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7.1 Introduction 
Most models of information storage in neural networks rely on changing the 

synaptic strcngths, or weights, between model neurons (Hinton & Anderson, 
1989). The weights in these simplifying models are altered by learning rules or 
algorithms so that the network can later retrieve the stored information, or perform 
the desired task. A great variety of such learning rules have been postulated, 
analysed, and simulated (Sejnowski & Tesauro, 1989). Most of these algorithms 
are based on mechanisms for which there is little or no experimental evidence 
(Crick, 1989). Indeed, experimental evidence for the long-term alteration of 
synaptic strengths is very difficult to obtain, and until recently there was no direct 
evidence for changes of the required duration at any synapse in adult neurons. This 
situation is rripidly changing as new experimental preparations and techniques are 
being developed (Alkon, 1987; Kandel et al., 1987; Brown et al., 1989). In this 
chapter we will explore what is currently known about synaptic plasticity in the 
mammalian hippocampus and will present experimental data that supports a 
particular class of learning algorithms. 

One of the most popular learning rules is the 'Hebb' rule, which requids the 
strength of a synapse to increase upon the simultaneous coactivation of pr&synaptic 
and post-synaptic activity (Hebb, 1949). The defining characteristics of a Hebbian 
synapse :ire, first, thnt it depends only on pre-synapt& and post-synaptic variables, 
and secondly, that tlie oltcration of the weight depends interactively on these two 
vari:~bles, and not separately (Brown et al., 1989). Thus, a mechanism that 
dcpcndetl only on the state of the pre-synaptic neuron, such as post-tetanic 
potentiation (Katz & Miledi, 1968), would not qualify as Hebbian. This interactive 
reqr~irenient niakes the mechanism fundamentally associative. This said, it should 
he noted thnt the llehb rule can nonetheless be implemented by non-associative 
mcchonisrns with circuitry of sufficient complexity (Sejnowski & Tesauro, 1989). 

Mnny vari:itions on the IIebb rule have been proposed. For example, some 
aspects of rlassicnl conditioning can be mimicked by a single Hebbian synapse if 
the temporal serisitivitics of tlie pre-synaptic and post-synaptic elements are suitably 
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arranged (Sutton & Barto, 1981; Tesauro, 1986; Klopf, 1987). There are also good 
reasons for allowing the sign of the alteration to change, so that selective decreases I 
as well as increases in strength can be made (Sejnowski, 1977b). Thus, it has been 
proposed that long-term decreases of synaptic strength should occur during 
conditions when the pre-synaptic and post-synaptic activities are negatively 
correlated (Sejnowski, 1977a). Similar suggestions have been made for changes in 
synaptic strengths during development (Bienenstock et al., 1982). 

In translating an algorithm like the Hebb rule into testable p1iysiologic:il 
hypotheses, general terms such as 'activity' must be made explicit. Thus, activity 
could mean the average level of membrane potential, the stimulation of action 
potentials, or perhaps the raised level of particular ionic concentrations. Many of 
these physiological variables are, of course, linked, but one or another of them 
might be p,uticularly critical to the plasticity. Specific experiments must be designed 
to determine which variables are the critical ones. In the next section, we will 
summarize what is currently known about the important variables for the long-term 
pntentiation of synaptic transmission in the hippocampus. Later in the chnptcr we 
will present experimental evidence for associative long-ten11 depression as well :IS 

associative long-term potentiation of synaptic strength. The conditions ulitlcr which 
this plasticity is observed are consistent with a Hebbian covariance model of 
synaptic plasticity (Sejnowski, 1977a). 

7.2 Existing evidence for Hebbian and non-Hebbian 
synaptic plasticity in the hippocampus 

A brief, high frequency activation of excitatory synapses in the hippocanipus 
produces a long-lasting increase in synaptic strength, called long-tern1 potentiation 
(LTP) (Bliss & Lomo, 1973). Typically, many fibers are synchronously activated 
for several seconds at frequencies greater than 50 Hz, and the synaptic potentials 
typically increase by 50-100%. Most of the experiments on LTP have been 
performed on thin, transverse slices of hippocampal tissue that are maintained in 
vitro in a perfusion chamber. The various regions and layers of cells in the 
hippocampus can be easily visualized and direct access is possible with recording 
and stimulating niicroelectrodes. In addition, pharmacological agents that alter 
neuronal properties can be easily applied. LTP can be reliably maint:~ined withi11 
stimulated slices for the lifetime of the slice, which is around 10 hours. Whcn 
stimulated in vitro, induction of LTP elevates synaptic strengths for weeks or 
months (Dliss & Gardner-Medwin, 1973). 

