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Animals move smoothly and reliably in unpredictable environments. Models of sensori-
motor control, drawing on control theory, have assumed that sensory information from
the environment leads to actions, which then act back on the environment, creating a
single, unidirectional perception–action loop. However, the sensorimotor loop contains
internal delays in sensory and motor pathways, which can lead to unstable control. We
show here that these delays can be compensated by internal feedback signals that flow
backward, from motor toward sensory areas. This internal feedback is ubiquitous in
neural sensorimotor systems, and we show how internal feedback compensates internal
delays. This is accomplished by filtering out self-generated and other predictable
changes so that unpredicted, actionable information can be rapidly transmitted toward
action by the fastest components, effectively compressing the sensory input to more
efficiently use feedforward pathways: Tracts of fast, giant neurons necessarily convey
less accurate signals than tracts with many smaller neurons, but they are crucial for fast
and accurate behavior. We use a mathematically tractable control model to show that
internal feedback has an indispensable role in achieving state estimation, localization
of function (how different parts of the cortex control different parts of the body),
and attention, all of which are crucial for effective sensorimotor control. This control
model can explain anatomical, physiological, and behavioral observations, including
motor signals in the visual cortex, heterogeneous kinetics of sensory receptors, and the
presence of giant cells in the cortex of humans as well as internal feedback patterns and
unexplained heterogeneity in neural systems.

internal feedback | speed–accuracy trade-off | optimal control | sensorimotor control

Feedback control is an essential strategy for both engineered and biological systems
to achieve reliable movements in unpredictable environments (1). Optimal and robust
control theory, which provides a general mathematical foundation to study feedback
systems, has been used successfully to explain behavioral observations by modeling the
sensorimotor system as a single control loop, also called the perception–action cycle
or perception–action loop (2–4). In these models, the sensorimotor system senses the
environment, communicates signals from sensors to the brain, computes actions, and then
acts on the environment, feeding back to the sensors and forming a single unidirectional
loop as shown in Fig. 1.

Consider the canonical model of localized function in the primate visuomotor cortical
pathway, depicted in Fig. 2: A visual signal is encoded on the retina, then travels to
the lateral geniculate nucleus (LGN) of the thalamus, and on to the primary visual
cortex (V1), progressing through successive transformations until it reaches the primary
motor cortex (M1), the spinal cord, and ultimately the muscles. Although intuitive,
this feedforward model neglects a well-known and ubiquitous feature of sensorimotor
processing: internal feedback, which is the main focus of this paper (5).

The perception–action control model does not have a direct role for internal feedback
connections. Internal feedback includes all signals that do not flow from sensing toward
action. We can divide internal feedback into two broad categories: counterdirectional
to feedforward projections and lateral interactions within or between areas at the same
processing level. Counterdirectional internal feedback is in the opposite direction of the
single-loop model (for instance, from V2 to V1); these signals flow from action toward
sensing. Lateral internal feedback consists of recurrent connections that are used for
exchanging information within a cortical area (for instance, within V2), or between areas
at the same level in parallel streams (such as between areas MT and IT in the dynamical
and object recognition streams, respectively). This distinction emphasizes the importance
of where signals are spatially located in cortical hierarchies (Fig. 2).

The single-loop model offers a set of tools from control theory and a conceptual
framework that allows subsystems to be treated as successive transformations that can be
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Fig. 1. Single-loop model of sensorimotor control. The organism receives
information from the external environment via sensors, communicates this
information through the body, computes actions, and then acts on the envi-
ronment; this forms the external feedback loop, or single loop model (black).
Internal signals that flow opposite to the direction of the external feedback
loop are classified as internal feedback (pink). Thus, the internal feedback is
counterdirectional. Internal feedback also includes lateral interactions within
an area or between areas at the same processing stage (not shown).

studied in isolation. However, these subsystems are not isolated.
With internal feedback, each subsystem has access to bottom
up, top down, and lateral information. The eye is itself a site of
computation and control: as the eye moves and senses different
parts of the visual scene, lateral interactions within the retina
control spatial and temporal filter properties that can adapt and
identify important features under a wide range of illumination
and scene dynamics (6, 7). Retinal ganglion cells project to relay
neurons in the LGN, which then project to the primary visual
cortex, V1, but a much greater number of feedback neurons
project from V1 to LGN (8–10) (Fig. 2).

Projections from motor and later sensory areas in the cortex to
early visual areas have a wide range of morphology, myelination,
and synaptic kinetics (8, 11, 12). Given the position of M1
in the final common pathway, one might expect activity in
M1 to be driven by current visual stimuli or current move-
ments, but instead, autonomous internal dynamics dominate
the data (13). Counterintuitively, signals related to movements
of the whole body are found in areas typically associated with
particular parts of the body, such as the hand area, as well
as sensory areas such as the primary visual cortex (14–17).
Indeed, recent analysis of the correlation structure between
neurons during a visual discrimination task revealed a task-
related global mode in the correlations between cortical neurons
associated with the task response rather than the sensory stimulus,
strongly supporting the idea that Top–Down feedback is an
important element of sensory processing (18). These motor-
related signals in sensory pathways, which span subsystems and
tasks, are generated by internal feedback and are the focus of
this study.

Internal feedback has been studied in the context of sensory
predictive coding (19, 20) and has been invoked in other
modeling studies and theory frameworks (21–25). However,
these models focus on sensory or motor systems separately and do
not account for key constraints on neuronal communication in
both space and time to achieve sensorimotor tasks. Achieving fast
and accurate computation and communication across brain areas
is difficult, or even impossible, because communication may be
slow, limited in bandwidth and constrained to spatially localized
populations.

Here, we build on the foundations of recent work in distributed
control theory (26–30) and show that internal feedback is a
solution to achieving rapid and accurate control given the spatial
and temporal constraints on brain components and communica-
tion systems. We analyze an idealized class of control models

and prove mathematically that internal feedback is necessary
for achieving optimal performance in these idealized models.
Internal feedback serves at least three functions: state estimation,
localization of function, and focused attention, all of which are
crucial for effective sensorimotor control and survival. This
theory explains why there are differences in population responses
between M1 and V1, why different projections predominantly
activate AMPA or NMDA glutamate receptors, the functions
of giant pyramidal cells in visuomotor control, and both the
uses and limitations of localization of function in the cortex.
There is a general principle behind all of these physiological
properties.

Task Model and Performance. We analyze expected values and
theoretical bounds on task performance for highly simplified
control loop models motivated by a well-studied and ethologically
relevant tracking task—reaching for a moving object. The goal
of the task is continuous pursuit, such as catching a fly ball in
baseball, rather than one-time contact between limb and object.

