contain information 
that can aid in the process of representing and recognizing faces and objects (e.g. Bruce 
1998). This model explores how a neural system can acquire invariance to viewpoint from 
visual experience by accessing the temporal structure of the input. The appearance of an 
object or a face changes continuously as the observer moves through the environment or 
as a face changes expression or pose. Capturing the temporal relationships in the input 
is a way of automatically associating different views of an object without requiring 3D 
representations (Stryker 199 1). 

Temporal association may be an important factor in the development of pose-invariant 
responses in the inferior temporal lobe of primates (Rolls 1995). Neurons in the anterior 
inferior temporal lobe are capable of forming temporal associations in their sustained activity 
patterns. After prolonged exposure to a sequence of randomly generated fractal patterns, 
correlations emerged in the sustained responses to neighbouring patterns in the sequence 
(Miyashita 1988). Macaques were presented a fixed sequence of 97 fractal patterns for 
two weeks. After training, the patterns were presented in random order. Figure 1 shows 
correlations in sustained responses of the AIT cells to pairs of patterns as a function of the 
relative position of the patterns in the training sequence. Responses to neighbouring patterns 
were correlated, and the correlation dropped off as the distance between the patterns in the 
training sequence increased. These data suggest that cells in the temporal lobe can modify 
their receptive fields to associate patterns that occurred close together in time. 

Hebbian learning can capture temporal relationships in a feedforward system when 
the output unit activities undergo temporal smoothing (FoldiBk 1991). This mechanism 
learns viewpoint-tolerant representations when different views of an object are presented in 
temporal continuity (FoldiBk 199 1, Weinshall and Edelman 1991, Rhodes 1992, O'Reilly 
and Johnson 1994, Wallis and Rolls 1997). FoldiBk (1991) used temporal association 
to model the development of viewpoint-invariant responses of V1 complex cells from 
sweeps of oriented edges across the retina. This model achieved translation invariance 
in a single layer by having orientation-tuned filters in the first layer that produced linearly 
separable patterns. More generally, approximate viewpoint invariance may be achieved by 
the superposition of several Foldihk-like networks (Rolls 1995). Most such models used 
idealized input representations. These learning mechanisms have recently been shown to 
learn transformation-invariant responses to complex inputs such as images of faces (Bartlett 
and Sejnowski 1996, 1997, Wallis and Rolls 1997, Becker 1998). The assumption of 
temporal coherence can also be applied to learn other properties of the visual environment, 
such as depth from stereo disparity of curved surfaces (Becker 1993, Stone 1996). 

There are several mechanisms by which receptive fields could be modified to perform 
temporal associations. A temporal window for Hebbian learning could be provided by the 
0.5 s open time of the NMDA channel (Rhodes 1992, Rolls 1992). A spatio-temporal 
window for Hebbian learning could also be produced by the release of a chemical signal 
following activity such as nitric oxide (Montague et a1 1991). Recurrent excitatory 
connections within a cortical area and reciprocal connections between cortical regions 
(O'Reilly and Johnson 1994) could sustain activity over longer time periods and allow 
temporal associations across larger timescales. 

The time course of the modifiable state of a neuron, based on the open time of the NMDA 
channel for calcium influx, has been modelled by a low-pass temporal filter on the post- 
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synaptic unit activities (Rhodes 1992). A low-pass temporal filter provides a simple way of 
describing any of the above effects mathematically. This paper examines the contribution of 
such a low-pass temporal filter to the development of viewpoint-invariant responses in both 
a feedforward layer, and a second, recurrent layer of a network. In the feedforward system, 
the competitive learning rule (Rumelhart and Zipser 1985) is extended to incorporate an 
activity trace on the output unit activities (Foldiik 1991). The activity trace causes recently 
active output units to have a competitive advantage for learning subsequent input patterns. 