I f  LTP depended only on pre-synaptic activation, then it  would not hc 
I lehhian, as defined above. The critical test to deterniine whether LTP also clcpc~~ds 
on the post-synaptic cell was performed on pyramidal cells in area CA 1 by scvc~ a1 
groups, all of which came to essentially the same conclusion: L?'P ~cquircs the 
simultaneous release of neurotransmitter from pre-synaptic terminal% coupled with 
post-synaptic depolarization (Kelso et al., 1986; Malinow & Miller, 1986; 
Gustafsson & Wigstrom, 1987). However, the plasticity is not critically dependent 
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on action potentials per se, since LTP can be induced even when action potentials 
are selectively blocked in the post-synaptic cell (Kelso et al., 1986; McNaughtm et 
a [ . ,  1978). LTP should thus be called pseudo-Hebbian, since the original 
hypothesis required the post-synaptic cell to be excited or to persistently fire 
coincidentally with pre-synaptic activity (Hebb, 1949). The consequences of this 
difference will be taken up in the discussion. 

Thcre is a form af long-term plasticity, called associative LTP, that can be 
produced in some hippocampal neurons when two separate pathways, a test input 
and a conditioning input that impinge on the same cells, are simultaneously activated 
(Levy & Steward, 1979, 1983; Barrionuevo & Brown, 1983). In these 
experiments, a weak test input when stimulated alone does not have a long-lasting 
effect on synaptic strength; however, when this input is paired with stimulation of a 
conditioning input sufficient to produce homosynaptic LTP of that pathway, the test 
pathway is associatively potentiated. How is information about the conditioning 
input transmitted through the dendrites to the synapses from the test inputs? The 
spread of current from the conditioning input can depolarize the post-synaptic 
membrane near the synapses of the test input. A voltage-dependent mechanism in 
the post-synnp~ic cell could then account for the associative induction of LTP. 

The neurotransmitter that mediates the excitatory post-synaptic potentials 
(EPSPs) in area CAI, and in most long-distance projections in the brain, is likely to 
be glutamate or a closely related amino acid. There are at least two distinct types of 
glutamate receptors on the post-synaptic membrane. One of these is responsible for 
the fast transmission of excitation, the KainateIQuisqualate, or the K/Q receptor. 
The other receptor, called the NMDA receptor after the agonist N-methyl-D- 
aspartate which selectively activates it, has a voltage dependence that permits it to 
open only when the post-synaptic membrane is strongly depolarized at the same 
time that glutamate binds to the receptor. The specific NMDA receptor antagonist 2- 
amino-5-phosphonovaleric acid (APS) blocks the induction of associative LTP in 
CAI pyramidal neurons (Collingridge et al., 1983; Harris et al., 1984; Wigstrom & 
Gustafsson, 1984). Thus, the NMDA receptor is likely to be an essential 
component in the Hebbian mechanism underlying LTP in area CAI. Interestingly, 
AP5 does not block the induction of LTP in another pathway within the 
hippocampus, that between the mossy fibers and pyramidal cells in area CA3. This 
observation serves as the starting point for the new experiments that are presented in 
a later scction. 

In addition to IIebbian plasticity, non-Hebbian forn-s of synaptic plasticity 
have also been found in the hippocampus. Post-tetanic potentiation (PTP) is an 
elevation of synaptic strengths for many minutes following a high frequency tetanus 
of the synapse. PTP is a consequence of pre-synaptic mechanisms and does not 
depend on the post-synaptic cell (Katz & Miledi, 1968; Scharfman & Sarvey, 
1985). Another non-llebbian form of plasticity in the hippocampus is the 
heterosyn:~ptic depression produced in an unstimulated or weakly-stimulated 
pathway when another pathway converging on the same fieurons is stimulated at a 
high rate for a prolonged duration (Levy & Steward, 1979, 1983; Lynch et al., 
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1977). In this case, the depression does not depend on activity of the test input and 
does not seem to be as long lasting as LTP. I 