The complete tracking task requires identification of the object
in a cluttered visual scene, prediction of the object’s movement,
and generation and execution of bimanual limb movement. We
make many simplifying assumptions that allow us to study
internal feedback in an accessible way using familiar linear
dynamical systems. Models of greater detail and complexity are
discussed briefly.
Single-loop feedback control. Consider the task of tracking a
moving object with the endpoint of a limb on a plane. The
variable to be controlled is the tracking error—the distance
between the hand and the object. We start by assuming that
the system controlling the limb can perfectly sense the position
of the limb and object at every instant, which will be relaxed in

//

//

Fig. 2. A partial, simplified schematic of sensorimotor control. We focus
on key cortical and subcortical areas and communications between them.
Black and green arrows indicate communications that traverse from sensing
toward actuation; green arrows are particularly fast pathways, which enable
the tracking of moving objects in our model. Pink arrows indicate internal
feedback signals, which traverse from actuation toward sensing. Solid lines in-
dicate direct neuronal projections, while broken lines include both direct and
indirect connections. SC, spinal cord; Th, thalamus; V1, primary visual cortex;
M1+, primary motor cortex and additional motor areas; V2/3, secondary and
tertiary visual cortex; IT, inferotemporal cortex; MT, mediotemporal cortex
(V5). Only a subset of the internal feedback pathways are shown (e.g., not
included are internal feedback signals from M1+ to V2 and IT).
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later models. The cost is defined as the squared Euclidean norm
of the tracking error over time, normalized by the total amount
of time, with a smaller cost indicating better tracking.

Let x, u, and w represent the tracking error, the control action
on the limb, and the action of the object, respectively. We will
refer to x as the state of the system. Let A be a matrix that
represents the intrinsic dynamics of x, including features such as
the movement of the object or mechanical coupling between two
dimensions of limb movement. The time-evolving dynamics of
the tracking error follows from a linear equation of motion:

x(t + 1) = Ax(t) + u(t) + w(t). [1]

In general, the difficulty of a task will depend on properties of
A such as its eigenvalues and the strength of coupling between
states. For example, if the spectral radius of A is less than 1, this
corresponds to a task in which tracking error x decreases with no
limb action, an easy task.

The actions u provide feedback control on the tracking error,
computed by an arbitrary function K that has access to all past
and present tracking errors x(1 : t), as follows:

u(t) = K (x(1 : t)). [2]

The optimal solution to this problem is the linear quadratic
regulator (LQR) and the optimal controller is K (x(1 : t)) =
−Ax(t) if the action of the object w behaves as white noise
(1). This controller is compatible with the single-loop model of
sensorimotor control, as there is no internal feedback, and the
addition of internal feedback does not provide any additional
performance advantage.

Controllers without internal feedback are optimal for a
large but special class of problems, including standard state
feedback and full control problems from control theory. Though
mathematically elegant, these controllers make assumptions that
are impractical when applied to biological systems. In subsequent
sections, we relax some of the assumptions implicit in this single-
loop model and show that small deviations from assumptions
relevant to biological systems introduce the need for internal
feedback.

Any of the controllers in subsequent sections can be imple-
mented in a variety of ways, although whether or not a particular
controller needs internal feedback is generic across all possible
implementations. We choose particular nonunique controller
implementations with internal feedback for which the optimal
solution is relatively transparent and easy to interpret.

State Estimation Requires Counterdirectional Internal Feed-
back.
Internal feedback facilitates implicit estimation in the presence
of sensor delays. Simple modifications to the control problem
described above lead to an optimal controllerK whose implemen-
tation requires internal feedback. One such modification is the
introduction of sensor delays, which are ubiquitous in biological
systems (for example, the neuronal conduction time from the
eye to the motor cortex is on the order of tens to hundreds of
milliseconds). Sensor delays can be modeled by introducing a
virtual internal state xs, which represents the adjusted tracking
error from the previous time step (29). This formulation allows us
to pose the delayed-sensor tracking problem as a standard control
problem which can be optimally solved by a linear quadratic

regulator (LQR):

Ã =
[
A 0
I 0

]
, C = [0 I ]

[
x(t + 1)
xs(t + 1)

]
= Ã

[
x(t)
xs(t)

]
+ u(t) +

[
w(t)

0

]
[3]

u(t) = KC
[
x(t)
xs(t)

]
,

where the virtual internal state xs contains delayed information
about the tracking error. Controller K can be partitioned into
two block-matrices, (K =

[
K�

1 K�
2

]�). The resulting system is
shown in Fig. 3. Here, the controller does not directly “perceive”
the tracking error x and only has access to the virtual internal state
xs. However, the controller can freely take actions that affect both
the tracking error and the virtual state. The action on the virtual
state, as shown in Fig. 3, is an example of counterdirectional
internal feedback with gain K2.

For the delayed sensing problem, the optimal controller has
a simple analytical form: K2 = −A is the internal feedback and
K1 = −A2. If no internal feedback is allowed (i.e., we enforce
K2 = 0), then the optimal controller is K1 = −A2/4. We
compare the performance of these two controllers in Fig. 4 and
see that the controller with internal feedback far outperforms the
controller without internal feedback. We also note that as the task
becomes more difficult (spectral radius of A > 2), the controller
without internal feedback is unable to stabilize the closed-loop
system and tracking breaks down.

For a controller with sensory delays, internal feedback is
required for optimal performance. This also applies to controllers
with actuator delays (29). In both cases, internal feedback adjusts
delayed signals to compensate for actions taken and information
received during the delay; in other words, internal feedback
implicitly compensates for the delays.

The linear quadratic problem that we consider here could be
straightforwardly tested in a laboratory setting. A simple real-
world task described by linear dynamics is the action of a stable
limb, resting on a surface or manipulandum, tracking an object
over a line or plane. This can be modeled by neutrally stable

double-integrator dynamics (A =
[
I I
0 I

]
, � = 1) with single

time-step delays corresponding to internal loop delays on the
order of 100 ms. More complex models of tasks corresponding
to more realistic scenarios, such as movement against gravity or
adversarial disturbances, would tend to increase the penalty of
control without internal feedback.

+

2

1

Fig. 3. Optimal control model for a system with sensor delays. Tracking
error x is sensed, and then communicated by the sensor with some delay to
the K1 block, which computes the appropriate actuation. Counterdirectional
internal feedback (pink) conveys information from actuation back toward
sensing. Internal computation K2 adjusts the sensor signal to compensate
for actions taken by the system; this results in improved performance.
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Fig. 4. Internal feedback improves performance when there are internal
delays in sensing. The scalar problem of tracking a moving target over a line
was simulated, varying the task difficulty (� = spectral radius of A, representing
the dynamics). The “Ideal” controller contains no sensor delays. The “Internal
Feedback” controller contains sensor delays, and uses internal feedback to
compensate for the delays. The “No Internal Feedback” controller contains
sensor delays but uses no internal feedback. As � approaches 2, the task
becomes infeasible without internal feedback (broken line). Shaded areas
indicate SDs.