The recurrent component of the simulation examines the development of temporal 
associations in an attractor network. Perceptual representations have been related to basins 
of attraction in activity patterns across an assembly of cells (Amit 1995, Freeman 1994, 
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Hinton and Shallice 1991). Weinshall and Edelman (1991) modelled the development 
of viewpoint-invariant representations of wire-framed objects by associating neighbouring 
views into basins of attraction. The simulations performed here show how viewpoint- 
invariant representations of face images can be captured in an attractor network, and we 
examine the effect of a low-pass temporal filter on learning in an attractor network. The 
recurrent layer was a generalization of a Hopfield network (Hopfield 1982) with a low-pass 
temporal filter on all unit activities. We show that the combination of basic Hebbian learning 
with temporal smoothing of unit activities produces an attractor network learning rule that 
associates temporally proximal input patterns into basins of attraction. This learning rule is 
a generalization of an attractor network learning rule that produced temporal associations 
between randomly generated input patterns (Griniasty et a1 1993). 

These two mechanisms were implemented in a model with both feedforward and lateral 
connections. The input to the model consisted of the outputs of an array of Gabor filters. 
These were projected through feedforward connections to a second layer of units, where 
unit activities are passed through a low-pass temporal filter. The feedforward connections 
were modified by competitive Hebbian learning to cluster the inputs based on a combination 
of spatial similarity and temporal proximity. Lateral connections in the output layer created 
an attractor network that formed basins of attraction based on the temporal proximity of 
the input patterns. Following training on sequences of grey-level images of faces as they 
changed pose, multiple views of a given face fell into the same basin of attraction, and the 
system acquired representations of faces that were approximately viewpoint invariant. 

2. Simulation 

Stimuli for these simulations consisted of 100 images of faces undergoing a change in pose, 
from Beymer (1994) (see figure 2). There were 20 individuals at each of five poses, ranging 
from -30" to 30". The faces were automatically located in the frontal view image using 
a feature-based template-matching algorithm (Beymer 1994). The location of the face in 
the frontal view image defined a window for the other images in the sequence. Each input 
sequence therefore consisted of a single stationary window within which the subject moved 
his or her head. The images were normalized for luminance and scaled to 120 x 120 pixels. 

2.1. Model architecture 

Images were presented to the model in sequential order as the subject changed pose from 
left to right (figure 3). The first layer of processing consisted of an oriented energy model 
related to the output of V1 complex cells (Daugman 1988, Lades et a1 1993). The images 
were filtered by a set of sine and cosine Gabor filters at four spatial scales (32, 16, 8, and 
4 pixels per cycle), and at four orientations (vertical, horizontal, and f 45"). The standard 
deviation of the Gaussian was set to twice the frequency of the sine or cosine wave, such that 
the receptive field size of the spatial filters increased with the spatial scale of the filters. The 
outputs of the sine and cosine Gabor filters were squared and summed, and then normalized 
by scale and orientation (Heeger 1991). The result was sampled at eight-pixel intervals. 
This produced a 3600-dimensional representation consisting of 225 spatial locations, four 
spatial scales, and four orientations. 

The set of V1 model outputs was projected to a second layer of 70 units labelled 
'complex pattern units' to characterize their receptive fields after learning. The complex 
pattern unit activities were passed through a low-pass temporal filter, described below. There 
was feedforward inhibition between the complex pattern units, meaning that the competition 
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Figure 2. Sample of the 100 images used in the simulation. Image set provided by David 
Beymer (Beymer 1994). 
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Figure 3. Model architecture. 
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influenced the feedforward activations only. The 70 units were grouped into two inhibitory 
pools, such that there were two active complex pattern units for any given input pattern. 
The third stage of the model was an attractor network produced by lateral interconnections 
among all the complex pattern units. The feedforward and lateral connections were updated 
successively. 

2.2. Competitive Hebbian learning of temporal relationships 

The learning rule for the feedforward connections of the model was an extension of the 
competitive learning algorithm (Rumelhart and Zipser 1985, Grossberg 1976) in which the 
output unit activities were passed through a low-pass temporal filter (Bartlett and Sejnowski 
1996). This manipulation gave active units in the previous time steps a competitive 
advantage for winning, and therefore learning, in the current time step. 

