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Convolutive mixtures of signals, which are common in acoustic environ-
ments, can be difficult to separate into their component sources. Here we
present a uniform probabilistic framework to separate convolutive mix-
tures of acoustic signals using independent vector analysis (IVA), which
is based on a joint distribution for the frequency components originating
from the same source and is capable of preventing permutation disorder.
Different gaussian mixture models (GMM) served as source priors, in
contrast to the original IVA model, where all sources were modeled by
identical multivariate Laplacian distributions. This flexible source prior
enabled the IVA model to separate different type of signals. Three classes
of models were derived and tested: noiseless IVA, online IVA, and noisy
IVA. In the IVA model without sensor noise, the unmixing matrices were
efficiently estimated by the expectation maximization (EM) algorithm.
An online EM algorithm was derived for the online IVA algorithm to
track the movement of the sources and separate them under nonstation-
ary conditions. The noisy IVA model included the sensor noise and com-
bined denoising with separation. An EM algorithm was developed that
found the model parameters and separated the sources simultaneously.
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These algorithms were applied to separate mixtures of speech and music.
Performance as measured by the signal-to-interference ratio (SIR) was
substantial for all three models.

1 Introduction

Blind source separation (BSS) addresses the problem of recovering original
sources from mixtures, knowing only that the mixing processes is linear.
The applications of BSS include speech separation, cross-talk elimination
in telecommunications, and electroencephalograph (EEG) and magneto-
encephalograph (MEG) data analysis.

Independent component analysis (ICA) (Comon, 1994; Lee, 1998;
Hyvärinen, Karhunen, & Oja, 2001) is effective in separating sources when
the mixing process is linear and the sources are statistically independent.
One natural way to characterize the independence is by using a factor-
ized source prior, which requires knowing the probability density function
(PDF) for sources. The Infomax algorithm (Bell & Sejnowski, 1995) used a
supergaussian source prior that was effective for many natural sources. The
extended Infomax (Lee, Girolami, & Sejnowski, 1999) could also separate
sources with subgaussian statistics. A gaussian mixture model (GMM),
introduced as flexible source priors in Moulines, Cardoso, and Gassiat
(1997), Attias (1999), Attias, Deng, Acero, and Platt (2001), and Attias,
Platt, Acero, and Deng (2000) can be directly estimated from the mixtures.
A nonparametric density estimator has also been used for ICA (Boscolo,
Pan, & Roychowdhury, 2004) and higher-order statistics are an alternative
characterization of independence and are distribution free (Cardoso, 1999;
Hyvärinen & Oja, 1997; Hyvärinen, 1999). Other approaches have used
kernels (Bach & Jordan, 2002), subspaces (Hyvärinen & Hoyer, 2000) and
topographic neighborhoods (Hyvärinen, Hoyer, & Inki, 2001).

Speech separation is an example of mixing where the mixing process
is a convolution (Lee, Bell, & Lambert, 1997; Mitianoudis & Davies, 2003;
Torkkola, 1966). In some cases, the sources can be separated by ICA in the
frequency domain, where the mixtures are approximately linear in every
frequency bin. Because ICA is blind to the permutation, the separated fre-
quency bins need to be aligned. This is called the permutation problem.
One approach is to enforce the smoothness of the separated sources and
the separation filters, for example, by comparing the separation matrices
of neighbor frequencies (Smaragdis, 1998) and limiting the time-domain
filter length (Parra & Spence, 2000). The permutation can also be aligned
according to the direction of arrival (DOA), which can be estimated from
the separation matrices (Kurita, Saruwatari, Kajita, Takeda, & Itakura, 2000).
Cross-correlation of the frequency components has also been used to correct
the permutations (Murata, Ikeda, & Ziehe, 2001).
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A more direct approach to the permutation problem is to prevent the
permutation from occurring instead of postprocessing to correct them. In-
dependent vector analysis (IVA) (Kim, Attias, Lee, & Lee, 2007; Lee & Lee,
2007; Lee, Kim, & Lee, 2007), does this by exploiting the dependency among
the frequency components. IVA assumed that the frequency components
originating from the same source were dependent and that the frequency
components originating from different sources were independent. The joint
PDF of frequency components from each source was a multivariate distri-
bution that captured the dependency across frequencies and prevented
permutation disorder. By treating the frequency bins of each source as a
vector, IVA captured the dependence within the vector, assuming that the
different vectors were independent. IVA used a multivariate Laplacian dis-
tribution as source priors, and the unmixing matrices were estimated using
maximum likelihood by gradient ascent algorithm. Due to the dependency
modeling, the separation for all frequency bins was done collectively. How-
ever, the statistical properties of the sources could be different, and the
Laplacian PDF may not be accurate for all the sources. Also IVA assumed
no sensor noise, which is not realistic in real environments.

In this letter, we propose a general probabilistic framework for IVA to
separate convolved acoustic signals. The frequencies from the same source
were jointly modeled by a GMM, which captured the dependency and pre-
vented permutation. Different sources were modeled by different GMMs,
which enabled IVA to separate different type of sources. We considered
three conditions: noiseless IVA, online IVA, and noisy IVA. Noiseless IVA
assumed no sensor noise, similar to most ICA and IVA algorithms. Online
IVA was capable of tracking moving sources and separating them, which
is particularly useful in dynamic environments. Noisy IVA included the
sensor noise and allowed speech denoising to be achieved together with
source separation. Model parameters were estimated by maximum likeli-
hood. Efficient expectation maximization (EM) algorithms were proposed
for all conditions.

This letter is organized as follows. In section 2 we present the IVA model
under a general probabilistic framework. Section 3 presents the EM al-
gorithm for noiseless IVA. Section 4 presents an online EM algorithm for
noiseless IVA. Section 5 presents the EM algorithm for noisy IVA. The ex-
perimental results are demonstrated in section 6 with simulations. Section 7
concludes the letter.

