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Abstract

Independent Component Analysis (ICA) blindly separates mixtures of signals into individual com-
ponents. Here we used ICA to isolate spike trains from individual neurons recorded optically in
the Tritonia diomedea isolated brain. ICA removed several types of artifacts, allowed us to view an
approximation of the membrane potential as opposed to the usual raster diagram, and provided an
automated method for viewing the locations of individual neurons or groups of neurons in the brain.
Action potentials from as many as 132 individual neurons were identified in a single recording. Dur-
ing fictive swimming we found almost twice as many candidate swimming-network neurons as might
be expected from current models, including neurons with previously unrecognized firing patterns.
In addition, novel forms of coordinated population activity appeared in several recordings after the
end of fictive swimming. Thus, ICA provides a powerful way to explore the activity of neuronal
populations, for example during multiple fictive behavior patterns in the same preparation.

Key words: Independent Component Analysis, central pattern generator, rhythmic behavior

1. Introduction

Identifying the network of neurons and synapses associated with swimming in the seaslug Trito-
nia has been the goal of neurophysiological studies for almost four decades. The swimming network
has been explored with intracellular and extracellular recordings in a variety of reduced prepara-
tions, including the isolated brain where swimming neurons can be induced to fire rhythmic bursts
of action potentials that closely resemble those recorded during swimming in semi-intact prepara-
tions [2, 3, 4, 5, 6]. These studies of fictive swimming have identified a few dozen neurons involved
in the Tritonia swimming network.

Optical recording could, in principle, allow us to determine the completeness of these studies
and to find as yet unidentified neurons in the network. For example, Briggman KL et al. [7] recently
used optical recordings from the medicinal leech to identify a neuron involved in the decision-making
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Figure 1: Fictive swimming with photodiode array.
(A) Fictive swimming in the isolated brain. A sequence of ventral and dorsal flexions, clockwise around the inset,
characterize the natural swim behavior. The Tritonia isolated brain preparation contains paired pedal (Pd) and
cerebral (Ce)-pleural (Pl) ganglion (abbreviated as CP). (Right and left are labeled by R and L, respectively.) Cell
somata form the outer shell of the ganglia while axons and dendrites synapse with one another in the interior. Ventral
and dorsal flexion neurons, which activate swimming musculature, are located in the pedal ganglion while swimming
interneurons (schematic, part B) have been found in the cerebral-pleural ganglion. Brief current pulses (I) applied to
a pedal nerve root activated the fictive swimming pattern (see also Fig. 2) while suction electrode recordings from
the other pedal nerve root recorded action potentials from the axons. The dashed line circle shows the approximate
field of view for pedal ganglion recordings.
(B) Schematic of the swimming interneuron network. During swimming, DSI, VSI, C2, and other neurons form a
pattern-generating network that oscillates with a period of about seven seconds. VSI-B and other unidentified neurons
excite the downstream ventral and dorsal flexion neurons (not shown). Getting PA [1] modeled the interactions
between these Tritonia-swimming interneurons.
(C) Photodiode array. After the brain was stained with a voltage-sensitive absorbance dye and placed under a
microscope, a 448-element photodiode detector array recorded changes in light absorbance due to fluctuations in the
membrane voltage of underlying neurons. Raw data is displayed with the shape of the electrode array preserved (each
detector, y-axis proportional to transmitted light, x-axis 45 s total). Some action-potential bursts may be seen even
at this low magnification.
(D) Raw data. A blow-up of four channels marked with a negative image in (C) shows raw data at a higher
magnification. Subsequent analysis determined that these diode channels contain action potentials from three neurons
and also several recording artifacts. Triangular arrows show the temporal location of one artifact.
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process. In the present study we use optical recording together with ICA, a powerful new signal-
processing technique, to estimate the number of neurons in the Tritonia swimming network, to get
a more global view of how these neurons contribute to the swimming behavior, and to observe the
non-swimming activity of swimming-network neurons.

Tritonia swimming consists of up to 20 cycles of ventral and dorsal whole-body flexions (Figure
1A). An initial ventral flexion lifts the slug into prevailing currents, and subsequent dorsal and
ventral flexions tend to keep the animal aloft as it bounces along the ocean floor. One ventral/dorsal
cycle lasts about seven seconds. Flexion musclulature is activated, either directly or indirectly via
a peripheral nerve net [8], by ventral and dorsal flexion neurons (VFN and DFN) in the pedal
ganglion [4, 8, 9, 10]. Tritonia flexion neurons do not synapse with one another directly, perhaps
because they must remain flexible enough to produce behaviors other than swimming [5, 9]. Instead,
VFN and DFN receive excitatory and inhibitory synaptic inputs from a population of swimming
interneurons located in the cerebral-pleural ganglion [6].

