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Abstract 

Methods for obtaining representations of face images based on independent compo- 
nent analysis (ICA) are presented. A global ICA representation is compared to a 
global representation based on principal component analysis (PCA) for recognizing 
faces m o s s  changes in lighting and changes in pose. For each set of face images, a set 
of statistically independent source images was found through an unsupervised learn- 
ing algorithm that maximized the mutual information between the input and the 
output of a nonlinear transformation (Bell & Sejnowski, 1995). These source images 
comprised the kernels for the representation. The independent component, kernels 
gave superior class discriminabiity to the principal component kernels. Recogni- 
tion across changes in pose with the ICA representation was 93%, compared to 87% 
with a PCA representation, and across changes in lighting ICA gave 100% correct 
recognition, compared to 90% with PCA. 

Introduction 

Important advances in face recognition such as "Holons" (Cottrell & Metcalfe, 1991) and 'Eigen- 
facesu (Turk & Pentland 1991) have employed forms of principal component analysis, which addresses 
only second-order moments of the input (Cottrell & Metcalfe, 1991; Turk & Pentland 1991). Inde- 
pendent component analysis (ICA) is a generalization of principal component analysis (PCA), which 
decorrelates the higher-order moments of the input (Comon, 1994). In a task such as face recog- 
nition, much of the important information is contained in the high-order statistics of the images. 
A representational basis in which the high-order statistics are decorrelated may be more powerful 
for face recognition than one in which only the second order statistics are decorrelated, as in PCA 
representations. 

This work examined the statistically independent components of face images in datasets containing 
changes in lighting and changes in pose. We considered the face images to be a linear mixture of an 
unknown set of statistically independent source images. The sources were recovered by a matrix of 
learned filters which produced statistically independent outputs. The independent components were 
found through an unsupervised learning algorithm that maximized the mutual information between 
the input and the output of a nonlinear transformation (Bell & Sejnowski, 1995). 

We developed and compared three methods for obtaining face representations from the independent 
components of the image set: 

1. The independent components were computed from the full set of N images, producing N indepen- 
dent components as output. A subset of components was selected as kernels for the representation 
by ordering the sources by the magnitude of the corresponding weights. 
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2. We next developed a method for separating M < N independent components by performing ICA 
on a subset of. M principal component vectors from the image set. This produced M independent 
components as kernels for the representation. 

3. A third meth.odfonekctinga subset of the independent components as kernels was to seIect the 
components with the highest between-class to within-class variability. This method gave the best 
performance, with 93% and 100% correct recognition across pose and lighting respectively for the 
ICA representation, compared to 86.5% and 96% obtained using the principal component coefficients 
with the highest between-class to within-class variability. 

Image Sets 

Figure 1: Left: Example images from pose set (Beymer, 1994). Right: Example images from lighting 
set (Turk & Pentland, 1991). 

The analysis was performed on two sets of images, a pose set containing 200 images of forty subjects 
at  five poses each, and a lighting set containing images of sixteen subjects under three different 
lighting conditions (Figure 1). Eye positions were automatically detected by a template matching 
algorithm (Beymer, 1994). The faces in the pose set were centered, cropped, and scaled to 60 x 60 
by using the eye positions in the frontal pose in each sequence. The lighting images were cropped 
and scaled using the eye positions in each image. The luminance of the pose set was normalized. 
The luminance of the lighting set was unaltered. The images were converted to 1x3600 vectors by 
concatenating the rows, and the mean of each image was shifted to zero. 

The Independent Components of Face Images 

The images of one h a g  set comprised the rows of a data matrix, X. We considered the face h-ages 
in X to be a linear mixture of an unknown set of statistically independent source images S, whdre A 
is an unknown mixing fnatrix (Figure 2). The sources were recovered by a matrix of learned filters, 
W, which produce statistically independent outputs, U. 
The weight matrix, W, was found through an unsupervised learning algorithm that maximizes 
the mutual information between the input and the output of a nonlinear transformation (Bell & 
Sejnowski, 1995). This algorithm has proven successful for separating randomly mixed auditory sig- 
nals (the cocktail party problem), and has recently been applied to separating EEG signals (Makeig 
et al., 1996), fMH signals (McKeown, in press) and natural scenes (Bell & Sejnowski, in press). 
The pre-whitening filter in the ICA algorithm has the Mexicanhat shape of retina1 ganglion cell 
receptive fields which remove much of the variability due to lighting (Bell & Sejnowski, in press). 