7.3 The covariance model of associative information 
storage 

Probably the most important and most thoroughly explored use of the Hebb 
rule in neural network models is in the formation of associations between one 
stimulus or pattern of activity in one neural population and another (Kohonen, 
1984). The Hebb rule is appealing for this use, because it provides a way of 
forming global associations between large-scale patterns of activity in assemblies of 
neurons using only the local information available at individual synapses. The 
earliest models of associative memory were based on network models in which the 
output of a model neuron was assumed to be proportional to a linear sum of its 
inputs, each weighted by a synaptic strength. Thus, 

where Vg are the firing rates of a group of M output cells, and VA are the firing 
rates of a group of N input cells, and WBA is the synaptic strength between input 
cell A and output cell B. 

The transformation between patterns of activity on the input vectors to 
patterns of activity on the output vectors is determined by the synaptic wciglit 
matrix, WBA. This matrix can be constructed from pairs of associated input and 
output vectors using the simplest version of the Hebb rule (Steinbuch, 1961; 
Anderson, 1970; Kohonen, 1970; Longuet-Higgins, 1968): 

where the strength of the learning E can be adjusted to scale the outputs to the 
desired values. 

More than one association can be stored in the same matrix, so long :IS thc 
i n p ~ ~ t  vectors are not too similar to each other. This is acconiplislied by using 
Equation 7.2 for each input-output pair. This model of associative storage is simple 
and has several attractive features: first, the learning occurs in only one trial; 
second, the information is distributed over many synapses, so that recall is 
relatively immune to noise or damage; and third, input patterns similar to sto~cd 
inputs will give output similar to the stored outputs, a form of generalization. This 
linear model has been generalized to non-linear models of associative metnory, 
which has led to a new class of learning algorithms based on the principle of error- 
correction (Sejnowski & Tesauro, 1989). In these algorithms, more than one 
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presentation is needed for each input since the storage must be optimized for the 
entire set of stored patterns. 

Numerous variations have been proposed on the conditions for Hebbian 
plasticity (Sejnowski, 1977a,b; Kohonen, 1984; Levy et al., 1984). One problem 
with any synaptic modification rule that can only increase the strength of a synapse 
is that the synaptic strength will eventually saturate at its maximum value. Non- 
specific decay can reduce the sizes of the weights, but the stored information will 
also decay and be lost at the same rate. Another approach is to renormalize the total 
synaptic weight of the entire terminal field from a single neuron to a constant value 
(von der Malsburg, 1973). One learning algorithm that accomplishes this uses the 
selective decrease of synaptic strength to accomplish optimal error-correction 
learning based on storing the covariances between the pre-synaptic and post- 
synaptic neurons (Sejnowski, 1977a,b). According to this rule, the change in 
strength of a plastic synapse should be proportional to the covariance between the 
pre-synaptic firing and post-synaptic firing: 

where (VB)  are the average firing rates of the output neurons and (VA) are the 
average firing rates of the input neurons (see also Chauvet, 1986). Thus, the 
strength of the synapse should increase if the firing of the pre-synabtic and post- 
synaptic elements are positively correlated, decrease if they are negatively 
correlated, and remain unchanged if they are uncorrelated. The covariance rule is an 
extension of the Flebb rule and it is easy to show that traditional Hebbian synapses 
can be used to implenient it. Taking a time average of the change in synaptic weight 
in Equation 7.3: 

The first term on the right hand side has the same form as the simple Hebbian 
synapse in Equation 7.2. The second term is a learning 'threshold' that varies with 
the product of the time-averaged pre-synaptic and post-synaptic activity levels. The 
learning threshold ensures that no change in synaptic strength should occur if the 
average correlation between the pre-synaptic and post-synaptic activities is at chance 
level; that is, when there is no net covariance. The time averages in Equations 7.3 & 
7.4 should be taken over a time interval that is long compared to the moment-by- 
moment fluctuations occurring within synapses. In the hippocampus, which has an 
intrinsic 5-6 Hz theta rhythm, the averaging time should be greater than 200 ms. 