The first swimming interneuron discovered, cerebral cell 2 (C2), appears on the dorsal surface
of each cerebral ganglion [5, 11]. Depolarizing a single C2 with an intracellular electrode to fire
action potentials can trigger swimming, and hyperpolarizing both C2 can prevent swimming. The
C2 fire a single burst of action potentials per cycle of swimming (known as fictive swimming in
reduced preparations) as do all other Tritonia swimming interneurons reported so far. Closer to
the input side of the network, the dorsal ramp interneuron (DRI), can also start or prevent the
fictive pattern [12]. Two other groups of interneurons, Ventral and Dorsal Swimming Interneurons
(VSI and DSI), form a pattern-generating network with C2, DRI, and probably other neurons
as well [5, 13] (Fig. 1B). The synaptic connections between these neurons tend to have multiple
components; for example, C2 synapses can have at least four effects on the membrane potential of
a single post-synaptic neuron [14, 15].

2. Results

Recordings were made from both the dorsal and ventral surfaces of the pedal ganglion and the
cerebral-pleural ganglion, in slightly different planes of focus (see Materials and Methods). The
results and the figures will be organized according to the ganglion recorded. This corresponded
approximately to the class of neurons, which tend to be clustered in different parts of the ganglia.

2.1. Pedal Ganglion
In 64 isolated brain preparations, we made 70 recordings from the dorsal (N=60) and ventral

(N=10) surfaces of the pedal ganglion that appeared to contain action potential activity from at
least one neuron. Due to recording artifacts or low signal-to-noise ratio in many preparations, only
13 recordings (10 dorsal and 3 ventral) were analyzed further. These selected recordings are the
best yet obtained from this preparation and provided high quality recordings from a large number
of neurons. In the two dorsal-side recordings with the greatest number of individual neurons, we
found 132 and 111 spike trains. These two recordings also contained the most bursting neurons,
64 (Fig. 2A,C) and 52 respectively. The best ventral-side recording of the pedal ganglion had 31
distinct spike trains including 22 swimming-network neurons (Fig. 2B, Fig. 4).

Figure 2A,C shows selected neurons from our best dorsal-side pedal ganglion recording during
a fictive swimming episode (neurons classified after Hume RI et al, 1982 [10]). Many pedal neurons
fired a burst of action potentials during the nerve stimulus. The swimming pattern began after
termination of the nerve stimulus with a burst in the VFN. VFN and DFN then fired alternating
bursts until the pattern terminated after a burst in the DFN.
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Figure 2: Pedal ganglion efferents.
(A) Dorsal side. Place maps for each neuron were classified and colored according to their corresponding spike trains
and combined to form topographic maps. Type A dorsal flexion neurons (DFN-A) are shown here and elsewhere in
red, type B dorsal flexion neurons (DFN-B) in blue, ventral flexion neurons (VFN) in green, and type III neurons in
purple. VFN and DFN-B clustered on the rostral half of the ganglion.
(B) Ventral side. Place maps reveal the topography of the DFN-A on the ventral side of the ganglion. On both the
dorsal and ventral surfaces, DFN-A clustered on the medial, caudal, and lateral parts of the ganglion.
(C) Dorsal efferent activity. Following a brief electrical stimulus (bar, lower left, here and throughout), which elicits
firing in some neurons, fictive swimming begins with a burst of action potentials in the VFN and ends after a DFN
burst. This activity parallels the swimming behavior, which begins with a ventral flexion and ends after a dorsal
flexion (Fig. 1).
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Figure 3: VFN
The second and third bursts of action potentials from 22 VFN recorded on the dorsal side of the pedal ganglion.
This doubles the estimate for the number of VFN in one pedal ganglion (see Table 1). A range of firing rates during
bursting may be seen, but all VFN had the same phase. Some neurons fired action potentials at a very low frequency
between bursts.

VFN appeared in a total of nine dorsal-side recordings (6.9 ± 7.9), but three preparations
contained only one VFN each. There were 22 (Fig. 2A, locations in dark green, spike trains
in Fig. 3), 16, and 7 VFN in the three best preparations. If the best recording represents the
population, then this approximately doubles the previous estimate of VFN active during fictive
swimming (Table 1).

DFN were split into DFN-B and DFN-A depending whether or not, respectively, they phase
lock to other swimming network neurons [10]. DFN-B appeared in 6 recordings from the dorsal
side of the ganglion, including 12 (Fig. 2A, blue), 6, and 4 DFN-B in the three best recordings.
Hume RI et al [10] found at least 20 DFN-B so their estimate may be more accurate. In future
studies it may be possible to orient the ganglion with the rostral end tilted upward to better record
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Figure 4: DFN-A
Action potential bursts from 22 DFN-A appeared in this ventral-side recording of the pedal ganglion (see Fig. 2B
for topographic map). Burst initiation and termination times were remarkably similar across the population. Several
DFN-A consistently fired doublets (Pd 66, 68, and 71) perhaps due to depolarizing after potentials [16]. Spikes were
usually about the same shape in a single DFN-A, but fluctuations were observed in some neurons (e.g. spike height
in Pd 69, 70, and 74). Note that the burst of firing in these neurons during the stimulus are not part of a swim cycle
(see also Fig. 2)