The independent component images contained in the rows of U for the pose dataset are shown in 
Figure 3 and for the lighting dataset in in Figure 4. The principal components (eigenvectors of the 
covariance matrix) of the two data sets are also displayed for comparison. 
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1 A representation from the independent components of the N face 
images 

Performing ICA on the N images in the data set separated N statistically independent source images 
contained in the rows of U. The rows of the matrix W-l contained the linear combination of source 
images in U that comprise each face image in X. 

W X = U  * X = W - l u  

The rows of W-' were chosen as an independent component representation of the face images. An 
ordering for the ICA representation was provided by the magnitude of the weight vector (row of W )  
that extracts each source. The magnitude of the weight vector for optimally projecting the source 
onto the nonlinear transfer function in the ICA algorithm provides a measure of the variance of the 
original source (Tony Bell, personal communication). 

We previously showed (Bartlett & Sejnowski, 1997) that this ICA representation outperformed the 
PCA representation for recognizing faces across changes in pose (Table 1. The PCA representation 
of a face consisted of its component coefficients, and was equivalent to the "Eigenface" representation 
(Turk & Pentland, 1991). A test image was recognized by assigning it the label of the nearest of the 
other 199 images in Euclidean distance. For the PCA representation, best performance of 85% was 
obtained with the 120 principal components corresponding to the highest eigenvalues, and for the 
ICA representation, best performance of 87% was obtained with the 130 independent components 
with the largest magnitude of the corresponding weight vectors. 

Table 1: Mean mutual information between all pairs of 10 independent component kernels, 10 
principal component kernels, and between 10 original graylevel images from the Pose dataset. Face 
recognition performance is across all 200 images. 

i 
Principal component analysis is optimal for finding a reduced representation that minimizes the 
reconstruction error, but the kernels that minimize reconstruction error may not be optimal for 
selecting aspects of the image relevant to classification. The first principal component of the pose 
%age set, for example, appears to be an axis of subject pose and of lighting conditions for the 
khting image set (Figure 5). There is a symmetrical relationship between the face images under 

Percent Correct Recognition 
.83 
.84 
.87 

Graylevel Images 
PCA 
ICA 

Mutual Information 
.89 
.10 
.007 



6 4th Joint Symposium on Neural Computation Proceedings 

Figure 3: Top: Four independent components of the pose image set. Bottom: F i s t  four principal 
components. 

Figure 4: Top: Four independent components of the lighting image set. Bottom: F i s t  four principal 
components. 

the different viewing conditions along which the first component axis is oriented, and the sign of 
the loading indicates the viewing condition. Removing the first principal component from the PCA 
representation imprqved performance of the PCA representation to 86%. Itecognition performance 
with the ICA representation likewise improved by removing this component from the daka in ad- 
vance. The procedGre described below allowed us to remove this component from the data prior to 
performing ICA. 

2 Separating fewer independent sources: ICA of Eigenfaces 

In the procedure described above, the ICA algorithm separated out N independent sources, where N 
is the number of images. For the pose dataset, N = 200. The optimal number of independent sources 
for recognition performance may be smaller than N. In particular, the pose data set contained 40 
subjects + 5 poses = 45 independent parameters and the lighting data set contains 18 subjects + 3 
lighting conditions = 18 independent parameters. 

In the image synthesis model above, the images in X are assumed to be a linear combination of a 
set of unknown statistically independent sources. The model is identical if instead of the original 



4th Joint Symposium on Neural Computation Proceedings 7 

Figure 5: Left: The first principal component of pose data set (top) and of the lighting dataset 
(bottom). Right: Contribution of the first principal component to the reconstruction of one face at 
5 poses (top), and of one face under the three lighting conditions (bottom). 

images, X contains some other linear combination of the images. It is possible to obtain a smaller 
number of sources by using M linear combinations as input to the ICA algorithm, where M < N. 
We chose for these linear combinations a subset of principal component vectors of the data matrix. 