We next describe controllers with internal feedback that
include sensor delays, actuator delays, and imperfect sensing that
will motivate a general model for sensorimotor control in brains.
Intrinsic internal feedback in the Kalman filter. We now consider
the case in which sensing is instantaneous, but imperfect and
noisy, and actuation is imperfect. Consider the following system:

x(t + 1) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + v(t),

[4]

where y is the sensor input and v is the sensor noise, assumed to be
white noise. Matrix B represents the effect of action u on tracking
error x, and matrix C represents how sensor input y is related to
tracking error x. This is a standard formulation in control theory,
and the optimal controller makes use of controller gain K and
estimator gain L as follows:

x̂(t + 1) = Ax̂(t) + Bu(t) + L(y(t)− Cx̂(t))
u(t) = K x̂(t),

[5]

where x̂ is an internal estimate of tracking error x. This optimal
controller uses the Kalman filter, which inherently contains
three counterdirectional internal feedback pathways irrespective
of delays being present. These pathways are represented by
the blue arrows in Fig. 5 and play a central role in state
estimation. The pathway through A estimates state evolution
in the absence of noise and actuation; the pathway through
B accounts for controller action, and the pathway through C
predicts incoming sensory signals based on the internal estimated
state.

The implementation shown in Fig. 5 is not unique. We now
briefly discuss a few equivalent implementations that use less
internal feedback and explain why they are less advantageous in
the sensorimotor context than the implementation in Fig. 5.

In one alternative implementation, we can remove the internal
feedback through B and replace A with A + BK . However,
this requires duplication of K ; in the sensorimotor context,
which requires duplicating of motor structures within visual
structures. In another alternative implementation, we can remove
the internal feedback through C and replace A with A−LC . This

requires a duplication of L. Additionally, filtering out predictable
sensory input via C earlier (as is done in Fig. 5) can be preferable
to filtering it out later (as in our alternative implementation).
This is because the filtered information is typically much smaller
in bandwidth and requires less resources to communicate: The
earlier we perform this filtering, the less resources we require to
pass this information forward. If communications are subject
to a speed–accuracy trade-off (described below), then earlier
filtering allows us to pass sensory information forward with
less delay.
Sources of internal feedback are preserved in a Kalman filter with
delays. We now synthesize a model that combines features from
previous sections: sensor delays, actuator delays, and imperfect
sensing. The model can be constructed using virtual states as
follows: [ x(t + 1)

xa(t + 1)
xs(t + 1)

]
=

[A B 0
0 0 0
C 0 0

][ x(t)
xa(t)
xs(t)

]

+

[0 0
I 0
0 I

][
u(t)
us(t)

]
+

[w(t)
0
0

]
y(t) = xs(t),

[6]

where xa and xs are virtual internal states corresponding to delayed
actuator commands and delayed sensor signals, respectively, and
us represents compensation on virtual internal states. We can use
standard control theory to obtain the optimal controller gain K
and optimal estimator gain L. Due to the block-matrix structure
of the system matrices, the optimal gains have the following
structure: K = [K1 K2 0], and L =

[
L>1 0 L>2

]> (29).
The controller can be implemented as follows:

�(t + 1) = Cx(t)− Cx̂(t)− L2�(t)
x̂(t + 1) = Ax̂(t) + Bxa(t) + L1�(t)

u(t) = K1x̂(t) + K2xa(t),
[7]

where � is the delayed difference between the estimated sensor
input and true sensor input, adjusted by the L2�(t) term. The
resulting controller, shown in Fig. 6, contains two internal
feedback pathways related to delay: one pathway compensates for
sensor delays, and the other compensates for actuator delays. The
remaining internal feedback is inherent to the Kalman filter, as
described in the previous section and shown in Fig. 5. Overall, the

+ -

+

Fig. 5. Internal feedback in a controller with instantaneous but imperfect
sensing and actuation. A, B, and C represent the state, actuation, and sensing
matrices of the physical plant; K represents the optimal controller, and L
represents the optimal observer. The Time Shift block shifts x̂(t+1) to x̂(t) in
Eq. 5. The internal feedback pathways (blue) are inherent to the Kalman filter;
these use state, actuation, and sensing models to create an internal estimate
of the tracking error or state. All internal feedback depicted in this diagram
is counterdirectional and assumed to have no delay and infinite bandwidth.
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+

+

-

+1 1

2

2

Fig. 6. Internal feedback in a controller with sensor and actuator delays.
A, B, and C represent the state, actuation, and sensing matrices of the
physical plant; K1 , K2 , L1 , andL2 are submatrices of the optimal controller and
observer gains. The internal feedback pathways (pink) through L2 and K2
compensate for sensor and actuator delays, respectively. Other internal
feedback pathways (blue) are inherent to the Kalman filter. All internal
feedback depicted in this diagram is counterdirectional. The yellow box
contains parts of the controller that roughly correspond to motor areas in
the cortex.

inclusion of sensor delays, actuator delays, and imperfect sensing
results in an optimal controller with several internal feedback
pathways, each of which serves a specific, interpretable purpose.

Localization of Cortical Function Requires Lateral Internal
Feedback. Almost all muscles in the body are engaged in even
the simplest actions, such as reaching. Controlling a system with
many degrees of freedom is a difficult problem for motor control
even without delays. Localization of function is well established
in the motor cortex, with different body parts controlled by
different cortical areas; however, communication and computa-
tion between localized cortical areas typically have spatial and
temporal constraints, compared with signals within areas.

Consider two motor areas and partition tracking errors into
two sets x1 and x2, representing two distinct but possibly
coupled subsystems (e.g., two distinct limbs that are mechanically
coupled) using the problem formulation described by Eq. 1. The
overall tracking error is x =

[
x>1 x>2

]>. Correspondingly, we
partition actuators into two sets u1 and u2 that act on their
respective subsystems via local controllers: u =

[
u>1 u>2

]>.
Each local controller senses and controls one subsystem; i.e.,

local controller 1 senses x1 and computes u1, and local controller
2 senses x2 and computes u2. Local controllers may communicate
with another; however, due to localization constraints, the cross-
communication is delayed. Thus, local controller 1 cannot
directly access x2 without some delay and similarly for local
controller 2.

We observe that without the constraint of localized commu-
nication, the optimal controller for Eq. 1 is u = −Ax. If A is
block-diagonal (i.e., x1 and x2 are uncoupled), then this controller
obeys localized communication constraints—in fact, no cross-
communication (internal feedback) is required between the two
local controllers. However, if the two subsystems are coupled,
then this controller requires rapid, global communication, which
violates localized communication constraints.