Let y: = xi w,,xi + b, be the weighted sum of the feedforward inputs and the bias at 

time t .  The activity of unit j at time t ,  L;('), is determined by the trace, or running average, 
of its input activity: 

The output unit activity, V j ,  was subject to a step-nonlinear competition function. 

where a is the learning rate, and N is the number of clustering units in the output layer. 
This was a modified winner-take-all competition where the non-winning activation was set 
to a constant small value rather than to zero. The effect of the small positive activation 
was to cause non-winning weight vectors to move into the space spanned by the input data 
(Rumelhart and Zipser 1985). The feedforward connections were updated according to the 
following learning rule: 

The weight change from input i to output j was proportional to the normalized input activity 
at unit i for pattern u,  x,,, minus a weight decay term. In addition to the weight decay, the 
weight to each unit was constrained to sum to one by a divisive normalization. 

The small positive activation of non-winning weight vectors does not guarantee that 
all weight vectors will eventually participate in the clustering. It causes the non-winning 
weight vectors to move slowly toward the centroid of the data, and some of the weight 
vectors may end up oscillating about the centroid without winning the competition for one 
of the inputs. A bias term was therefore added to cause each output unit to be active for 
approximately the same proportion of the time. The learning rule for the bias to output unit 
j ,  b,, was 

where P is the number of input patterns, n is the number of output units in one pool, and 
cj is the count of wins for output j over the previous P time steps. The bias term was 
updated at the end of each iteration through the data, with learning rate p. If we define 
a unit's receptive field as the area of input space to which it responds, then the bias term 
acts to expand the receptive fields of units that tend to be inactive, and shrink the receptive 
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fields of units that are active more often than the others. There is some justification for 
activity-dependent modification of receptive field size of cortical neurons (see, for example, 
Jenkins et a1 (1990), Kaas (1991)). An alternative way of normalizing responses is through 
multiplicative scaling of the synaptic weights (Turrigiano et a1 1998). 

One face image was input to the system per time step, so the face patterns, u ,  can also 
be indexed by the time step, t .  The temporal smoothing was subject to reset based on 
discontinuities in optic flow, which ensured that there was no temporal smoothing across 
input images with large changes. Optic flow between image pairs was calculated using a 
simple gradient-based flow estimator (Horn and Schunk 1981). When the summed lengths 
of the optic flow vectors for sequential image pairs exceeded a threshold of y = 25, 
was initialized to y t .  The competitive learning rule alone, without the temporal smoothing, 
partitioned the set of inputs into roughly equal groups by spatial similarity. With the 
temporal smoothing, this learning rule clustered the input by a combination of spatial 
similarity and temporal proximity, where the relative contribution of the two factors was 
determined by the parameter I. 

This learning rule is related to spatio-temporal principal components analysis. It has 
been shown that competitive Hebbian learning can find the first N principal components 
of the input data, where N is the number of output units (Oja 1989, Sanger 1989). The 
low-pass temporal filter on output unit activities in equation (1) causes Hebbian learning 
to find axes along which the data co-vary over recent temporal history. By virtue of the 
linear transfer function, passing the output activity through a temporal filter is equivalent to 
passing the input through the temporal filter. Competitive Hebbian learning can thus find 
the principal components of this spatio-temporal input signal. 

2.3. Temporal association in an attractor network 

The lateral interconnections in the output layer formed an attractor network. After the 
feedforward connections were established in the first layer using competitive learning, 
the weights of the lateral connections were trained with a basic Hebbian learning rule. 
Hebbian learning of lateral interconnections, in combination with the low-pass temporal 
filter (equation (1)) on the unit activities, produced a learning rule that associated temporally 
proximal inputs into basins of attraction. This is demonstrated as follows. We begin with 
a basic Hebbian learning algorithm: 

where N is the number of units, P is the number of patterns, and yo is mean activity over 
all the units. Replacing y: with the activity trace $') defined in equation (I), we obtain 

t This initialization is not stnctly required for the success of such unsupervised learning algorithms because of 
the low probab~lity of any spec~fic par of adjacent lmages of different individuals relat~ve to the probabil~ty of 
adjacent lmages of the same ~nd~vidual (see also Wallis and Baddeley (1997)). However, we chose not to Ignore 
the trans~t~ons between md~v~duals slnce there are internal cues to these trans~t~ons such as eye movements, motion, 
and longer temporal delays. 
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Substituting yo = hyO + (1 - h)yO and multiplying out the terms produces the following 
learning rule: 