2 Independent Vector Analysis Model

2.1 Acoustic Model for Convolutive Mixing. We focus on the 2 × 2
problem: two sources and two microphones. Some of the algorithms can be
generalized to multiple sources or microphones. Let xj [t] be the sources j
and yl [t] be the channel l, at time t. The mixing process can be accurately
described by the convolution. We consider both noisy case and noiseless
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Figure 1: Mixture model of independent vector analysis (IVA). Dependent
source components across the layers of linear mixtures are grouped into a
multidimensional source, or vector.

case here,

Noiseless IVA: yl [t] =
2∑

j=1

∑
τ

hl j [t](τ )xj [t − τ ] (2.1)

Noisy IVA: yl [t] =
2∑

j=1

∑
τ

hl j [t](τ )xj [t − τ ] + nl [t], (2.2)

where hl j [t] is time domain transfer function from the j th source to the
lth channel, and ni [t] is the noise. Although the noiseless IVA is a special
case of noisy IVA by setting ni [t] = 0, the algorithms are quite different and
treated separately.

Let k denote the frequency bin and Ykt = (Y1kt, Y2kt)T , Xkt = (X1kt, X2kt)T ,
Nkt = (N1kt, N2kt)T , be the vectors of the kth FFT coefficients of the mixed
signals, the sources, and the sensor noise, respectively. When the fast Fourier
transform (FFT) is applied, the convolution becomes multiplicative,

Noiseless IVA: Ykt = Ak(t)Xkt (2.3)

Noisy IVA: Ykt = Ak(t)Xkt + Nkt, (2.4)

where Ak(t) is frequency domain response function corresponding to hi j [t].
The Ak(t) is called the mixing matrix because it mixes the sources. Its in-
verse, Wk(t) = A−1

k (t), is called unmixing matrix, which separates the mixed
signals. Figure 1 shows the mixture model of IVA.
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2.2 Probabilistic Models for Source Priors. Because of the complex-
ity of human speech production, for which there are no simple models
(Ephraim & Cohen, 2006), speech is often characterized with flexible sta-
tistical models. For example, a common probability density function (PDF)
for speech is a GMM, which can approximate any continuous distributions
with appropriate parameters (Bishop, 1995). Because the samples are as-
sumed to be independent and identically distributed, we drop the time
index t for simplicity.

Assuming the sources are statistically independent,

p(X1, . . . , XK ) =
2∏

j=1

p(Xj1, . . . , Xj K )

p(Xj1, . . . , Xj K ) =
∑

s j

p(s j )
∏

k

N (Xjk |0, νks j ). (2.5)

The s j indexes the mixture components of the GMM prior for source j . The
gaussian PDF

N (Xjk |0, νks j ) = νks j

π
e−νks j |Xjk |2 (2.6)

is of the complex variables Xjk . The precision, defined as the inverse of the
covariance, satisfies 1/νks j = E{|Xjk |2|s j }.

Consider the vector of frequency components from the same source
j , {Xj1, . . . , Xj K }. Note that although the GMM has a diagonal precision
matrix for each state, the joint PDF p(Xj1, . . . , Xj K ) does not factorize, that
is, the interdependency among the components of a vector of the same
source is captured. However, the vectors originating from different sources
are independent. This model, called independent vector analysis (IVA),
has the advantage over ICA that the interfrequency dependency prevents
permutations. All the frequency bins are separated in a correlated manner
rather than separately as in ICA.

For noisy IVA, we assume a gaussian noise with precision γ ,

p(Yk |Xk) = γ 2
k

π2 e−γk |Yk−Ak Xk |2 , (2.7)

where we assume the two channels have the same noise level.
The full joint probability is given by

p(Y1, . . . , YK , X1, . . . , XK , s) =
K∏

k=1

p(Yk |Xk)
2∏

j=1

(∏
k

p(Xjk |s j )p(s j )

)
,

(2.8)

where s = (s1, s2) is the collective mixture index for both sources.
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The source priors can be trained in advance or estimated directly from
the mixed observations. The mixing matrices Ak(t) and the noise spectrum
γk are estimated from the mixed observations using an EM algorithm de-
scribed later. Separated signals are constructed by applying the separation
matrix to the mixed signals for the noiseless case or using minimum mean
square error (MMSE) estimator for the noisy case.

2.3 Comparison to Previous Works. The original IVA (Kim et al., 2007)
employed a multivariate Laplacian distribution for the source priors,

p(Xj1, . . . , Xj K ) ∝ e−
√

‖Xj1‖2+···+‖Xj K ‖2
, (2.9)

which captures the supergaussian property of speech. This joint PDF cap-
tures the dependencies among frequency bins from the same source, thus
preventing the permutation. However, this approach has some limitations.
First, it uses the same PDF for all sources and is hard to adapt to different
types of sources, like speech and music. Second, it is symmetric over all the
frequency bins. As a result, the marginal distribution for each frequency k,
p(Xk) is identical. In contrast, the real sources are likely to have different
cross-frequency bins for statistics. Third, it is hard to include the sensor
noise.

In Moulines et al. (1997) and Attias (1999), each independent compo-
nent is modeled by different GMMs. One difficulty is that the total number
of mixtures grows exponentially in the number of sources. If each fre-
quency bin has m mixtures, the joint PDF over K frequency bins contains
mK mixtures. Applying these models directly in the frequency domain is
computationally intractable. A variational approximation is derived for IFA
(Attias, 1999) to handle a large number of sources. Modeling each frequency
bin by a GMM does not capture the interfrequency bin dependencies, and
permutation correction is necessary prior to the source reconstruction.

Our IVA model has the advantages of both previous models. When a
GMM is used for the joint PDF in the frequency domain, the interfrequency
dependency is preserved, and permutation is prevented. The GMM
models the joint PDF for a small number of mixtures and thus avoids the
computational intractability of IFA. In contrast to multivariate Laplacian
models, the GMM source prior can adapt to each source and separate
different types of signals, such as speech and music. Further, the sensor
noise can be easily handled, and the IVA can suppress noise and enhance
source quality together with source separation.

3 Independent Vector Analysis for the Noiseless
Case: Batch Algorithm

When the sensor noise is absent, the mixing process is given by equation 2.3:

Ykt = AkXkt. (3.1)
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The parameters θ = {Ak, νks j , p(s j )} are estimated by maximum likelihood
using the EM algorithm.