To enforce localized communication, we reformulate the
problem by introducing virtual states x′1 and x′2, which represent
delayed cross-communication between the two local controllers.
x′1 is information sent from local controller 1 to local controller 2,

with delay; and similarly for x′2. We also define u′1 and u′2, which
model interconnections between virtual states and real tracking
errors. For simplicity, we assume unit delay. The reformulated
problem then becomes

x̃ =

x1
x′2
x′1
x2

 , ũ =

u1
u′2
u′1
u2

 w̃ =

w1
0
0
w2

 ,

Ã =

A11 0 0 A12
0 0 0 0
0 0 0 0
A21 0 0 A22

 , K =

∗ 4 ∗ 0
4 ∗ 4 ∗

∗ 4 ∗ 4

0 ∗ 4 ∗


x̃(t + 1) = Ãx̃(t) + ũ(t) + w̃(t)

ũ = K x̃.

[8]

The zeros in the Top Right and Bottom Left corners of the
K matrix preserve localized communication; they enforce that
the two local controllers cannot communicate instantaneously
to one another. Asterisks and triangles indicate free values:
Triangles represent sites of potential cross-communication, or
lateral internal feedback. When these free values are optimized to
achieve optimal performance with localized communication, the
resulting K matrix is

K =

−A11 0 −A12 0
0 0 −A12 A12
A21 −A21 0 0
0 −A21 0 −A22

 . [9]

The resulting local controllers are shown in Fig. 7. Note that
the−A12 term in the second row and the−A21 term in the fourth
row of K correspond to lateral internal feedback. Here, these
internal feedback signals carry predicted values of the unsensed
tracking errors for each controller, after taking control action into
account; for instance, internal feedback from local controller 2 to
local controller 1 conveys the predicted value of x2, after taking
control action from controller 2 into account.

+

+

− 21 − 12

− 12

− 11

21

Fig. 7. Optimal localized control of two coupled subsystems. (Top) Overall
schematic. Each subsystem has its own corresponding local controller,
which senses and actuates only its assigned subsystem. Local controllers
communicate to each other via lateral internal feedback (pink), with some
delay. (Bottom) Circuitry of local controller 1. Local controller 2 has identical
circuitry, with different matrices; A12 instead of A21, A22 instead of A11, etc.
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We can develop intuition for this implementation by following
an impulse w through time:

x̃(1) =

w1
0
0
w2

→ x̃(2) =

A12w2
A12w2
A21w1
A21w1

→ x̃(3) = 0. [10]

The performance of this controller can be compared to the
controller without internal feedback in Fig. 8. The best possible
linear controller for the controller without internal feedback
results in severe performance degradation. As task difficulty
increases, this controller is unable to stabilize the closed-loop
system and tracking becomes infeasible. With internal feedback,
task performance stays near the centralized optimal case where
local controllers can communicate freely without delay.

This analysis shows that when motor function is localized to
specialized parts of the motor cortex that control particular parts
of the body, cross-communication via internal feedback between
local controllers is essential. Local circuits in the two hemispheres
must also be coordinated —indeed, they are connected by a
massive corpus callosum that crosses the midline.

The cross-talk between local controllers is supported by the
presence of global signals from movements of the whole body to
the local controller in the motor cortex specialized to particular
parts of the body. In reality, all body movements are mechanically
coupled, something which the motor system can conceal through
effective localization and coordination using internal feedback.

Speed–Accuracy Trade-Offs Drive the Use of Layering and
Internal Feedback for Attention. We have shown that state
estimation and localization of function require internal feedback
to correct for self-generated or predictable movements. We now
show how to efficiently track a moving object with the limitations
imposed by neural components and internal time delays using an
attention mechanism.

Up to this point, we have assumed that the controller can
directly sense the position of the object (perhaps with some
delay). In the real world, a scene can comprise many objects,

Fig. 8. Localization of function within the motor-related cortex: Although
different parts of the cortex control different parts of the body, these parts of
the body are inherently mechanically coupled. As a result, internal feedback
is useful and in some cases necessary to maintain localization of function.
In simulations, we consider the problem of tracking a moving target over a
two-dimensional space, varying the task difficulty. The “Ideal” controller is
centralized (i.e., no delays between local controllers) and obtains the best
performance. The localized controller with internal feedback achieves similar
performance. The localized controller without internal feedback suffers from
substantially worse performance (higher cost). As task difficulty increases,
the task becomes infeasible without internal feedback (broken line). Shaded
areas indicate SDs.

which makes it more difficult for a sensorimotor system to
localize an object in the scene. However, a moving object, once
identified, can be more easily discriminated from a static visual
scene. This illustrates the distinction between scene-related tasks
(such as object identification) and error-related tasks (such as
object tracking), which in the visual cortex is accomplished by
the ventral and dorsal streams, respectively.

This distinction also mirrors the separation between bumps
and trails in the mountain-biking task studied in ref. 27, allowing
us to build on the control architecture in that task. The main
difference is that instead of separating into two control loops,
we use layering and internal feedback to supplement the control
actions of the main control loop.

We consider a one-dimensional problem (tracking on a line)
and use as the metric ‖x‖∞ (worst-case tracking error for
adversarial object action) rather than ‖x‖2 (average-case tracking
error for random object action). Worst-case error is a more
realistic model of many ethological tasks, and optimal solutions
to worst-case control problems can have additional internal
feedback pathways compared to average-case; however, the worst-
case setting is less familiar in neuroscience models than the
average-case setting we have considered to this point (31). We
have some object whose position, r, is governed by the dynamics

r(t + 1) = r(t) + wr(t) + wb(t), [11]

where wr represents object movement, andwb represents changes
in the background scene. Limb position p is governed by the
dynamics

p(t + 1) = p(t)− u(t), [12]

where u(t) is some limb action. The tracking error x := r − p
then obeys the dynamics

x(t + 1) = x(t) + wr(t) + wb(t) + u(t), [13]

where the task difficulty is implicitly equal to 1.
We assume that object movement and background changes are

bounded: |wr(t)| ≤ �r and |wb(t)| ≤ �b for all t. Additionally,
we assume that background changes are much slower than object
movement: �b � �r , i.e.,

�r + �b ≈ �r . [14]

Consider a movable sensor that senses some interval of size
� on the continuous line. Information from the sensor must
be communicated to the controller via axon bundles, which
are subject to speed–accuracy trade-offs— that is, the higher
bandwidth a signal, the slower it can be sent. Thus, roughly
speaking, axonal communication can be low-bandwidth and fast,
or high-bandwidth and slow. We can formalize this as follows
for a volume of cortex axons with uniform radius, adapting from
ref. 27:

We first observe that delay T is inversely proportional to axon
radius � with proportionality constant �:

T =
�
�
. [15]

Firing rate per axon, �, is proportional to axon radius with
proportionality constant �:

� = ��. [16]

Cross-sectional area s is related to axon radius � and the number
of axons in the nerve n via:

s = n��2. [17]
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And finally, signaling rate R of the entire nerve, which is related
to the resolution of information sent about the sensed interval, is
represented by

R = n�. [18]

These equations can be combined to obtain the speed–accuracy
trade-off

R = �T, � =
s�
��

. [19]

The constant � is proportional to s, the cross-sectional area;
for projections of fixed length, this represents the spatial and
metabolic cost to build and maintain the axons. In general, given
some fixed cortical volume, we can either build few thick axons,
which will have low delay but low information rate, or we can
build many thin axons, which will have high information rate
but high delay.