The covariance model is based both on information contained in the 
membrane potentials within populations of neurons and on information transmitted 
between neurons in the spatio-temporal patterns of spike trains. Recent recordings 
from pairs of neurons in visual cortex and from local field potentials reflecting 
pooled activity in hundreds of neurons indicate that oscillatory stimulus-selective 
correlations are present in cortical networks (Gray & Singer, 1989). Furthermore, 
experiments with visual stimuli that extend over a wide area of the visual field 
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indicate that these correlations could carry important global information about visual 
stimuli (Gray et a!., 1989). Thus, significant correlations exist between neurons in , 
cerebral cortex that could provide a signal to a covariance storage mechanism. 

7.4 Experimental evidence for the Hebbian covariance 
rule in the hippocampus 

7.4.1 Hebbian synapses In area CAI 

Recently, a new type of synaptic plasticity has been reported in field CAI of 
the hippocampus that results in a long-term depression (LTD) of synaptic strengths 
(Stanton & Seinowski, 1989). LTD is associative and can be induced in a test input 
when interacting with a stronger conditioning input on the same dendritic tree, but 
only if the two inputs are negatively correlated in time. The stiniulus paradigm that 
w:rs used, illustrated in Figure 7.113, was based on the finding that high-frcqucr~cy 
Iwrsts oTstitnuli spaced 200 ms apmt are optimal in eliciting 1,TP (I.:irson 82 1.yncl1, 
1986). The conditioning, or strong stimulus pattern, which was almost always 
effective in eliciting maximal LTP, consisted of trains of 10 bursts of 5 pulses each 
a t  a frequency of 100 Hz, with a 200 ms interburst interval. Each train lasted 2 
seconds-and had a total of 50 stimuli. The test, or weak stimuli, a train of single 
shocks at 5 H z  frequency, were given either superimposed on the middle of each 
burst (positively correlated, or 'in phase'), or symmetrically between the bursts 
(negatively correlated, or 'out of phase'). 

The strong stimulus was applied to the Schaffer collaterals and the test 
stimulus was applied to the subicular input on the opposite side of the recording 
site, as shown in Figure 7.1A. The weak stimulus train was first applied alone and 
did not itself induce long-lasting changes. The conditioning site was then stimulated 
alone, which elicited homosynaptic LTP of this pathway but did not significantly 
alter the amplitude of responses to the test input. When the test and conditioning 
inputs were activated in phase, the test input synapses were associatively 
potentiated, as predicted (Figure 7.2A). In  contrast, when test and conditioning 
inputs were applied out of phase, an associative depression of the test input 
synapses was induced that lasted for hours (Figure 7.2B). The duration of 
associative LTD was at least 30 minutes (Figure 7.2C) and up to 3 hours following 
stimulation. The amplitude and duration of associative LTD or LTP could be 
increased by stimulating input pathways with more trains of shocks. When weak 
input shocks were applied both superimposed and between the bursts, so that the 
average covariance was zero between test and conditioning inputs, thcrc w:ls n o  net 
change in synaptic strength. Thus, the associative LTP and H D  mcch;lnistns 
appear to be balanced. 

A weak stimulus that is out of phase with a strong condi~ionirig stiniulus 
arrives when the post-synaptic neuron is hyperpolarized as a consequence of 
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Positively correlated - 'in phase' 

Ncpslivcly correlated - 'out of phase' 

Figure 7.1 Hippocampal slice prcpantion for arca CAI. A. Schcmatic diagram of the in virro 1 hippocampal slicc showing recording sites in the CAI pyramidal cell somatic (stratum pyramidale) 
and dcndritic (stratum radiatum) layers, and conditioning stimulus sites activating Schaffer 
collarcral (Strong) and commissural tcst affcrcnts (Weak). Hippocampal slices (400 pm thick) were 
prcparcd by smndard mcthds  and incubated in an interface slice chamber at 34-35°C. ExIracellular 
(1-5 MQ rcsisktncc, 2M NaCl lillcd) and inlracellular (70-120 MR. 2M K-acetate filled) recording 
clcctrodcs, and bipolar glass-insulated platinum wire stimulating electrodes (50 pm tip diametr), 
wcrc prcparcd by standard methods. B. Schcmatic diagram of stimulus paradigms used. 
Conditioning input slimuli (Suong input) wcrc lour trains of 100 Hz bursts. Each burst had 5 
stimuli and thc inlcrbursl intcrval was 200 ms. Each train lasted 2 seconds and had a total oT 50 
stimuli. Tcst input stimuli (Wcak input) were four trains of shocks at  5 Hz frequency, each train 
lasting Tor 2 sccontls. Whcn U~csc inputs wcrc in phase. the tcst single shocks were supcrimposcd 

i on thc mitldlc ol cadi  burst of thc conditioning input, a s  shown. When the test input was our of 
phase, thc singlc shocks wcrc placcd symmetrically between che bursts. 
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( A )  Awciativc long-term potentiation 1 