3.1 Prewhitening and Unitary Mixing and Unmixing Matrices. The
scaling of Xkt and Ak in equation 3.1 cannot be uniquely determined by
observations Ykt . Thus we can prewhiten the observations,

Qk =
T∑

t=0

YktY
†
kt (3.2)

Ykt ← Q
− 1

2
k Ykt, (3.3)

where † denotes the Hermitian (complex conjugate transpose). The whiten-
ing process removes the second-order correlation, and Yk has an identity
covariance matrix, which facilitates the separation.

To be consistent with this whitening processes, we assume the priors are
also white: E{|Xk |2} = 1. The speech priors capture the high-order statistics
of the sources, which enables IVA to achieve source separation.

It is more convenient to work with the demixing matrix defined as
Wk = A−1

k . Because of the prewhitening process, both mixing matrix Ak and
demixing matrix Wk are unitary: I = E{YktY

†
kt} = E{AkXktX

†
ktA

†
k} = AkA†

k .
The inverse of unitary matrix is also unitary.

We consider two sources and two microphones, and the 2 × 2 unitary
matrix Wk has the Cayley-Klein parameterization

Wk =
(

ak bk

−b∗
k a∗

k

)
s.t. aka∗

k + bkb∗
k = 1. (3.4)

3.2 The Expectation-Maximization Algorithm. The log-likelihood
function is

L(θ ) =
T∑

t=1

log p(Y1t, . . . , YK t)

=
T∑

t=1

log

(∑
st

K∏
k=1

p(Ykt|st)p(st)

)
, (3.5)

where θ = {Wk, νks j , p(s j )} consists of the model parameters, st = {s1, s2} is
the collective mixture index of the GMMs for source priors, Y is the FFT
coefficients of the mixed signal, and p(Y1t, . . . , YK t) is the PDF of the mixed
signal, which is a GMM resulting from the GMM source priors.

The model parameters θ = {Wk, νks j , p(s j )} are estimated by maximizing
the log-likelihood function L(θ ), which can be done efficiently using an
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EM algorithm. One appealing property of the EM algorithm is that the
cost function F always increases. This property can be used to monitor
convergence.

The detailed derivation of the EM algorithm is given in appendix A.

3.3 Postprocessing for Spectral Compensation. Because the estimated
signal X̂kt = WkŶkt has a flat spectrum inherited from the whitening pro-
cesses, it is not appropriate for signal reconstruction, and the signal spec-
trum needs scaling corrections.

Let Xo
kt denote the original sources without whitening and Ao

k denote
the real mixing matrix. The whitened mixed signal satisfies both Ykt =
Q−1/2

k Ao
kXo

kt and Ykt = AkX̂kt . Thus, X̂kt = DkXo
kt , where Dk = A−1

k Q−1/2
k Ao

k .
Recall that the components of X̂kt and Xo

kt are independent; X̂kt must be the
scaled version of Xo

kt because the IVA prevents the permutations, that is, the
matrix Dk is diagonal. Thus,

diag(Ao
k)Xo

kt = diag(Q1/2
k AkDk)Xo

kt = diag(Q1/2
k Ak)X̂kt, (3.6)

where “diag” takes the diagonal elements of a matrix. This commutes with
the diagonal matrix Dk . We term the matrix diag(Q1/2

k Ak) the spectrum
compensation operator, which compensates the estimated spectrum X̂kt ,

X̃kt = diag
(

Q1/2
k W−1

k

)
X̂kt. (3.7)

Note that the separated signals are filtered by diag(Ao
k) and could suffer

from reverberations. The estimated signals can be considered the recorded
version of the original sources. After applying the inverse FFT to X̃kt , the
time domain signals can be constructed by overlap adding, if some window
is applied.

4 Independent Vector Analysis for the Noiseless Case:
Online Algorithm

Under the dynamic environment, the mixing process in equation 2.3 will
be time dependent:

Ykt = Ak(t)Xkt. (4.1)

At time t, the model parameters are denoted by θ = {Akt(t), νks j , p(s j )},
which are estimated sequentially by maximum likelihood using the EM
algorithm.
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4.1 Prewhitening and Unitary Mixing and Unmixing Matrices. The
whitening matrices Qk(t̄) are computed sequentially,

Qk(t̄) = (1 − λ)
t̄∑

t=0

λt̄−tYktY
†
kt ≈ λQk(t̄ − 1) + (1 − λ)Ykt̄Y

†
kt̄ (4.2)

Ykt ← Qk(t̄)−
1
2 Ykt, (4.3)

where λ is a parameter close to 1 for the online learning rate, which we
explain later. The Qk(t̄) is updated when the new sample Ykt̄ is available.

As explained in the previous section, after whitening, the separation
matrices are unitary and described by the Cayley-Klein parameterization

Wk(t̄) =
(

akt̄ bkt̄

−b∗
kt̄ a∗

kt̄

)
s.t. akt̄a∗

kt̄ + bkt̄b∗
kt̄ = 1. (4.4)

4.2 The Expectation-Maximization Algorithm. In contrast to the batch
algorithm, we consider a weighted log-likelihood function:

L(θ ) =
T∑

t=1

λT−t log p(Y1t, . . . , YK t)

=
T∑

t=1

λT−t log

(∑
st

K∏
k=1

p(Ykt|st)p(st)

)
. (4.5)

For 0 ≤ λ ≤ 1, the past samples are weighted less, and the recent samples
are weighted more. The regular likelihood is obtained when λ = 1.

The model parameters θ are estimated by maximizing the weighted log-
likelihood function L(θ ), using an EM algorithm. The variables in the E-step
and M-step are updated only by the most current sample, using the proper
weights corresponding to λ. This sequential updates enable the separation
to adapt to the dynamic environment and the efficient online algorithm to
work in real time.

The detailed derivation of the EM algorithm is given in appendix B.