We implement this speed–accuracy trade-off using a static,
memoryless quantizer Q with uniform partition, followed by a
communication delay, as shown in Fig. 9, Top. This choice of
quantizer does not add to the cost since it recovers the optimal
cost over all possible quantizers (32).

The controller can move the sensor around; the interval
sensed by the sensor remains constant, but the controller can
choose where the interval lies. Assume the initial position of the
object is known—we can select an initial sensor location and �
appropriately such that r(t) always falls within the sensed interval.
In this case, the best possible tracking error for any delay T is

�rT +
�

2�T
. [20]

The first term represents error from delay, object movement, and
drift. In the time taken for information to reach the controller,
the most adversarial action possible by the object and background
would contribute a tracking error of (�r + �b)T ; we apply
simplification Eq. 14 to obtain �rT . The second term represents

+

Fig. 9. Optimal control model of attention, with moveable sensor. (Top)
Model with one communication path, in which information is quantized
by quantizer Q and conveyed to the controller with delay T . (Bottom)
Model with two communication paths, and two separate quantizers Qs ,
Qf , and respective delays. This model can be considered lateral (e.g., V1-
V1) or counterdirectional (V2-V1) internal feedback (pink) between the two
controller paths.

quantization error. For an interval of size � divided into N
uniform subintervals, the worst-case error is �

N ; we then use
the fact that N = 2R = 2�T .

This is achieved by the controller depicted on the Fig. 9, Top.
The cost, as a function of T , is plotted in Fig. 10, Left with the
label “No Internal Feedback” (where T = Ts). Here, the speed–
accuracy trade-off is implicit. Very low values of T correspond
to very low signaling rates—the controller does not receive
enough information to act accurately, so performance is poor.
The opposite problem occurs at very high values of T ; though
the information is high-resolution, the time elapsed between
information and action is too long, leading to poor performance.
The best performance occurs at a sweet spot between these two
extremes (27).

We can improve this performance by nearly an order of
magnitude by adding an additional communication pathway and
the requisite internal feedback. We now have two communication
paths from the sensor, each with its own quantizer and delay
block. The slower communication path uses quantizer Qs with
delay Ts, while the faster path uses Qf with delay Tf . To further
facilitate speed in the fast path, we allow it to send only a subset
of information from the sensor (i.e., only send information about
a small part of the sensed scene). Mathematically, let the fast path
send information about an interval of size �f , with �f < �, and let
this smaller subinterval be contained within the sensor interval.
This subinterval is an implementation of attention. The fast
path is the main actuation path, while the slower path provides
compensatory signals via internal feedback; this is shown at Fig.
9, Bottom. In this case, the best possible cost is

�rTf +
�f + Es

2�Tf

Es = �bTs +
�

2�Ts
.

[21]

The first term represents error from delay and object movement,
similar to Eq. 20. The second term represents a combination of
quantization error from the fast communication pathway (�f )
and performance error of the slow pathway (Es), which informs
the fast pathway of where to place the subinterval. Notice that Es
takes the same form as Eq. 20.

The cost, as a function of Ts, is plotted in Fig. 10, Left with
the label “Internal Feedback.” In this plot, we assume Tf to be
its smallest possible value: one unit of delay. We see that using
two quantizers in combination with internal feedback is superior
to using one quantizer. We remark that this holds only when
the two quantizers are different; if we simply use two quantizers
with the same interval, bit rate, and delay, no such performance
boost occurs. In general, holding Ts constant and decreasing Tf
improves performance, as shown in Fig. 10, Right.

Functionally, the inclusion of a faster communication pathway
allows action to be taken in a more timely manner than in
the single-pathway case. Unlike in the single-pathway case, we
are not encumbered by issues of low-resolution information;
the slower communication pathway corrects the fast pathway
through internal feedback. Here, as in previous examples, the
internal feedback carries signals correcting for self-generated and
slow, predictable changes. Overall, despite speed–accuracy trade-
offs in communication, the system achieves fast and accurate
behavior with the help of internal feedback, under reasonable
assumptions about the dynamics of the scene and environment.

PNAS 2023 Vol. 120 No. 39 e2300445120 https://doi.org/10.1073/pnas.2300445120 7 of 12
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Fig. 10. (Left) Internal feedback and layering achieve superior performance
when sensor-controller communications are subject to speed–accuracy
trade-offs. The “No Internal Feedback” controller uses one layer, while
the “Internal Feedback” controller uses two layers, with internal feedback
between the layers. The two-layer case consists of a fast-forward pathway
compensated by slow internal feedback, which takes slow background
changes into account; this achieves better performance (Lower cost) than
the case without internal feedback. The “Ideal” controller, where the sensor
directly senses the moving object, is also shown. The layered system with
internal feedback achieves performance close to the ideal. T represents delay.
For the “No Internal Feedback” controller, it represents the delay of the single
layer; for the “Internal Feedback” controller, it represents the delay of the
slow layer, i.e., T = Ts . The delay of the fast layer is held constant. (Right)
Performance (log cost) of the two-layer controller with internal feedback as
delays of both layers are varied. Performance is best when Tf is low and Ts is
sufficiently high.

Discussion

We analyzed a set of minimal control models to explore internal
feedback in a perception–action loop with time delays and limited
communication bandwidth. We showed how internal feedback,
which is ubiquitous in brains and has been poorly understood,
facilitates state estimation and localization of function and how
attention facilitates sensorimotor performance. This is a step
toward an end-to-end model of sensorimotor processing in neural
systems.

The mathematical framework explored here can be applied
across a wide range of experimental systems. The simple models
are meant to provide an intuitive understanding of the control
strategies for handling internal time delays and limited signaling
bandwidth. The framework can be elaborated to make more
specific predictions for more complex biological systems.

Task-Oriented Whole-System Frameworks Reveal Roles for
Internal Feedback. There may be other functions for internal
feedback in addition to compensating for time delays and
limited cortical communication bandwidth. Additional functions
that have been suggested are computation through dynamics
(21), deploying recurrent networks (22), performing Bayesian
inference (23, 24), generating predictive codes (19, 20), and
many others.