This learning rule is a generalization of an attractor network learning rule that has been 
shown to produce correlated attractors based on serial position in the input sequence 
(Griniasty et a1 1993). The first term in this equation is basic Hebbian learning. The 
weights are proportional to the covariance matrix of the input patterns at time t .  The 
second term performs Hebbian association between the patterns at time t and t - 1. The 
third term is Hebbian association of the trace activity for pattern t - 1. 

The following update rule was used for the activation V of unit i at time t from the 
lateral inputs (Griniasty et a1 1993): 

where 8 is a neural threshold and #(x) = 1 for x > 0, and 0 otherwise. In these simulations, 
8 = 0.007, N = 70, P = 100, yo = 0.03, and h = 0.5. 

The learning rule in Griniasty et a1 (1993) is presented in equation (9) for comparison. 
The learning rule developed by Griniasty et a1 associates first neighbours in the pattern 
sequence, whereas the learning rule in (7) has a longer memory. The weights in (9) are a 
function of the discrete activities at t and t - 1, whereas the weights in (7) are a function 
of the current input and the activity history at time t - 1. 

The weight structure and fixed points of an attractor network trained with equation (7) are 
illustrated in figures 4 and 5 using an idealized data set in order to facilitate visualization. 
The fixed points for the real face data will be illustrated later, in section 2.4. The idealized 
data set contained 25 input patterns, where each pattern was coded by activity in a single 
bit (figure 4, top). The patterns represented five individuals with five views each (a-e). 
The middle graph in figure 4 shows the weight matrix obtained with the attractor network 
learning rule, with h = 0.5. Note the approximately square structure of the weights along 
the diagonal, showing positive weights among most of the five views of each individual. 
The inset shows the actual weights between views of individuals 3 and 4. The weights 
decrease with the distance between the patterns in the input sequence. The bottom graphs 
show the sustained patterns of activity in the attractor network for each input pattern. Unlike 
the standard Hopfield net, in which the objective is to obtain sustained activity patterns that 
are identical to the input patterns, the objective here is to have a many-to-one mapping 
from the five views of an individual to a single pattern of sustained activity. Note that 
the same pattern of activity is obtained no matter which of the five views of the individual 
is input to the network. For this simplified representation, the attractor network produces 
responses that are entirely viewpoint invariant. The fixed points in this demonstration are 
the conjunctions of the input activities for each individual view. 
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Figure 4. Demonstration of attractor network with idealized data. Top: idealized data set. 
The patterns consist of five 'individuals' (1 ,2 ,3 ,4 ,5)  with five 'views' each (a, b, c,  d ,  e), and 
are each coded by activity in one of the 25 units. Centre: the weight matrix obtained using 
equation (3). Dots show the locations of positive weights, and the inset shows the actual weights 
among the five views of two different individuals. Bottom: fixed points for each input pattern. 
Unit activities are plotted for each of the 25 input patterns. 

Figure 5 shows the weight matrix for different values of the temporal filter, A t .  As h 
increases, a larger range of views contain positive weights. The figure also gives the fixed 
points for each input pattern. For h = 0.25, two to three views are associated into the same 
basin of attraction. For h = 0.4, there are positive connections between only a subset of 
the views for each face, yet this weight matrix is sufficient to associate all five views into 
the same basin of attraction. A rigorous numerical analysis of the mean field equations and 
fixed points of a related weight matrix can be found in Parga and Rolls (1998). 

t The half-life, h ,  of the temporal filter is related to A. by I* = 0.5 (Stone 1996). For A. = 0.5, the activity at time 
t is reduced by 50% after one time step. 
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Figure 5. Weight matrix (left) and fixed points (right) for three values of the temporal filter, 
I. Dots show locations of positive weights. Unit activities are plotted for each of the 25 Input 
patterns of the simplified data. 