4.3 Postprocessing for Spectral Compensation. Similar to the batch
algorithm, the estimated signal needs spectral compensation, which can be
done as

X̃kt̄ = diag
(
Qk(t̄)1/2W−1

k (t̄)
)

X̂kt̄. (4.6)

After the inverse FFT is applied to X̃kt , the time domain signals can be
constructed by overlap adding if some window is applied.
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5 Independent Vector Analysis for the Noisy Case

When the sensor noise Nkt exists, the mixing process is given in equation 2.4:

Ykt = AkXkt + Nkt. (5.1)

The parameters θ = {Ak, νks j , p(s j ), γk} are estimated by maximum likeli-
hood using the EM algorithm. If the priors for some sources are pretrained,
their corresponding parameters {νks j , p(s j )} are fixed.

5.1 Mixing and Unmixing Matrices Are Not Unitary. The mixing ma-
trices Ak are not unitary because of noise. The channel noise was assumed
to be uncorrelated, but the whitening process causes the noise to become
correlated, which is difficult to model and learn. For noisy IVA, the mixed
signals are not prewhitened, and the mixing and unmixing matrices are not
assumed to be unitary. Empirically initializing Ak to be the whitening ma-
trix was suboptimal. Because the singular valuation decomposition (SVD)
using Matlab gave the eigenvalues in decreasing order, the initialization
with SVD would assign the frequency components with larger variances to
source 1 and those with smaller variances to source 2, leading to an initial
permutation bias. Thus we simply initialized Ak to be the identity matrix.

5.2 The Expectation-Maximization Algorithm. Again we consider the
log-likelihood function as the cost

L(θ ) =
T∑

t=1

log p(Y1t, . . . , YK t)

=
∑

t

log

⎛
⎝ ∑

st=(s1t ,s2t )

K∏
k=1

∫
p(Ykt, Xkt|st)p(st)dXkt

⎞
⎠ . (5.2)

An EM algorithm that learns the parameters by maximizing the cost L(θ )
is presented in appendix C.

5.3 Signal Estimation and Spectral Compensation. Unlike the noise-
less case, the signal estimation is nonlinear. The MMSE estimator is

X̂kt =
∑

st

q (st)μktst , (5.3)

which is the average of the means μktst weighted by the posterior state
probability.
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Because the estimated signal X̂kt had a flat spectrum and was not appro-
priate for signal reconstruction, it needed scaling correction. Let Xo

kt denote
the original sources without whitening and Ao

kt denote the real mixing
matrix. Under the small noise assumption, the mixed signal satisfies both
Ykt = Ao

ktX
o
kt and Ykt = AktX̂kt . Thus, X̂kt = DktXo

kt , where Dkt = A−1
kt Ao

kt . Re-
call that the components of X̂kt and Xo

kt were independent, so X̂kt must be
the scaled version of Xo

kt because the IVA prevents permutations, that is, the
matrix Dkt has to be diagonal. Thus,

diag(Ao
kt)X

o
kt = diag(AktDkt)Xo

kt = diag(Akt)X̂kt, (5.4)

where “diag” takes the diagonal elements of a matrix that commutes with
the diagonal matrix Dkt . We term the matrix diag(Akt) the spectrum com-
pensation operator, which compensates the estimated spectrum X̂kt :

X̃kt = diag (Akt) X̂kt. (5.5)

Note the separated signals are filtered by diag(Ao
kt) and could suffer from

reverberations. The estimated signals can be considered as the recorded
version of the original sources. After the inverse FFT is applied on X̃kt , time
domain signals can be constructed by overlap adding if some window is
applied.

5.4 On the Convergence and the Online Algorithm. The mixing
process reduces to a noiseless case in the limit of zero noise. Contrary
to intuition, the EM algorithm for estimating the mixing matrices will
not reduce to the noiseless case. The convergence is slow when the noise
level is low because the update rule for Ak depends on the precision of
noise. Petersen, Winther, and Hansen (2005) have shown that the Taylor
expansion of the learning rule is

Ak ← Ak + 1
γk

Ãk + O
(

1
γ 2

k

)
. (5.6)

Thus the learning rate is zero when the noise goes to zero—γk = ∞;
essentially, Ak will not be updated. For this reason, the EM algorithm for
noiseless IVA is derived in section 4.

In principle, we can derive an online algorithm for the noisy case in
a manner similar to the noiseless case. All the variables needed for the
EM algorithm can be computed recursively. Thus, the parameters of the
source priors and the mixing matrices can be updated online. However,
an online algorithm for the noisy case is difficult because the speed of
convergence depends on the precision of noise as well as the learning rate
λ we used in section 4.
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6 Experimental Results for Source Separation with IVA

We demonstrate the performance of the proposed algorithm by using it
to separate speech from music. Music and speech have different statistical
properties, which pose difficulties for IVA using identical source priors.

6.1 Data Set Description. The music signal is a disco with a singer’s
voice. It is about 4.5 minutes long and sampled as 8k Hz. The speech signal
is a male voice downloaded from the University of Florida audio news. It
is about 7.5 minutes long and sampled at 8k Hz. These two sources were
mixed together, and the task was to separate them. In the noisy IVA case, a
gaussian noise at 10 dB is added to the mixtures. The goal was to suppress
the noise as well as separate the signals.

Due to the flexibility of our model, it cannot learn the separation matrices
and source priors from random initialization. Thus, we used the first 2 min-
utes of signals to train the GMM as an initialization, which was done using
the standard EM algorithm (Bishop, 1995). First, a Hanning window of 1024
samples with a 50% overlap was applied to the time domain signals. Then
FFT was performed on each frame. Due to the symmetry of the FFT, only the
first 512 components are kept; the rest provide no additional information.
The next 30 seconds of the recordings were used to evaluate the algorithms.

The 30-second-long mixed signals were obtained by simulating impulse
responses of a rectangular room based on the image model technique (Allen
& Berkley, 1979; Stephens & Bate, 1966; Gardner, 1992). The geometry of the
room is shown in Figure 2. The reverberation time was 100 milliseconds.
Similarly, a 1024-point Hanning window with 50% overlap was applied,
and the FFT was used on each frame to extract the frequency components.
The mixed signals in the frequency domain were processed by the proposed
algorithms, as well as the benchmark algorithms.