These frameworks emphasize prediction but are largely con-
fined to the context of either sensory processing or motor
processing separately and do not explicitly model closed loop task
performance. Our analysis considers sensorimotor control from
an ethological perspective: The ultimate selection pressure on
sensory processing is to support actions that ensure survival (33).

Our framework is consistent with recent neural recordings
from the cortex showing that motor signals and the influence
of past and current actions account for substantial cortical
activity, previously considered spontaneous, background, or
noise (14–17, 34). These internal feedback signals carry infor-
mation about how actions propagate through the body and

its environment, ameliorating communication limitations that
affect both plans and future actions.

The predictions of these models can be used to interpret
how ablation, suppression, or delay of counterdirectional internal
feedback would degrade performance in many visuomotor tasks.
The performance gap should be more pronounced in tasks that
involve quickly changing conditions. Similar interventions that
disrupt lateral feedback interactions within the motor cortex
should degrade performance in tasks where body parts are highly
coupled mechanically—such as hands and shoulders—and less
so for tasks where body parts are loosely coupled—such as speech
and walking. This can be tested experimentally.

Our theory predicts that the fastest neurons from V1 to V2
or V1 to MT (including Meynert cells) should be the most
highly activated when there are unpredictable changes in the
visual scene. Similarly, we attribute autonomous dynamics in
M1 to the communication of predicted actions laterally and
counterdirectionally. This leads to the prediction that unexpected
perturbations during a motor task should lead subpopulations of
cells in M1 (including Betz cells) to transmit rapid change-related
signals in contrast to the more slowly changing responses that
accompany unperturbed control.

Standard Optimal Control Models Neglect Key Physiological
Limitations. Optimal control theory is a general framework for
sensorimotor modeling. Given a mathematical description of
a system and some task specification, the optimal controller
provably gives the best possible performance. However, these
proofs assume that the components are fast and accurate, with
instantaneous communication and control circuits implemented
with fast and accurate electronics. Using these components,
a single sense-compute-actuate loop is generally sufficient to
achieve optimal behavior.

Applying control theory to model physiological circuitry
requires a distinction between behavior and implementation. The
same optimal performance may be achieved through a number of
different implementations in the underlying circuitry. Although
traditional control theory excels as a model of sensorimotor
behavior, it does not incorporate the component-level constraints
that are prevalent in biology; as a consequence, the ways that
traditional control theory models are implemented may not be
directly relevant to biological control.

Recent advances have extended traditional control theory
to allow distributed control and incorporation of component-
level constraints (26, 27, 29, 30). We build on this body of
work to describe how constraints on components affect the
implementation of an optimal distributed biological controller.
In particular, we show how and why internal feedback arises in
controllers whose components exhibit the speed–accuracy trade-
offs found in brains.

Fast long-range association fibers in the cortex are metabol-
ically and developmentally expensive, have low bandwidth
(compared to slower fibers with higher bandwidth), require
constant maintenance and repair, and are limited in number.
Internal feedback from the motor cortex to earlier sensory areas
can regulate communication along these pathways by suppressing
self-generated and other predictable signals, freeing the fast
pathways to selectively transmit the unpredicted changes needed
by the motor system to make fast decisions. This virtualizes
the behavior of the control system to produce actions that are
both fast and accurate despite internal time delays and limited
communication bandwidth.

8 of 12 https://doi.org/10.1073/pnas.2300445120 pnas.org
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Evidence for the Suppression of Self-Generated Sensory Signals
by Corollary Discharge Signals. Efference copies of motor signals
are ubiquitous throughout brains and serve several functions.
Fast suppressive internal feedback signals originate before motor
commands are executed and target sensory pathways before
self-generated signals can subsequently reach higher levels of
processing (35)

Perhaps the best understood neural system that suppresses
predictable self-generated sensory signals is found in electric fish,
which generate electric fields for navigation and communication
(36). The electrosensitive lateral-line lobe (ELL), a cerebellum-
like structure, receives both a corollary discharge of the generated
electric field and sensory input from electroreceptors on the body
of the fish. These two signals are subtracted in the ELL to detect
externally generated electric fields. Suppression is learned using
anti-Hebbian synaptic plasticity, in which the coincidences of
incoming spikes and outgoing spikes lead to a decrease in synaptic
strength. A similar arrangement is found in the dorsal cochlear
nuclei of mammals, which receive corollary discharge signals from
brainstem nuclei associated with vocalization and respiration as
well as proprioceptive input from body movement (36).

Biophysical Speed–Accuracy Trade-Offs Drive Internal Feed-
back. Biological control systems do not have components that are
both fast and accurate. Spiking neurons, though fast relative to
other biological signaling mechanisms, are many orders of magni-
tude slower than electronics and face severe speed–accuracy trade-
offs that constrain communication and control. For example,
some neurons can rapidly convey a few bits of information, and
others can slowly convey many bits of information, but neurons
that rapidly convey many bits of information are expensive
and correspondingly rare. Speed–accuracy trade-offs include the
number of neurons (information rate) and their axonal diameter
(conduction speed) in nerve bundles (27, 37). By cleverly com-
bining components with different speed–accuracy trade-offs and
using internal feedback as demonstrated above, brains are able
to perform survival-critical sensorimotor tasks with speed and
accuracy. Additional trade-offs include spike averaging versus
spike timing. These trade-offs have consequences for the perfor-
mance of sensorimotor systems that we can study in our control
models.

The range of neural conduction speeds in humans spans several
orders of magnitude (37). The fastest components are used in
the feedforward loop, sending information from sensing areas
toward motor areas. Internal feedback compensates for accuracy
by filtering out slowly changing, predictable, or task-irrelevant
stimuli, such that the fewest possible bits need to travel along the
fastest possible neurons. From an evolutionary perspective, once a
system can achieve fast responses, additional layers of control can
be added to achieve more accurate and flexible behavior without
sacrificing performance.

The reason internal feedback is limited in most engineered
control systems is that internal time delays are negligible. But
in biological systems, even the fastest neurons used in the
feedforward loop give rise to significant time delays. This is why
it is essential to include delays in control-based analyses of the
forward loop in neural models of control (Fig. 4).

Fast Feedforward Conduction Is Key to Successful Sensorimo-
tor Task Performance. In the cortex, the fastest, largest, and most
striking neurons are the large pyramidal cells: Meynert cells in the
primary visual cortex carry signals from rapidly moving objects;
Betz cells in the motor cortex that project to the spinal cord are

responsible for rapid responses to perturbations from planned
movements; and although their role is less clear, Von Economo
cells in the prefrontal cortex (anterior cingulate and fronto-insular
areas) project rapid signals to subcortical areas involved in the
regulation of cognitive and emotional behaviors (38–41).

The visual hierarchy diverges into the dorsal and ventral
streams, which are responsible for object motion and object
identity, respectively. In natural scenes, object locations may
change quickly, but object identities change relatively slowly; a
mouse may move around rapidly in the visual field of a predator
barn owl, but it remains a mouse, and its status as prey does not
change. Thus, speed is crucial for the dorsal stream, but not the
ventral stream.