2.4. Simulation results 

Sequences of grey-level face images were presented to the network in order as each 
subject changed pose. Faces rotated from left to right and right to left in alternate 
sweeps. The feedforward and the lateral connections were trained successively. The 
feedforward connections were updated by the learning rule in equations (1)-(3), with 
h = 0.5. Competitive interactions were among two pools of 35 units so that there were two 
active outputs for each input pattern. The two competitive pools created two samples of 
image clustering, which provided additional information on relationships between images. 
Images could be associated by both clusters, one, or neither, and images that were never 
clustered together could share a common clustering partner. 

After training of the feedforward connections, the representation of each face was 
a sparse representation consisting of the two active output units out of the total of 70 
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Figure 6. Pose tuning and ROC curves of the feedforward system for training images (top) and 
test images (bottom). Left: mean correlations of the feedforward system outputs for pairs of 
face images are presented by change in pose. Correlations across different views of the same 
face (-) are compared to correlations across different faces (- - -) for two values of the 
temporal trace parameter A = 0.5 and h = 0. Right: ROC curves and area under the ROC for 
'same-face' versus 'different-face' discrimination of the feedforward system outputs for training 
images (top) and test images (bottom). 

. 

complex pattern units. 'Pose tuning' of the feedforward system was assessed by comparing 
correlations in the network outputs for different views of the same face to correlations 
across faces of different people. Mean correlations for different views of the same face were 
obtained for each possible change in pose by calculating mean correlation in feedforward 
outputs across all four 15" changes in pose, three 30" changes in pose, and so on. Mean 
correlations across faces for the same changes in pose were obtained by calculating mean 
correlation in feedforward outputs for different subjects across all 15O changes in pose, 30" 
changes in pose, and so on. 

Figure 6 (top left) shows pose tuning both with and without the temporal low-pass filter 
on unit activities during training. The temporal filter broadened the pose tuning of the 
feedforward system, producing a response that was more selective for the individual and 
less dependent on viewpoint. 

The discriminability of the feedforward output for 'same face' versus 'different face' 
was measured by calculating the receiver-operator-characteristic (ROC) curve for the 

-60' -45' -30' -15' 0' 15' 30' 45' 60' 0 ' . " . ' " ' >  0 0 1  0 2  0 3  0 4  0 5  0 6  0 7  0 8  0 9  1 A Pose FA 
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distributions of 'same face' and 'different face' output correlations. The ROC curve plots 
the proportion of hits against the proportion of false alarms (FAs) for deciding 'same face' 
over different values of the acceptance criterion. The area under the ROC measures the 
discriminability of the two distributions, ranging from 0.5 for fully overlapping distributions 
to 1.0 for distributions with zero overlap in the tails. Figure 6 (top right) shows the ROC 
curves and areas under the ROC for feedforward output correlations with h = 0.5 and 
A = 0.0. The temporal filter increased the discriminability of the feedforward outputs. 

Test image results were obtained by alternately training on four poses and testing on 
the fifth, and then averaging across all test cases. Test images produced a similar pattern of 
results, which are presented in the bottom of figure 6. 

The feedforward system provided a sparse input to the attractor network. After the 
feedforward connections were established, the feedforward weights were held fixed, and 
sequences of face images were again presented to the network as each subject gradually 
changed pose. The lateral connections among the output units were updated by the learning 
rule in equation (7). After training of the attractor network, each face was presented to 
the system, and the activities in the output layer were updated until they arrived at a stable 
state. The sustained patterns of activity comprised the representation of a face in the attractor 
network component of the model. Following learning, these patterns of sustained activity 
were approximately viewpoint invariant. 