6.2 Benchmark: Independent Vector Analysis with Laplacian Prior.
The independent vector analysis was originally proposed in Kim et al.
(2007), where the joint distribution of the frequency bins was assumed to
be a multivariate Laplacian:

p(Xj1, . . . , Xj K ) ∝ e−
√

|Xj1|2+···+|Xj K |2 . (6.1)

This IVA models assumed no noise. As a result, the unmixing matrix
Wk could be assumed to be unitary, because the mixed signals were
prewhitened and estimated by maximum likelihood, defined as

L=
∑

t

log p(X11t, . . . , X1K t) + log p(X21t, . . . , X2K t)

= −
∑

t

√∑
k

|X1kt|2 −
∑

t

√∑
k

|X2kt|2 + c, (6.2)

where c is a constant and Xkt = (X1kt; X2kt) is computed as Xkt = WkYkt .
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Figure 2: The size of the room is 7 m × 5 m × 2.75 m. The distance between
two microphones is 6 cm. The sources are 1.5 m away from the microphones.
The heights of all sources and microphones are 1.5 m. The letters (A–G) indicate
the position of sources.

Optimizing L over Wk was done using gradient ascent,

�Wk = η
∂L
Wk

(6.3)

= η
∑

t

ϕktY
†
kt, (6.4)

where ϕkt = ( X1kt√∑
k |X1kt |2

, X2kt√∑
k |X2kt |2

)† is the derivative of the logarithm of the

source prior. The natural gradient is obtained by multiplying the right-hand
side by W†

kWk . The update rules become

�Wk = η
∑

t

ϕktX
†
ktWk (6.5)

Wk ←
(

WkW†
k

)− 1
2

Wk, (6.6)

where η is the learning rate, and in all experiments we used η = 5. Equa-
tion 6.6 guarantees that Wk is unitary.

Because the mixed signals are prewhitened, the scaling of the spectrum
needs correction, as done in section 3.3.
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Table 1: Signal-to-Interference Ratio for Noiseless IVA for Various Source
Locations.

Source Location D,A D,B D,C D,E D,F D,G

IVA-Lap 11.5,18.9 11.3,13.7 11.1,12.7 10.7,15.0 11.7,18.9 12.4,19.3
IVA-GMM1 17.9,20.6 17.5,13.8 16.4,12.9 16.8,17.6 19.0,19.9 20.3,20.4
IVA-GMM2 19.7,20.7 15.1,15.7 14.0,14.0 16.8,18.6 19.6,20.2 21.4,20.8

Notes: IVA-GMM the proposed IVA using GMM as source prior. IVA-Lap: benchmark
with Laplacian source prior. IVA-GMM1 updates sources, while IVA-GMM2 with source
prior fixed. The first number in each cell is the SIR of the speech, and the second number
is the SIR of the music.

6.3 Signal-to-Interference Ratio. The signal-to-interference ratio (SIR)
for source j is defined as

SI Rj = 10 log

(∑
tk |[ŴktXo

kt] j j |2∑
tk |[ŴktXo

kt]l j |2

)
(6.7)

Ŵkt = diag
(

Q
1
2 Ŵkt

)
ŴktQ

− 1
2

kt Ao
kt, (6.8)

where Xo
kt is the original source. The overall impulse response Ŵkt consists

of the real mixing matrix, Ao
kt , obtained by performing FFT on the time

domain impulse response hi j [t], the whitening matrix, Q
− 1

2
kt , the separation

matrix, Ŵkt , estimated by the EM algorithm, and the spectrum compen-
sation, diag(Q

1
2 Ŵkt). The numerator in equation 6.7 takes the power of

the estimated signal j , which is on the diagonal. The denominator in
equation 6.7 computes the power of the interference, which is on the
off-diagonal, l �= j . Note that the permutation is prevented by IVA, and its
correction is not needed.

6.4 Results for Noiseless IVA. The noiseless IVA optimizes the like-
lihood using the EM algorithm (see Table 1). It is guaranteed to increase
the cost function, which can be used to monitor convergence. The mixed
signal is whitened, and the unmixing matrices are initialized to be iden-
tity. The number of mixture for the GMM prior was 15. The GMM with 15
states was sufficient to model the joint distribution of FFT coefficients and
captured their dependency. The IVA ran 12 EM iterations to learn the sepa-
ration matrix with the GMM fixed. Then all the parameters were estimated
from the mixtures. The convergence was very fast, taking fewer than 50
iterations, at about 1 second for each iteration. In contrast, the IVA with a
Laplacian prior took around 300 iterations to converge. The speech source
was placed at 30 degrees, and the music was placed at several positions.
The proposed IVA-GMM improved the SIR of the speech, compared to the
IVA with a Laplacian prior, IVA-Lap. Because the disco music is a mixture
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Figure 3: The speech is fixed at position A, and the music moves from B1 to B2

and back to B3 at speed of 1 degree per second.

of many instruments and is a more gaussian signal due to the central limit
theorem, the Laplacian distribution cannot model the music accurately. As
a result, the music signal leaks into the speech channel and degrades the
SIR of speech. The proposed IVA use a GMM to model music, which is more
accurate than Laplacian. Thus, it prevented music from leaking into speech
and improved the separation by 5 to 8 dB SIR. However, the improvement
of the music is not significant because both properly model the speech and
prevent it from leaking into music.

6.5 Results for Online Noiseless IVA. We applied the online IVA algo-
rithm to separate nonstationary mixtures. The speech was fixed at location
−50 degrees. The musical source was initially located at −40 degrees and
moved to 50 degrees at a constant speed of 1 degree per second and then
moved backward at the same speed to 20 degrees. Figure 3 shows the
trajectory of the source: B1 → B2 → B3.