This difference has physiological consequences in our minimal
model of attention that could explain differences between cortical
projections in the two streams: the giant Meynert cells project
from V1 to MT (an object motion area in the dorsal stream;
see Fig. 1), but there are no equivalently large cells projecting
from V1 to upstream areas leading to the inferotemporal cortex
(IT, an object identity area in the ventral stream). Reaching tasks
could test the predictions of our control model for rapidly and
unpredictably moving objects on a fixed background compared
with predictably moving objects on nonstationary backgrounds.

Neurons in MT respond selectively to the direction of moving
objects and provide signals that are used by the oculomotor
system for the smooth pursuit of moving objects (42). There are
two visual pathways from the retina to the area MT. In addition
to the cortical pathway that projects from V1 to area MT (Fig.
1), the retina also projects to the pulvinar, another thalamic
relay, to extrastriate areas of the visual cortex (43). These two
pathways could implement the optical control model in Fig. 9,
Bottom, where the fast, direct pathway is from the pulvinar and
the delayed, indirect pathway from V1 corresponds to the slower
pathway.

Internal Feedback Facilitates Fast Feedforward Signals in the
Visual Cortex. In recent years, large-scale recordings from the
visual cortex have uncovered nonvisual signals that challenge
the traditional single-loop view of sensorimotor control. In the
traditional view, visuomotor processing consists of a series of
successive transformations from stimulus to response, with each
cortical area along the way tuned to some aspect of stimulus
space (44). However, although V1 does respond to visual stimuli,
the activity of these neurons also carries motor-based internal
feedback signals (also called corollary discharge) and task- or
attention-related modulatory internal feedback (12, 16, 17, 33).
Our attention model could be implemented as the enhancement
of responses in neurons that selectively respond to an attended
stimulus through internal feedback (45).

The number of projections from V1 to V2 is roughly the
same as the number of neurons, of similar conduction speed,
that project from V2 to V1 (8–10). However, these neurons
are very different in morphological and molecular characteristics:
the neurons that project feedforward from V1 to V2 primarily
activate AMPA receptors, while the feedback neurons that project
from V2 to V1 have a strong NMDA receptor component and
terminate almost exclusively on excitatory pyramidal neurons
(46, 47). Both of these receptors are activated by glutamate, but
AMPA-mediated currents are fast, lasting only a few milliseconds,
while NMDA-mediated currents can linger in the postsynaptic
neurons for hundreds of milliseconds (48). This feedback
could be relevant for top-down signaling to shape and control
perception during actions. Because NMDA receptors trigger
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synaptic plasticity, the feedback could also be important for
learning how to suppress self-generated sensory signals as well
as perceptual learning.

Pharmacologically blocking NMDA receptors in the visual
cortex disrupts figure-ground discrimination; that is, a loss in
capacity to contextually interpret the visual scene (49). In the
context of our theory and minimal model of attention, internal
feedback from V2 informs V1 of predictable elements of inputs
arriving from sensory stimuli in the near future. Since the
visual space cannot be sampled losslessly, these feedback signals
could be helping V1 suppress predictable features, making the
unpredictable features more salient (46).

Corticothalamic feedback releases bursts of spikes in thala-
mocortical neurons during awake states, which might have a
role in the detectability of sensory stimuli (50). A study that
activated the layer 6 corticothalamic feedback (51) concluded
that L6 projection does not modulate ongoing sensory processing,
but rather serves to briefly speed up thalamic inputs in specific
behavioral contexts, consistent with the role of cortico–cortico
feedback for speeding up sensory processing.

Internal Feedback Facilitates Localization of Function in the
Motor Cortex. The primary motor cortex (M1) is dominated by
its own past activity rather than static representations (13). In the
context of the state estimation problem we considered in Fig. 6,
these dynamics in the motor cortex are driven neither by motor
representations nor by pattern generation, but by predictions of
the consequences of self-action through local internal feedback,
which need to be sent throughout the brain because the entire
body is affected.

By the same principle, the localization of function within
the motor cortex that we considered in Fig. 8 reconciles the
conventional view of homuncular organization with, for example,
the body-related signals found in putatively hand-related parts of
the motor cortex, as well as signals related to the contralateral
hand (14, 15, 52). As with motor signals in the visual cortex,
these broad body movement signals in the motor cortex are crucial
for identifying predictable consequences of motor signals from
other body movements and separating them from unpredictable
signals of critical importance for rapidly controlling localized
body parts. This provides each body part with the context it
needs to compensate for the movement of other body parts.

In our analysis, we assumed the existence of a distinct motor
cortex that generates motor commands and a visual cortex that
interprets visual scenes and is essentially an extension of the retina.
With these assumptions, we consider where to place internal
feedback.

Is it possible for the entire estimator to be implemented in
the visual cortex? Since the estimator uses predictions of future
actions, the estimator requires at least some input from the motor
cortex.

Is it possible for the entire estimator to be implemented in the
motor cortex? The dynamical structure of responses in the motor
cortex is compatible with a predictive and delay-compensating
function of exactly the kind our model suggests. However, our
model also shows that the information transmitted from the
sensor to the motor cortex depends on the estimator. Thus, the
motor cortex would need to contain all of the visual cortex along
with all of the internal feedback connections to perform the entire
function. The evolution of the cortex favored a more distributed
architecture.

In addition to feedback loops between the motor cortex and
other cortical areas, there are also loops with the cerebellum

and the basal ganglia. These provide additional information
about sensory predictions and sequences of future actions,
respectively. Regions of the motor cortex that interdigitate
between projections to body parts have recently been identified
that are associated with stimulation-evoked complex actions and
connectivity to internal organs such as the adrenal medulla that
are associated with goals (53). These regions may be responsible
for integrating skeletal body movements with visceral states and
goals.

Learning on Internal Feedback Pathways Fine-Tunes Perfor-
mance. Internal feedback pathways carry attentional signals
that activate slow NMDA receptors, which in turn regulate
the strengths of synapses (54). We have shown that internal
feedback pathways are needed for ignoring self-generated and
other predictable signals. Early in brain development, activation
of NMDA receptors in the primary visual cortex before the
first visuomotor experience is needed to suppress predictable
feedback and the selection of unpredictable stimuli (49). Blocking
these NMDA receptors during development impairs ongoing
visuomotor skill learning later in life. Learning to reduce self-
generated sensory prediction error can be implemented locally
through the same internal feedback system that broadcasts motor
predictions.