(B) Associative long-term depression 

Post v 

Post v 

Time (min) I 
I:i~ure 7.2 Associativc LTP and associative long-term dcprcssion (LTD) of cvokcd cxtraccllt~l:lr 
potentials. A.  Associativc LTP of cvokcd EPSPs and population action potential responses in the 
ccst input. Tcst rwponscs arc shown bcfore and 30 min aftcr application or  tcst stimuli in pliasc 
with the coactive conditioning input. B. Associativc LTD of evoked EPSPs and popt~lation spikc 
rcsponscs in Ihc Icst input. Test rcsponscs are shown bcforc and 30 min d tc r  applicnfion of t c s ~  
climuli out of phasc with thc coactivc conditioning input. C. Timc coursc or thc changes in 
population spikc amplitudes for a typical cxpcrimcnt. Insct at thc top shows dic stirnrrlrls paltcrns 
I IW thc tcst 0-) and conditioning (C) inputs and arrows show thc timc of stimulation. Singlc 
rcsponscs from the conditioning input (opcn circles), show that the high- rrcqucncy bursts 
( 5  pr1lscs/100 Hz. 200 ms intcrburst intcrval as in Figure 7.1) clicitcd synnpsc-spccilic 1,TP 
i~itlcpcndcnt or othcr input activity. Singlc responses from thc tcst input (rillcd circlcs) show that 
stimulation or  the test pathway out of phase with the conditioning one produccd associntivc LTD 
!Assoc LTD) of this input. In-phase stimulation of the same pathway clicitcd (cont. opposite) 
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inhibitory post-synaptic potentials and after-hyperpolarization from mechanisms 
intrinsic to pyramidal neurons. This suggests that post-synaptic hyperpolarization 
couplcd with pre-synaptic activation may trigger LTD. To test this hypothesis, we 
injected current through intracellular microelectrodes to hyperpolarize or depolarize 
the cell while stimulating a synaptic input. Pairing the injection of depolarizing 
current with the low-frequency stimulation led to LTP of the stimulated synapses 
(Figure 7.3A), while a response to a control input inactive during the stimulation 
did not change, as reported previously (Kelso et al., 1986; Malinow & Miller, 
1986; Gustafsson et al., 1987). Conversely, prolonged hyperpolarizing current 
injection paired with the same low frequency stimuli led to induction of LTD in the 
stimulated pathway, but not in the unstimulated pathway (Figure 7.3B). The 
application of either depolarizing current, hyperpolarizing current, or the 5 Hz 
synaptic stimulation alone did not induce long-term alterations in synaptic strengths. 
Thus, the pairing of post-synaptic hyperpolarization and pre-synaptic activity is 
sufficient to induce LTD of the intracellular EPSPs in CAI pyramidal neurons. 

Associative LTP is believed to depend on the spread of current from 
conditioning syn:ipses to test synapses in the dendritic me ,  where the simultaneous 
dcpol:uization of the post-synaptic membrane and activation of glutamate receptors 
of the N-nletbyl-D-aspartate (NMDA) subtype leads to LTP induction (Collingridge 
et al., 1983; Harris et al., 1984; Wigstrom & Gustafsson, 1984). Consistent with 
this hypothesis, we find that the NMDA receptor antagonist 2-amino-S- 
phosphonovaleric acid (AP5, 10pM) blocked the induction of associative LTP by 
the in-phase stimuli in CAI pyramidal neurons. In contrast, the application of AP5 
to the bathing solution at this same concentration did not affect associative LTD. 
Thus, the induction of associative LTD does not appear to involve the activatipn of 
the NMDA receptor. 