We set the weight λ = 0.95 in our experiment, which corresponds
roughly to a 5% change in the statistics for each sample. A λ that is too
small overfits the recent samples, and a value that is too large slows the
adaption. The choice of λ = 0.95 provided good adaption as well as reliable
source separation. We trained a GMM with 15 states using the first 2 min-
utes of original signals, which was used to initialize the source priors of
the online algorithm. The unmixing matrices were initialized to be identity.
The number of EM iterations for the online algorithm is set to 1. Running
more than one iteration was ineffective because the state probability com-
puted in the E-step changes very little when the parameters are changed
by one sample. The output SIR for speech and music is shown in Figures 4
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Figure 4: Output SIR for speech separated by online IVA algorithm. The speech
is fixed at −50 degrees, and music moves from B1 to B2 and back to B3 as
indicated in Figure 3 at a speed of 1 degree per second.

and 5, respectively. The beginning period has low SIR values. The reason
is due to the adaptation processes. The statistics for the beginning period
were not estimated accurately, and the separation performance was low for
the first 10 seconds. The SIR improved as more samples were available and
the sources were separated after 10 seconds. The SIRs for both speech and
music were computed locally using the unmixing matrix for each frame
and 5 seconds of original signals. The silent period of speech had very low
energy, which decreased the SIR. The drops of the SIR in Figure 4 corre-
sponded to the silences in the speech singles. The output SIR for the disco
music was more consistent than that of speech. However, there was a drop
of the SIR for both speech and music at around 80 seconds, when the singer’s
voice reached a climax in disco music and confused the IVA with the hu-
man speech; SIRs for both music and speech decreased. At the end, 110
seconds, the music faded out, the SIR of speech increased and that of music
decreased dramatically. The improved SIRs demonstrated that the online
IVA algorithm can track the movement of the source and separate them.

6.6 Results for Noisy IVA. For the noisy case, the signals were mixed
using the image method as in the noiseless case, and 10 dB white noise was
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Figure 5: Output SIR for music separated by online IVA algorithm. The speech
is fixed at −50 degrees, and music moves from B1 to B2 and back to B3 as
indicated in Figure 3 at a speed of 1 degree per second.

Table 2: Signal-to-Interference Ratio for Noisy IVA, Various Source Locations.

Source Location D,A D,B D,C D,E D,F D,G

IVA-GMM2 20.8,17.9 11.7,11.7 8.4,8.5 13.5,9.9 19.8,17.0 16.0,19.5

Notes: The source priors were estimated. The first number in each cell is the SIR of the
speech, and the second number is the SIR of the music.

added to the mixed signals. The GMM had 15 states and was initialized
by training on the first 2 minutes of the signals, with 30 seconds used for
testing. The EM algorithm underwent 250 iterations, each lasting about 2
seconds. The convergence rate was slower than in the noiseless case because
of the low noise. The SIRs, shown in Table 2, were close to those of the noise-
less case for both speech and music, which demonstrates the effectiveness
of the separation. The noise was effectively reduced, and the separated sig-
nals sounded noise free. Compared to the noiseless case, the separated
signals contained no interference because the denoising process removed
the interference as well as the noise. However, they had more noticeable
reverberation. The reason is that the unmixing matrices were not assumed
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to be unitary. The lack of regularization of the unmixing matrices made
the algorithm more prone to local optima. Note that the source estimation
of the IVA-GMM was nonlinear, since the state probability also depended
on the observations. For nonlinear estimation, SIR may not provide a fair
comparison. The spectrum compensation is not exact because of the noise,
and as a result, the SIRs decreased a little compared to the noiseless case.

7 Conclusion

A novel probabilistic framework for independent vector analysis (IVA) was
explored that supported EM algorithms for the noiseless case, the noisy
case, and the online learning. Each source was modeled by a different
GMM, which allowed different types of signals to be separated. For the
noiseless case, the derived EM algorithm was rigorous, converged rapidly,
and effectively separated speech and music. A general weighted likelihood
cost function was used to derive an online learning algorithm for the moving
sources. The parameters were updated sequentially using only the most
recent sample. This adaptation process allowed the source to be tracked
and separated online, which is necessary in nonstationary environments.
Finally, a noisy IVA algorithm was developed that could both separate the
signals and reduce the noise. Speech and music were separated based on
improved SIR under the ideal conditions used in the tests. This model can
also be applied to the source extraction problem. For example, to extract
speech, a GMM prior can be pretrained for the speech signal, and another
GMM can be used to model the interfering sources.

The formalism introduced here is quite general, and source priors other
than GMM could also be used, such as the student-t distribution. However,
the parameters of these distributions would have to be estimated with
alternative optimization approaches rather than the efficient EM algorithm.

Appendix A: The EM Algorithm for Noiseless IVA:
Batch Algorithm

Rewrite the likelihood function in equation 3.5 as

L(θ ) =
T∑

t=1

log p(Y1t, . . . , YK t)

=
T∑

t=1

log

⎛
⎝∑

st

K∏
k=1

p(Ykt|st)p(st)

⎞
⎠ ,

where θ = {Ak, νks j , p(s j )} consists of the model parameters, st = {s1, s2} is
the collective mixture index of the GMMs for source priors, Y is the FFT
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coefficients of the mixed signal, and p(Y1t, . . . , YK t) is the PDF of the mixed
signal, which is a GMM resulting from the GMM source priors. The lower
bound of L(θ ) is

L(θ ) ≥
∑
tst

q (st) log
∏K

k=1 p(Ykt|st)p(st)
q (st)

=F(q , θ ) (A.1)

for distribution q (st) due to Jensen’s inequality. Note that because of the
absence of noise, Xkt is determined by Ykt and is not a hidden variable. We
maximized L(θ ) using the EM algorithm.

The EM algorithm iteratively maximizes F(q , θ ) over q (st) (E-step) and
over θ (M-step) until convergence.

A.1 Expectation Step. For fixed θ , the q (st) that maximizes F(q , θ )
satisfies

q (st) =
∏K

k=1 p(Ykt|st)p(st)
p(Y1t, . . . , YK t)

. (A.2)

Using Ykt = WkXkt , we obtain

p(Ykt|st) = p(Xkt = WkYkt|st) = N (Ykt|0,�kst ). (A.3)

The precision matrix �kst is given by

�kst = W†
k�kst Wk; �kst =

(
νks1 0
0 νks2

)
. (A.4)

Its determinant is det(�kst ) = νks1νks2 , because Wk is unitary.
We define the function f (st) as

f (st) =
∑

k

log p(Ykt|st) + log p(st). (A.5)

When equation A.2 is used, q (st) ∝ e f (st )

Zt =
∑

st

e f (st ) (A.6)

q (st) = 1
Zt

e f (st ). (A.7)
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A.2 Maximization Step. The parameters θ was estimated by maximiz-
ing the cost function F .