Figure 7 shows pose tuning and ROC curves for the sustained patterns of activity in 
the attractor network. The graphs compare activity correlations obtained using five values 
of A in equation (7). Note that h = 0 corresponds to a standard Hebbian learning rule. The 
contribution of the feedforward system and the attractor network to the overall viewpoint 
invariance of the system are compared in table 1. Temporal associations in the feedforward 
connections and the lateral connections both contributed to the viewpoint invariance of the 
sustained activity patterns of the system. 

Table 1. Contribution of the feedforward connections and the attractor network to viewpoint 
invariance of the complete system. Area under the ROC for the sustained activity patterns in 
network layer 2 is given with and without the temporal activity trace during learning in the 
feedforward connections (A,) and in the attractor network (A2). 

0.70 0.90 
0.5 0.84 0.98 t 

Figure 8 shows the activity in network layer 2 for 25 of the 100 grey-level face images, 
consisting of five poses of five individuals. Face representations following training of the 
feedforward connections only with h = 0 (top) are contrasted with face representations 
obtained when the feedforward connections were trained with h = 0.5 (middle), and with 
the face representations in the attractor network, in which both the feedforward and lateral 
connections were trained with h = 0.5. Competitive Hebbian learning without the temporal 
low-pass filter frequently included neighbouring poses of an individual in a cluster, but 
the number of views of an individual within the same cluster did not exceed two, and the 
clusters included images of other individuals as well. The temporal low-pass filter increased 
the number of views of an individual within a cluster. Note however, that for individuals 4 
and 5, the representation of views a and b is not correlated with that of views d and e .  The 
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Figure 7. Pose tuning and ROC curves of the attractor network for training images (top) and test 
images (bottom). Left: mean correlations in sustained activity patterns in the attractor network 
for pairs of face images are presented by change in pose. Correlations across different views of 
the same face (-) are compared to correlations across different faces (- - -) for five values 
of the temporal trace parameter A. Right: ROC curves and area under the ROC for 'same-face' 
versus 'different-face' discrimination of the sustained activity patterns for training images (top) 
and test images (bottom). 

attractor network of the bottom plot was trained on the face codes shown in the middle plot, 
with h = 0.5. The attractor network increased the correlation in face codes for different 
views of an individual. In the sample shown, the representations for individuals 1 4  became 
viewpoint invariant, and the representations for the views of individual 5 became highly 
correlated. Consistent with the findings of Weinshall and Edelman (1991) for idealized wire- 
framed objects, units that were active for one view of a face in the input to the attractor 
network exhibited sustained activity for more views, or all views of that face in the attractor 
network. 

The storage capacity of this attractor network, defined as the maximum number of 
individual faces that can be stored and retrieved in a view-invariant way, F,,,,,, depends on 
several factors. These include the load parameter, P I N ,  where P is the number of input 
patterns and N is the number of units, the number of views, s, per individual, and the 
coding efficiency, or sparseness, yo .  A detailed analysis of the influence of these factors 
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Figure 8. Coding of real-face image data. Top: coding of five faces in network layer 2 following 
trainlng of the feedforward connections only, with no temporal low-pass filter (A. = 0.) The 
vertical axis is the input image, with the five poses of each individual labelled a, b, c, d, e. The 
two active units for each input image are indicated on the horizontal axis. Middle: coding of 
the same five faces following training of the feedforward connections with A = 0.5. Bottom: 
sustained patterns of activity in the attractor network for the same five faces, where both the 
feedforward and the lateral connections were trained with h = 0.5. 

on capacity has been presented elsewhere (Parga and Rolls 1998; see also Gardner 1988, 
Tsodyks and Feigel'man 1988). 

We shall outline some of these influences here. It has been shown for the auto-associative 
Hopfield network, for which the number of fixed points equals the number of input patterns, 
that the network becomes unstable for P I N  > 0.14 (Hopfield 1982). For the present 
network, we desired one fixed point per individual, where there were s = 5 input patterns 



Learning viewpoint-invariant face representations 4 13 

per individual. Thus, the capacity depended on F I N ,  where F = P l s  was the number 
of individuals in the input. The capacity of the attractor network also depended on the 
sparseness, yo, since capacity increases as the mean activity level decreases according to 
(yol ln(yo)()-' (Gardner 1988, Tsodyks and Feigel'man 1988). Specifically, the capacity of 
attractor networks with (0, 1) coding and s input patterns per desired memory depends on 
the number of neurons, N ,  and the sparseness of the input patterns, yo, in the following 
way (Tsodyks and Feigel'man 1988, Parga and Rolls 1998): 

For the network with N = 70 units, sparseness yo = 0.029, and s = 5 views per individual, 
the maximum load ratio was F I N  = 0.14, and the maximum number of individuals that 
can be stored in separate basins of attraction was F,,, = 10. 