These experiments confirm predictions made from the covariance model of 
information storage in neural networks (Sejnowski, 1977a,b). The plasticity is 
associative, long-lasting, and is produced when pre-synaptic activity occurs while 
the post-synaptic membrane is hyperpolarized. The other condition that should 
produce synaptic depression according to the predictions of the covariance model - 
the absence of pre-synaptic activity while the post-synaptic neuron is strongly 
depolarized - has also been found in the hippocampus (Levy & Steward, 1983; 
Lynch ct al., 1977). [lowever, this heterosynaptic depression is not as long lasting 
as LTP and requires stronger stimulation. For example. the control stimulation of 
the strong pnrhw:~y in our experiments did not produce measurable depression of 
the inactive test pathway. This may indicate that the algorithm for synaptic plasticity 
in the hippocampus only approximates the covariance. 

(Fib. 7.2 cont.) associativc LTP (Assoc LTP). The duration of associative LTD was at least 30 
minutes and up to 3 hours following stimulation. Thc amplitudc and duration of nssociativc LTD 
or LTP could hc incrcascd by stimulating input pathways with more trains of shocks. 
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F i ~ u r e  7.3 Pairing of post-synaptic hypcrpolarization with stimulation o f  synapscs on C A I  
hippocampal pyramidal neurons produces LTD specific to the activatcd pathway, whilc pairing of 
post-synaptic dcpolarization with synaptic stimulation produces synapsc-spccific LTP. A. 
lntraccllular evoked EPSPs are shown ,at stimulated (Stim 5 Hz) and unstimulatcd (Control) 
palhway synapses before and 30 min after pairing depolarizing current injcction with 5 Hz synaptic 
stimulation (the constant +2.0 nA currcnt produced a 20 mV dcpolarization of thc soma without 
synaptic stimulation). The stimulatcd pathway exhibited associative LTP of thc EPSP, whilc thc 
control, unstimulatcd input showcd no changc in  synaptic strength. n. 1ntraccllul:lr EPSPs arc 
shown cvokcd at stimulatcd and conlrol pathway synapscs bcrorc and 30 min a k r  pitiring a 20 tnV 
hypcrpolarization at the cell soma with 5 Hz synaptic stimulation (thc constant -1.0 nA cltrrcnt 
produced a 20 mV hyperpolari7ation of the soma in the absence of synaptic stimolalinn). Thc input 
(Slim 5 Hz) activatcd during thc hyperpolarization showcd associative LTD of synaptic cvokctl 
EPSPs, while synaptic slrcngfh of the silent input (Control) was unaltcrcd. Thc ccll lircd action 
polcnrials during UIC dcpolarizing current injection. but not during injcction of thc hypcrpolarizing 
currcnt. I n  a previous study, hyperpolarizing current applicd during high-frcql~cncy synaptic 
climulalion blockcd LTP, hut LTD of fhc synaptic input was not rcportctl (Mnlinow & Millcr, 
1'136). Ilowcvcr. thc input stimulus was typically 30 Hz or higher comparctl to thc 5 I lz ~~sc t l  in 
our cxpcrimcnt, so that thc dcndritic mcmbranc potential during synaptic stimulation was prohahly 
zipnilicantly more positivc at the 30 Hz nte. 
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7.4.2 Non-Hebbian and Hebbian synapses in area CA3 

Area CA3 of the hippocampus exhibits two forms of LTP, one of which is 
dependent on NMDA receptors - the commissural pathway - and another that is not 
- the mossy fiber pathway (Harris et al., 1984). We will summarize here our recent 
finding that both associative LTP and associative LTD can be induced in the 
commissural pathway, but neither can be elicited in the mossy fiber pathway of area 
CA3 (Chattarji et al., 1989). The differences in the rules for plasticity in these 
pathways are likely to be related to the different functions that these pathways have 
in guiding the storage of information in the hippocampus: in particular, the mossy 
fiber pathway is non-Hebbian, but the commissural inputs are Hebbian. 

In our experiments, extracellular field potential recordings were made ih the 
CA3 pyramidal cell body and apical dendritic layers of rat hippocampal slices 
(Figure 7.4). Stimulating electrodes were placed on 'opposite sides of the 
hippocampal fissure and stimuli applied to separate ComrnissuraVSchaffer collateral 
(COM) and mossy fiber (MF) afferents converging on CA3 pyramidal cells (Figure 
7.4). The degree of potentiation or depression was evaluated by change in 
amplitude of the population spike and the peak initial slope of the compound 
excitatory post-synaptic potential (EPSP). In some control experiments, specific 
activation of mossy fibers was verified by inducing LTP of this pathway in the 
presence of AP5 (Harris et al., 1984), which shows that this pathway is indeed the 
one that is independent of the activation of NMDA receptors. The same stimulus 
paradigm that was effective at eliciting associative LTP and associative LTD in area 
CAI was used in area CA3. 