First, we consider the maximization of F over Wk under a unitary con-
straint. To preserve the unitarity of Wk , using the Cayley-Klein parameter-
ization in equation 3.4, rewrite the precision as

�kst =
(

νks1 − νks2 0

0 0

)
+

(
νks2 0

0 νks2

)
, (A.8)

and introduce the Lagrangian multiplier βk . After some manipulation and
ignoring the constant terms in equation A.1, the Wk maximize

−
∑
tkst

λT−tq (st)

{
(νks1 − νks2 )Y†

ktW
†
k

(
1 0

0 0

)
WkYkt

}

+βk(aka∗
k + bkb∗

k − 1)

= −
∑
tkst

λT−tq (st)(νks1 − νks2 )|akY1kt + bkY2kt|2 + βk(aka∗
k + bkb∗

k − 1).

(A.9)

Because this is quadratic in ak and bk , an analytical solution exists. When
the derivatives with respect to ak and bk are set to zero, we have

MkT

(
a∗

k

b∗
k

)
= βk

(
a∗

k

b∗
k ,

)
(A.10)

where MkT is defined as

MkT =
∑
tst

q (st)(νks1 − νks2 )YktY
†
kt. (A.11)

The vector (ak, bk)† is the eigenvector of MkT with a smaller eigenvalue. This
can be shown as follows.

We use equation A.11 to compute the value of the objective function,
equation A.9;

−Tr

⎧⎨
⎩
∑
tkst

q (st)(νks1 − νks2 )YktY
†
ktW

†
k

(
1 0

0 0

)
Wk

⎫⎬
⎭ (A.12)

= −Tr
{

MkT

(
a∗

k
b∗

k

)
(ak bk)

}
= −βk . (A.13)

Thus, the eigenvector associated with the smaller eigenvalue gives the
higher value of the cost function. Thus, (ak, bk)† is the eigenvector of MkT

with the smaller eigenvalue.
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The eigenvalue problem in equation A.10 can be solved analytically for
the 2 × 2 case. Write MkT

MkT =
(

M11 M12

M21 M22

)
, (A.14)

where M11, M22 are real and M21 = M∗
12, because MkT is Hermitian.

Ignore the subscript k for simplicity. Its eigenvalues are M11+M22
2 ±√

(M11−M22)2

4 + |M12|2, which are real. The smaller one is

βk = M11 + M22

2
−

√
(M11 − M22)2

4
+ |M12|2, (A.15)

and the corresponding eigenvector is

(
a∗

k

b∗
k

)
= 1√

1 + ( βk−M11
M12

)2

(
1

βk−M11
M12

)
. (A.16)

This analytical solution avoids complicated matrix calculations and greatly
improves the efficiency.

MaximizingF(q , θ ) over {νks j , p(s j )} is straightforward. For the precision
νks j , we have

1
νks j =r

=

[∑
t,st

q (s jt = r )WkYktY
†
ktW

†
k

]
j j∑

t,st
q (s jt = r )

, (A.17)

where [·] j j denotes the ( j, j) element of the matrix. The state probability is

p(s j = r ) =
∑T

t=1 q (s jt = r )
T

. (A.18)

The cost function F is easily accessible as a by-product of the E-step.
Using equations A.5 and A.6, we have Zt = p(Y1t, . . . , YK t) and

F(q , θ ) =
∑

t

log p(Y1t, . . . , YK t) =
∑

t

log(Zt), (A.19)

One appealing property of the EM algorithm is that the cost function F
always increases. This property can be used to monitor convergence. The
above E-step and M-step iterate until some convergent criterion is satisfied.
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Appendix B: The EM Algorithm for Noiseless IVA:
Online Algorithm

The weighted log-likelihood function in equation 4.5 is

L(θ ) =
T∑

t=1

λT−t log p(Y1t, . . . , YK t)

=
T∑

t=1

λT−t log

(∑
st

K∏
k=1

p(Ykt|st)p(st)

)

≥
∑
tst

λT−tq (st) log
∏K

k=1 p(Ykt|st)p(st)
q (st)

=F(q , θ ) (B.1)

for distribution q (st) due to Jensen’s inequality. We maximized L(θ ) using
the EM algorithm,

B.1 Expectation Step. For fixed θ , the q (st̄) maximizes F(q , θ ). This step
is same as the batch algorithm, except that the parameters at frame t̄ − 1 are
used:

q (st̄) =
∏K

k=1 p(Ykt̄|st̄)p(st̄)
p(Y1t̄, . . . , YK t̄)

. (B.2)

Using Ykt̄ = Wk(t̄ − 1)Xkt̄ , we obtain

p(Ykt̄|st̄) = p(Xkt̄ = Wk(t̄ − 1)Ykt̄|st̄) = N (Ykt̄|0,�kst̄ ), (B.3)

where �kst̄ is given by

�kst̄ = W†
k(t̄ − 1)�kst̄ Wk(t̄ − 1); �kst̄ =

(
νks1 0

0 νks2

)
. (B.4)

Its determinant is det(�kst̄ ) = νks1νks2 , because Wk(t̄ − 1) is unitary.
We define the function f (st̄) as

f (st̄) =
∑

k

log p(Ykt̄|st̄) + log p(st̄). (B.5)
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When equation B.2 is used, q (st̄) ∝ e f (st̄ ),

Zt̄ =
∑

st̄

e f (st̄ ) (B.6)

q (st̄) = 1
Zt̄

e f (st̄ ). (B.7)

In contrast to the batch algorithm, where the mixture probabilities for all
frames are updated, this online algorithm computes the mixture probability
for only the most recent frame t̄ using the model parameters at frame t̄ − 1.

B.2 Maximization Step. We now derive an M-step that updates the
parameters sequentially. As in the batch algorithm, the (ak(t), bk(t))† is the
eigenvector of Mk(t̄) with the smaller eigenvalue,

Mk(t̄)

(
a∗

k (t̄)

b∗
k (t̄)

)
= βk

(
a∗

k (t̄)

b∗
k (t̄)

)
, (B.8)

where Mk(t̄) is defined as

Mk(t̄) =
t̄∑

tst

λt̄−tq (st)(νks1 − νks2 )YktY
†
kt (B.9)

= λMk(t̄ − 1) +
∑

st̄

q (st̄)(νks1 − νks2 )Ykt̄Y
†
kt̄. (B.10)

This matrix contains all the information for computing the separation ma-
trices. It is updated by recent samples only. The eigenvalue and eigenvector
are computed analytically using the method in equations A.15 and A.16.