Performing ICA on a set of M principal component vectors produced M independent sources, and 
M corresponding weights. Let U p  denote the Mx3600 matrix of source images obtained from the M 
principal components. To obtain a representation for all N images in X, we seek an NxM coefficient 
matrix B such that 

X = BUp 

We solved for B by utilizing the orthogonality of the source matrix Up and then normalizing the 
rows of U p  such that UUT = I. 

The kernels of our representation were the columns of UF and the coefficients of the representation 
were contained in the rows of B. 

ICA was performed repeatedly on a set of M principal component vectors, where the number of 
components M ranged from 2 to N - 1, and classification performance of the ICA representation was 
compared to the PCA representation using the corresponding M principal component coefficients. 
The first principal component was excluded. Recognition performance using the ICA representation 
was consistently equal or superior to that using the original M principal component vectors as ' 
kernels. ICA more reliably extracted components that were relevant to class assignment. Although 
best performance of the two representations was similar (87.5 and 86.5 across pose for the ICA 
and PCA representations, and 89.6 each across lighting), in the absence of an apriori reason for 
selecting a specific range of principal components, performance of the ICA representation may be 
more reliable. 

3 Selecting components by class discriminability 

Best performance was obtained by selecting the subset of components with the highest ratio of 
between-class to within-class variability, r: 

Where awithin is the sum of the variances within each class and abetween is the variance of the class 
means. 

Independent component analysis was performed on principal component vectors 2 - N, and both 
the ICA and the PCA components were ordered by the magnitude of r, from largest to smallest. 
Figure 6 compares the class discriminability ratios for the independent component coefficients and 
principal component coefficients. The ICA coefficients had consistently greater class discriminability 
than the PCA coefficients. 
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Recognition performance of the two representations was compared repeatedly using the M most 
discriminable components, where the number of components, M, included in the representation 
ranged £rom 2 to N - 1. The ICA representation gave consistently superior recognition performance, 
regardless o f ~ ~ r - o f - c o m p o n e n t s  included. For the ICA representation, best performance 
for recognition across changes in pose and changes in lighting was 93% and 100% respectively. For 
the PCA representation, best performance was 86.5% and 89.6%. (See Figure 7). This is analysis 
of class discriminabiity is related to Fishers Linear Discriminants (FLD), which is a class specific 
linear projection to maximize a ratio similar to r. FLD of a principal component representation has 
been applied to face recognition (Belhumeur et. al. 1996). Our results suggest that FLD of an ICA 
representation may be even more effective. 

Lighting 
0.91 ~ ~ ~ ' " ' ' ' 1  

Component 

Figure 6: Ratios of between-class to within-class variabiity (r) for the PCA and ICA representations. 

Pose 

Figure 7: Recognition performance of PCA and ICA representations using the subset of components 
with the highest between-class to within n-class variabiity ratio. 

Discussion 

Independent component representations of face images were derived, and recognition performance 
moss changes in pose and lighting with the ICA representation was compared to performance with a 
principal component representation. The independent components had greater class discriminabiity 
than principal components for recognizing faces across changes in lighting and changes in pose. The 
ICA representation gave 93% and 100% correct recognition of faces across changes in pose and 
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changes in lighting respectively, compared to 86.5% and 88.6% with a principal component based 
representation. 

The ICA representation of faces presented here is closely related to a method of local feature analysis 
(LFA), in which the kernels are derived from the pixel-wise correlations of the principal components 
vectors of an image ensemble (Penev & Atick, 1996). The LFA derivation contains a transform 
which minimizes the correlations in the output of the kernels. 

In LFA, the kernels are optimally matched to the second order statistics of the input ensemble, 
whereas with the ICA representation, the kernels are optimally matched to the high order statistics 
of the ensemble as well as the second order statistics. Interestingly, both methods have a tendency 
to produce local filters, although this constraint was not built into either algorithm1 

The independent components of an image ensemble provide a set of statistically independent "fea- 
tures" for coding the images. It has been argued that such a factorial code is advantageous for 
encoding complex objects that are characterized by high order combinations of features, since the 
prior probability of any combination of features can be obtained from their individual probabilities 
(Barlow, 1989; Atick, 1992). 

In a task such as face recognition, much of the important information may be contained in the 
high order spatial relationships in the images. A statistically independent basis set may provide a 
more powerful representation for face images than principal component based representations such 
as "Eigenfilces," in which only the second order statistics are decorrelated. - 
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