- 

COMMIASSOC MF 

Stratum rndiatum 

IGgure 7.4 Ilippoca~np:~l slicc preparation and stimulus paradigms for area CA3. Schcmatic 
diagram of thc i r ~  v r f m  hippocampal slicc prrparalion showing recording sites in the CA3 
pyr:miitl:~l rc l l  zom:~lic (sfrillr~~n pyramidalc) and dcndritic (stratum radialum) laycrs, and stimulus 
sitcs activating Commissural/ Schaffcr (COM) or mossy fibcr (MF) affercnts. 
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Mossy fibers - weak input I 

In phase Out of phnrc MFstrong 
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Figure 7.6 CA3 mossy libcr synapses do not exhibit either associative LTP or LTD. A. Whcn 
thc MF pathway received a wcak stimuli (W) in phase with a strong stimulus (S) via thc 
commissural input (COM), wcak input MF synapses did not exhibit potcntiation or cithcr thc 
synaptic EPSP in thc apical dcndritic laycr or population spikc in thc ccll body laycr. h~llowing 
this, application of W stimuli to the MF site out of phase with S stimuli to COM, also ktilcd to 
clicit dcprcssion in populalion spikc or EPSP. Finally, MF synapscs did show homosynaptic LTP 
whcn prcscntcd with an S tetanus (MF Strong) to the MF pathway alonc. Tcst rcsponscs arc 
shown bcforc (Control) and 30 min after application of in phasc, out of phasc and MF strong 
stimuli, rcspcctivcly. I!. Time coursc of the changes in population spikc amplitt~tlc obscrvctl st 
rnch input for a rcprcscnlativc cxpcrimcnt. T a t  rcsponscs from thc strong input (S, opcn sq~~:~rcs), 
show that the high-frequency bursts elicited homosynapiic LTP spccific to COM synapscs. Tcst 
rcsponscs from the wcak input (W. fillcd circles) show that ncithcr in phssc nor o u ~  of p h a c  
sti~nulation clicitcd any potcntiadon or dcprcssion of this input. Howcvcr, MF synnpscs did show 
homosynaptic LTP following the application of the strong bursts (S) to lhc MF pathway alonc. 
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The rules for induction of long-term synaptic plasticity in mossy fiber inputs 
onto CA3 pyramidal neurons appear to be fundamentally different from those of 
commissural inputs. We have shown that a weak mossy fiber input failed to exhibit 
associative LTP when it was positively correlated in time with a strong commissural 
tetanus. This finding is in agreement with other studies (Kauer & Nicoll, 1989) and 
can be explained by the lack of NMDA receptors at this synapse (Monaghan & 
Cotman, 1985). The failure of these synapses to elicit associative LTD, however, is 
rather surprising, since results from similar experiments in area CAI suggest that 
post-synoptic hyperpolarization coupled with pre-synaptic activation triggers 
associative LTD without requiring NMDA receptor activation (Stanfon & 
Sejnowski, 1989). Our findings do not, however, rule out long-lasting potentiation 
or depression at these synapses that may require different stimulus patterns or 
important modulatory factors supplied by subcortical inputs to area CA3 (Hopkins 
& Johnston, 1984; Stanton & Sarvey, 1985). 

7.5 Discussion 
Most of the simplifying models of learning in neural networks leave out much 

of the biological detail, such as current spread in dendrites, active membrane 
conductances, and realistic patterns of connectivity. This does not mean that they 
cannot make contact with biological experiments, only that the predictions that come 
out of these models are necessarily broad, dealing with general relationships and not 
with specific details. These models can nonetheless suggest stimulus variables that 
should be explored and can help in interpreting the results. 