To derive the update rules for {νks j , p(s j )}, we define the effective number
of samples belonging to state r , up to time t̄, for source j :

m jr (t̄) =
t̄∑

t=1

λt̄−tq (s jt = r ) = λm jr (t̄ − 1) + q (s j t̄ = r ). (B.11)

Then

1
νks j =r (t̄)

=

[∑
t,st

λt̄−tq (s jt = r )Wk(t̄)YktY
†
ktWk(t̄)†

]
j j∑

t,st
λt̄−tq (s jt = r )

(B.12)

= 1
νks j =r (t̄ − 1)

m jr (t̄ − 1)
m jr (t̄)

+ q (s j t̄ = r )
m jr (t̄)
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×
[
Wk(t̄)YktY

†
ktWk(t̄)†

]
j j

(B.13)

p(s j = r ) =
∑t̄

t=1 λt̄−tq (s jt = r )
T

= m jr (t̄)∑
r m jr (t̄)

. (B.14)

For the online algorithm, the variables Mk(t̄) and m jr (t̄) are computed
by averaging over their previous values and the information from the new
sample. The λ reflects how much weight is on the past values.

Appendix C: The EM Algorithm for Noisy IVA

The log-likelihood function in equation 5.2 is

L(θ ) =
T∑

t=1

log p(Y1t, . . . , YK t)

=
∑

t

log

⎛
⎝ ∑

st=(s1t ,s2t )

K∏
k=1

∫
p(Ykt, Xkt|st)p(st)dXkt

⎞
⎠

≥
∑
tst

∫ K∏
k=1

q (Xkt|st)q (st) × log
∏K

k=1 p(Ykt, Xkt|st)p(st)∏K
k=1 q (Xkt|st)q (st)

dXkt

= F(q , θ ). (C.1)

The inequality is due to Jensen’s inequality and is valid for any PDF
q (Xkt, st). Equality F = L occurs q equals to the posterior PDF q (Xkt, st) =
p(Xkt, st|Y1t, . . . , YK t).

C.1 Expectation Step. For fixed θ , the q (Xkt|st) that maximizes F(q , θ )
satisfies

q (Xkt|st) = p(Xkt|st, Ykt) = p(Ykt|Xkt)p(Xkt|st)
p(Ykt|st)

, (C.2)

which is a gaussian PDF given by

q (Xkt|st) =N (Xkt|μktst ,�kst ) (C.3)

μktst = γk�
−1
kst

A†
kYkt (C.4)

�kst = γkA†
kAk +

(
νks1t 0

0 νks2t

)
. (C.5)
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To compute the optimal q (st), define the function f (st),

f (st) =
∑

k

log p(Ykt|st) + log p(st)

=
∑

k

(
log

∣∣∣∣�kst

π

∣∣∣∣ − Y†
kt�kst Ykt

)
+ log p(st), (C.6)

where p(Ykt|st) = ∫
p(Ykt|Xkt)p(Xkt|st)dXkt = N (Ykt|0,�kst ) and the preci-

sion �kst is

�−1
kst

= Ak

( 1
νks1

0

0 1
νks2

)
A†

k + 1
γk

(
1 0

0 1

)
. (C.7)

Because q (st) ∝ e f (st), we have

q (st) = 1
Zt

e f (st ) (C.8)

Zt =
∑

st

e f (st ). (C.9)

C.2 Maximization Step. The M-step maximizes the costF over θ , which
is achieved by setting the derivatives of F to zero.

Setting the derivative of F(q , θ ) with respect to Ak to zero, we obtain

AkUk = Vk, (C.10)

where

Uk =
T∑

t=0

∑
st

Eq {XktX
†
kt} (C.11)

Vk =
T∑

t=0

∑
st

Eq {YktX
†
kt}. (C.12)

The expectations are given by

Eq {YktX
†
kt} =

∑
st

q (st)Yktμ
†
ktst

(C.13)

=
∑

st

q (st)γkYktY
†
ktAk�

−1
kst

(C.14)
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Eq {XktX
†
kt}=

∑
st

q (st)
(
�−1

kst
+ μktst μ

†
ktst

)
(C.15)

=
∑

st

q (st)
(
�−1

kst
+ γ 2

k �−1
kst

A†
kYktY

†
ktAk�

−1
kst

)
. (C.16)

The bottleneck of the EM algorithm lies in the computation of μktst in the
expectation step, which is avoid by using equation C.4. Fortunately, the
common terms can be computed once, and YktY

†
kt can be computed in

advance.
Similarly, we can obtain the update rules for the parameters of the source

j , {νks j , p(s j )} and the noise precision γk :

1
νks j =r

=

[∑
t,st

δrs jt q (st)(�−1
kst

+ μktst μ
†
ktst

)
]

j j∑
t,st

δrs jt q (st)
(C.17)

p(s j = r ) =
∑

t,st
δrs jt q (st)∑

t,st
q (st)

= 1
T

∑
t

q (s jt = r ) (C.18)

1
γk

=
∑

t Eq {(Ykt − AkXkt)†(Ykt − AkXkt)}
2T

= 1
2T

∑
t

Tr
[
YktY

†
kt − Ak Eq {XktY

†
kt}

− A†
k Eq {YktX

†
kt} + Ak Eq {XktX

†
kt}A†

k

]
, (C.19)

where the δrs jt is the Kronecker delta function: δrs jt = 1 if s jt = r and δrs jk = 0
otherwise. Essentially the state for the source j is fixed to be r . The [·] j j

denotes the ( j, j) element of the matrix. The identity Y†
kYk = Tr[YkY†

k] is
used. The Eq {YktX

†
kt} is given by equation C.13, Eq {XktY

†
kt} = Eq {YktX

†
kt}†,

and Eq {XktX
†
kt} is given by equation C.15.
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