Reinforcement learning governed by circuits in the basal
ganglia may also benefit from the internal feedback pathways
in the cortex. Transient dopamine release, which carries reward
prediction error, does not specify which sensory inputs were
responsible for the reward, partly explaining why it is a much
slower form of learning. Attentional internal feedback in the
cortex automatically selects and represents the currently most
salient information to guide motor actions. Attentional informa-
tion projects to the striatum and makes it easier for the basal
ganglia to associate the causally relevant sensory inputs with
reward signals (33).

We have proposed that prediction is an essential aspect
of performance in visuomotor tasks where fast and accurate
responses are needed. Prediction is useful in the model be-
cause it enables compressed representations of the current
state, which can then be transmitted more quickly across the
nervous system because of the speed–accuracy trade-off discussed
above. In the same way, high performance can be achieved
by simpler representations of tasks, which in turn allows faster
responses.

After a flexible but slow learning system has successfully
mastered a task, it can then “load” a model onto a simpler,
more rigid, and faster subcortical system. Internal feedback can
facilitate this transfer. We have focused here on the fast pathways
represented by large axons in the visuomotor cortex, but similar
variation in timescales of conduction can be found throughout
the sensorimotor system. We therefore propose that during the
acquisition of fast and accurate motor skills, control would
shift from slower learning systems in the cortex to less flexible
subcortical parts of the motor system.

Attention has been studied primarily in the context of sensory
processing. The importance of attentional signals for reducing
time delays in making motor decisions adds a direction for future
experimental studies. Attention is linked to conscious awareness
and rides atop the global representation of the body throughout
the cortex. This makes internal feedback a candidate feature of
the nervous system that helps explain the sense of unity that we
experience, which would otherwise be difficult to achieve within
a balkanized control architecture built on body parts.
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Materials and Methods

Our main methodological approach was mathematical analysis of simplified
models, deriving general properties and proving theorems about classes of
mathematical models (See refs. 28–30 for more technical analyses). We focused
here on insights that simulating specific mathematical models might have for
neuroscience (Figs. 4 and 8). The methods used to generate these models and
simulations are described here.

Sensor Delays. We start with the mathematical methods used to generate the
data plotted in Fig. 4.

The scalar dynamics are governed by:

x(t + 1) = �x(t) + u(t) + w(t)
u(t) = kx(t),

[22]

where we assume w(t) is independently and identically drawn from a standard
normal distribution, and k is the controller. First, let us assume that the system
has no sensing delay. Let us penalize the term x(t) · b · b · x(t), where b = 1.
Then, the optimal controller is k = −�. To find the expected value of the cost,
we first solve a discretized Lyapunov equation:

AXA> − X + Q = 0, [23]

where A represents the closed-loop dynamics, andQ = b · b. In the scalar case,
the expected cost is equal to b · X · b. In our case, A = �− k = 0, giving a cost
of X = 1 for all values of �. This is plotted in Fig. 4 with the label “Ideal.”

Now, we add sensory delays. Consider augmented system[
x(t + 1)
xs(t + 1)

]
=

[
� 0
1 0

] [
x(t)
xs(t)

]
+

[
u1(t)
u2(t)

]
+

[
w(t)

0

]
[
u1(t)
u2(t)

]
=

[
0 k1
0 k2

] [
x(t)
xs(t).

] [24]

Here, xs(t) is x(t) after one time step of delay; we do not allow the controller
to directly access x(t), and we only allow it to access the delayed signal xs(t).
u1(t) represents true actuation (equivalent to u(t) from the undelayed case),
and u2(t) and k2 represent internal feedback; this is depicted in Fig. 3. Let

us penalize the term
[
x(t) xs(t)

]
· b · b>

[
x(t)
xs(t)

]
, where b =

[
1
0

]
. This

corresponds to penalizing x(t) but not xs(t). If we allow internal feedback, i.e.,
nonzero values of u2 and k2, then the optimal controller is k1 = −�2 and
k2 = −�. We can once again solve the discrete Lyapunov equation Eq. 23,

this time setting A =

[
� 0
1 0

]
−

[
0 k1
0 k2

]
=

[
� −�2

1 −�

]
andQ = b · b>.

The expected cost is equal to b> · X · b. This is plotted in Fig. 4 with the label
“Internal Feedback”.

To plot the case of no internal feedback, we restrict k2 = 0. In this case, with
the same penalty as in the previous case, the optimal controller is k1 = −�2/4.
As with before, we solve the discrete Lyapunov equation Eq. 23, this time setting

A =

[
� 0
1 0

]
−

[
0 k1
0 0

]
=

[
� −�2/4
1 0

]
. The expected cost is, again,

b> · X · b, and is plotted in Fig. 4 with the label “No Internal Feedback.”
SDs of cost were obtained experimentally by running 1,000 simulations for

each value of � with the appropriate controller and initial conditions x(t = 0)
and random disturbances w drawn from independent standard normal
distributions. Each simulation was T = 100 time steps long, and the costs
of each simulation are calculated as:

1
T

T∑
t=0

x(t) · x(t), [25]

for all cases. Note that in the case of delays, xs(t) is not penalized, and we are
only concerned with x(t). We then computed the mean and SD of the costs over
these 1,000 simulations. In all cases, mean values of simulated costs coincided
with the expected costs obtained analytically.

Localization. Here, we provide the detailed methods used to generate the data
plotted in Fig. 8. The open-loop dynamics of the two-block system are given by:

A =

[
A11 A12
A21 A22

]
. [26]

To parameterize the task difficulty for simulations, we considered the two-state
system withA12 = A21 =  , where represents mechanical coupling between
the states ( = 0 means no coupling, while  = 1 means that what happens
on one state is felt by the coupled state one time step later, and  > 1 means
that what happens on one state is amplified when it affects the coupled state).
We additionally set A11 = A22 = 1. In Fig. 8, � =  + 1 to give the spectral
radius of A.

A =

[
1 
 1

]
. [27]

Three controllers were considered: one with instantaneous interareal communi-
cation (ideal), one with internal feedback allowing delayed interareal commu-
nication, and one with no internal feedback and no interareal communication.
We compute the ideal cost with the discrete-time Lyapunov equation, as before,
with K = −A.

To compute the controller and cost with internal feedback, we again sought
to optimize the infinite-horizon quadratic state cost. Just as in the centralized
case the optimal solution is to negate a disturbance in a single time step, in this
case, the optimal solution is to negate the disturbance as quickly as possible, in
two time steps. This solution is identical to the solution produced by computing
the controller with System Level Synthesis (26).

In the case with no internal feedback and no interareal communication, we
restricted our consideration to static and linear controllers. (In the other cases
considered, this restriction is unnecessary, because the linear solution is globally
optimal).

K =

[
K11 0

0 K22

]
. [28]

Under this restriction, the best available control policy is to neglect the off-
diagonal terms. For  > 1, the task is infeasible without internal feedback. We
computed the ideal cost with the discrete-time Lyapunov equation.
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this work.
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