Since storage capacity in the attractor network depends on coding efficiency, the 
proportion of active input units per pattern, the attractor network component of the model 
required its input representations to be sparse. Sparse inputs may be an appropriate 
assumption, given the sparseness of responses reported in V4 (Gallant et a1 1994) and area 
TE, a posterior IT region which projects to the anterior IT regions where transformation 
invariant responses can be found (Tanaka 1993). The representations of faces in the attractor 
network itself were less sparse than its input, with a mean unit activity of 0.19 for each 
face, compared to 0.03 for its input, and each unit participated in the coding of 13 of the 
100 faces on average in the attractor network, compared to three faces for its input. The 
coding levels in the attractor network were consistent with the sparse-distributed face coding 
reported in IT (Abbott et a1 1996, Young and Yemane 1992). 

We evaluated face-recognition performance of the attractor network using a nearest- 
neighbour classifier on the sustained activity patterns at several loading levels. Table 2 
gives the percentage correct recognition performance of the sustained activity patterns in 
the network trained on real face data. Test patterns were assigned the class of the pattern 
that was closest in Euclidean distance. Each pattern was taken in turn as a test pattern 
and compared to the other 99, and then a mean was taken across the 100 test cases. 
Classification performance depended on the load parameter, F I N .  Performance was quite 
good when F I N  << 0.14, and decreased as F I N  increased beyond this value. Classification 
errors occurred when two or more individuals shared a single basin of attraction. 

The classification performance of the network for F = 10 was to be below 100% 
because not all fixed points were found. The set of input patterns did not cover all 10 
basins of attraction. Since the input patterns (the outputs of the feedforward system) were 

Table 2. Nearest-neighbour classification performance of the attractor network. F :  number 
of individuals; P: number of input patterns; N :  number of units. Classification performance 
is presented for three values of the load parameter, F I N .  Results are compared to eigenfaces 
(Turk and Pentland 1991) for the same subset of faces. Classification performance of the attractor 
network is good when F I N  < 0.14. 

Attractor network Eigenfaces 
F  P N  F I N  % correct % correct 

5 25 70 0.07 100 100 
10 50 70 0.14 90 90 
20 100 70 0.29 61 87 



414 M S Bartlett and T J Sejnowski 

driven by real face images, the input patterns were not constrained to be orthogonal. When 
the input patterns were orthogonal, as in the idealized data in figure 4 in which each input 
was coded by activity in a different unit, then all fixed points were found for F = F,,, 
individuals, and classification performance was 100%. 

3. Discussion 

Many cells in the primate anterior inferior temporal lobe and superior temporal sulcus 
maintain their response preferences to faces or 3D objects over substantial changes in 
viewpoint (Hasselmo et a1 1989, Perrett et a1 1989, Logothetis and Pauls 1995). This set 
of simulations demonstrated how such viewpoint-invariant representations of faces could be 
developed from visual experience through unsupervised learning. 

The inputs to the model were similar to the responses of V1 complex cells, and the 
goal was to apply unsupervised learning mechanisms to transform these inputs into pose- 
invariant responses. We showed that a low-pass temporal filter on unit activities, which 
has been related to the time course of the modifiable state of a neuron (Rhodes 1992), 
cooperates with Hebbian learning to (i) increase the viewpoint invariance of responses 
to faces in a feedforward system, and (ii) create basins of attraction in an attractor 
network which associate temporally proximal inputs. This simulation demonstrated how 
viewpoint-invariant representations of complex objects such as faces can be developed from 
visual experience by accessing the temporal structure of the input. The model addressed 
potential roles for both feedforward and lateral interactions in the self-organization of object 
representations, and demonstrated how viewpoint-invariant responses can be learned in an 
attractor network. 