For example, in our experiments on synaptic plasticity in the hippocampus, 
the covariance model suggested that negatively correlated inputs might be associated 
with synaptic depression, but did not provide the details of the stimulus paradigm 
(Sejnowski, 1977a,b). Thus, the choice of 100 Hz for the burst rate and 5 Hz for 
the burst repetition rate were determined by properties of the hippocampus and not 
the model. What the model did provide was the idea that synaptic depression 
comparable in magnitude and duration to LTP might be found in the hipp&ampus, 
and the general stimulus conditions that would be likely to characterize its induction. 
The covariance model pointed to negative temporal correlation between pre-synaptic 
and post-synaptic activity as a key variable and helped us design suitable patterns of 
stimuli. 

Pyraniidol cells in area CA3 have recurrent collaterals, which make it a good 
candidate area for a content-addressable associative memory (Kohonen, 1984; 
IToplield, 1982; Rolls, 1987). The striking differences between synapses onto CA3 
pymniidnl neurons are likely to reflect their different roles in processing the flow of 
information from dentate granule cells to CAI pyramidal neurons. Mossy fibers 
have a type of LTP that is non-associative and non-Hebbian. In contrast, the LTP 
and LTD exhibited by the commissural fibers to area CA3 are associative. Thus, the 
mossy fibers can 'instruct' the commissural inputs through associative interactions, 
but cannot themselves be influenced by information arriving from other pathways. 
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The recurrent collaterals of pyramidal cells within area CA3 have not been 
separately tested and it will be interesting to determine if they are of the associative 
or non-associative variety. It is also not known if there are associative interactions 
between mossy fiber synapses, though this would be unlikely given our present 
findings. 

One of the consequences of having an associative mechanism that is pseudo- 
llebbian rather than Hebbian (Kelso et al., 1986), is that synapses on localized 
regions of a dendrite can interact with each other independently of processing 
occurring on other dendrites. The voltage-sensitive NMDA receptors which trigger 
LTP, effectively make each patch of dendrite a non-linear processing unit. This 
would greatly increase the amount of information that could be stored by a single 
neuron. The processing power of such a 'product' unit has been explored recently 
in the context of simplifying models by Durbin & Rumelhart (1989). More needs to 
be known about the timing relationships for LTP and LTD in the hippocampus, and 
also about the spatial integration possible within dendritic trees. Realistic models 
can help with sorting out these relationships, but only if enough ,data can be 
obtained to fully constrain the models. 

The principles of neural representation and neural computation are likcly to be 
different from the way that representation and computation are accomplishcd i n  
digital computers (Churchland & Sejnowski, 1988). Discovering these principles, 
however, is a difficult undertaking that will require combined experimental and 
modeling techniques (Sejnowski et al., 1989). 
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8 
The Representation and Storage of 

Information in Neuronal Networks in the 
Primate Cerebral Cortex and 

Hippocampus 
Edmund Rolls 

Summary 
The ways in which information is represented, processed, and stored in neuronal 
networks in primates as shown by recordings from single neurons are considered. 

1) Through the connected stages of the taste system of primates, neurons become 
more finely tuned to individual tastes, yet neurons which respond to only one 
taste are rare. 

2) In the temporal lobe visual areas, which receive visual information after several 
prior stages of cortical processing, some neurons are found which are quite 
selective in that they respond to faces. However, even these neurons do not 
respond to the face of only one individual, but instead information about the 
individual is present across an ensemble of such cells. 

3) It is suggested that ensemble encoding is used because this allows the emergent 
properties of completion, generalization, and graceful degradation to be 
generated in pattern association and auto-association matrix memory neuronal 
networks. It is suggested that nevertheless the representation is sparse, that is 
each pattern is represented by the firing of relatively small numbers of 
relatively finely tuned neurons, so that the patterns can be relatively 
orthogonal to each other, in order to minimize interference in the memory 
between the patterns and in order to increase the number of patterns which can 
be stored or associated. Given that the majority of neurons recorded in the 
cerebral cortex and hippocampal cortex of primates have positive responses, 
that is the response consists of an increase of firing rate from a low or zero 
spontaneous firing rate, the activity patterns for different inputs can only be 
relatively orthogonal to each other if the representation is sparse. 

4) The hippocampal CA3 stage has recurrent collaterals which have Hebbian 
modifiability and a 4.3% contact probability. This network functional 
architecture suggests that it acts as an auto-association memory. It is 
suggested that this is the basis of episodic memories, which are formed in the 