Temporal sequences contain information that can aid in the process of representing and 
recognizing faces and objects. Human subjects were better able to recognize famous faces 
when the faces were presented in video sequences, as compared to an array of static views 
(Lander and Bruce 1997). Recognition of novel views of unfamiliar faces was superior 
when the faces were presented in continuous motion during learning (Pike et a1 1997). 
Stone (1998) found that recognition rates for rotating amoeboid objects decreased, and 
reaction times increased when the temporal order of the image sequence was reversed in 
testing relative to the order during learning. The dynamic signal therefore contributed to 
the object representation beyond providing structure from motion. This model in this paper 
presented a means by which temporal information can be incorporated in the representation 
of a face. 

Related models that have been developed independently support the results presented in 
this paper. Wallis and Rolls (1997) trained a hierarchical feedforward system using Hebbian 
learning and the temporal activity trace of equation (1). Their system successfully learned 
translation-invariant representations of seven faces, and rotation-invariant representations of 
three faces. Parga and Rolls (1998) presented a detailed analysis of the phase transitions 
and capacity of an attractor network related to the recurrent layer of the present network. 
Their work focussed on the thermodynamic properties of this attractor network, using a 
predefined coupling matrix and idealized stimuli. Our work extends this analysis to the 
learning mechanisms that could give rise to such a weight matrix, and implements them in 
a system taking real images of faces as input. 

The feedforward processing in this model was related to spatio-temporal principal 
components analysis of the Gabor filter representation. It has been shown that competitive 
Hebbian learning finds the principal components of the input data (Oja 1989, Sanger 1989). 
The learning rule in the feedforward component of this model extracted information about 
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how the Gabor filter outputs covaried in recent temporal history in addition to how they 
covaried over static views. 

In this model, pose-invariant face recognition was acquired by learning associations 
between 2D patterns, without recovering 3D coordinates or structural descriptions. It has 
been proposed that 3D object recognition may not require explicit internal 3D models, as was 
previously assumed, and recognition of novel views may instead be accomplished by linear 
(Ullman and Basri 1991) or nonlinear combination of stored 2D views (Poggio and Edelman 
1990, Bulthoff et a1 1995). Such view-based representations may be particularly relevant 
for face processing, given the recent psychophysical evidence for face representations based 
on low-level filter outputs (Biederman 1998, Bruce 1998). 

Further support for view-based representations comes from a related model that 
simulated 'mental rotation' response curves in a system that stored multiple 2D views and 
their temporal associations (Weinshall and Edelman 1991). Weinshall and Edelman trained 
a two-layer network to store individual views of wire-framed objects, and then updated 
lateral connections in the output layer with Hebbian learning as the input object rotated 
through different views. The strength of the association was proportional to the estimated 
strength of the perceived apparent motion if the two views were presented in succession 
to a human subject. After training of the lateral connections, one view of an object was 
presented and the output activity was iterated until all the units for that object were active. 
When views were presented that differed from the training views, correlation in output 
ensemble activity decreased linearly as a function of rotation angle from the trained view, 
mimicking the linear increase in human response times that has been taken as evidence for 
mental rotation of an internal 3D model (Shepard and Cooper 1982). 

In example-based models of recognition such as radial basis functions (Poggio and 
Edelman 1990), neurons with view-independent responses are proposed to pool responses 
from view-dependent neurons. Our model suggests a mechanism for how this pooling could 
be learned. Logothetis and Pauls (1995) reported a small percentage of viewpoint-invariant 
responses in the AIT of monkeys that were trained to recognize wire-framed objects across 
changes in view. The training images in this study oscillated by f 10" from the vertical axis. 
The temporal association hypothesis presented in this paper suggests that more viewpoint- 
invariant responses would be recorded if the monkeys were exposed to full rotations of the 
objects during training. 
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