DFN-B.
All 13 pedal ganglion recordings contained DFN-A. On the dorsal side, an average of about 16

DFN-A appeared in 10 preparations, including 27, 27, and 26 in the three best recordings. On the
ventral side we counted 22 DFN-A in two preparations (one example in Fig. 2B) and 18 in a third.
Neither DFN-B nor VFN appeared on the ventral side of the ganglion in these recordings (but see
below and Fig. 5). Figure 4 shows DFN-A spike trains during the first three and half cycles of
fictive swimming.
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Figure 5: New pedal ganglion neurons.
DFN-A appeared in this recording of the ventral pedal ganglion (recordings 1 and 2) as expected. Neuron 3 also
appears to be a DFN of sorts, but the bursts at the end of fictive swimming were stronger than those at the beginning,
contrary to the prevailing pattern. Neuron 4 fires something like a VFN but did not fire during the first cycle of
fictive swimming. Another new type of pedal neuron may be seen in Figure 8 (Pd 90).

Hume RI et al. [10] found less than 10 DFN on the ventral side of the ganglion and estimated
the total DFN pool to be about 50 including 20 DFN-B. We added DFN-A from dorsal and ventral
recordings to estimate the number of DFN-A in the pedal ganglion because we appeared to be
recording from separate populations in the two cases. Adding the dorsal and ventral sides, we raise
the estimated lower bound for the number of DFN-A to 49 (Table 1). For all other neuron types,
we estimated the size of the population from the single recording with the most neurons of that
type (Table 1).

Two other groups of swimming network neurons with unknown function have been identified
in the pedal ganglion. Type III neurons fire during both the VFN and DFN bursts while Type IV
neurons fire when Type III neurons are silent [4, 10]. Neurons that fired more than one burst of
action potentials per cycle of fictive swimming occurred in only 3 of 13 pedal-ganglion recordings
(6 neurons total). Figure 2 shows a candidate Type III neuron in purple (Pd 62), though no double
burst occurred on the first cycle in this case. In all six cases, one of the two bursts per cycle had
more spikes and a higher firing frequency than the other. In two of the six neurons, no double
bursts occurred after the first cycle of fictive swimming.

We also made a few partial recordings of the pedal ganglion while recording primarily from
the cerebral-pleural ganglion. On both the dorsal (N=3) and ventral (N=3) sides, we found a
different subset of neurons than when we focused on the top surface of the pedal ganglion itself.
On the dorsal side, we found a higher percentage of Type III and IV neurons suggesting that these
populations extend toward the medial surface of the ganglion. On the ventral surface we found
primarily DFN-A, but also observed patterns of activity that do not match any previously reported
(Fig. 5).

2.2. Cerebral-Pleural Ganglion
Sixty-five recordings contained all or part of at least one cerebral-pleural ganglion. Nineteen

had at least one neuron that fired discreet bursts of action potentials during swimming. Of these,
13 (9 dorsal and 4 ventral) were judged suitable for further analysis.
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Figure 6: Left dorsal cerebral-pleural ganglion.
Seven DPN (light blue, CP 4-10) are clustered near the fused border between the cerebral-pleural ganglion. Earlier
studies have described only four DPN in this region of the brain [5]. CP 6 is a C2 candidate. CP 8, 9 are DSI
candidates. Two VPN are shown in light green (CP 1,2). Neither VPN was in the correct position for a candidate
VSI-A. CP 3 (orange) is another interesting bursting neuron.

We classified cerebral-pleural ganglion neurons broadly as dorsal phase neurons (DPN) if they
fired one burst of action potentials per cycle of fictive swimming and their bursts substantially
overlapped with DSI-candidate or DFN bursts. Bursting neurons were classified as ventral phase
(VPN) if their bursts did not substantially overlap with DSI-candidate or DFN bursts. DSI, C2,
and DRI would all be classified as DPN according to this scheme while VSI would be considered a
VPN.
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Figure 7: Right dorsal cerebral-pleural ganglion.
The eight DPN (light blue, CP 14-21) seen in this recording are also clustered in the cerebral ganglion near the
cerebral-pleural border. DSI candidates (CP 16- 20) fired weakly before the nerve stimulus, burst strongly during
the nerve stimulus and fictive pattern, and fired at an elevated rate after fictive swimming terminated. CP 21 is a C2
candidate. Two VPN appeared in the rostral-lateral part of the cerebral ganglion (light green, CP 12, 13), neither
was a VSI-A candidate. Another neuron fired a single burst of action potentials during the first two cycles of the
fictive pattern (purple, CP 11). One VPN (CP 12) and one DFN-A (CP 23) fired bursts of action potentials after the
completion of the swimming pattern. This recording of the dorsal cerebral-pleural ganglion also contained a portion
of the pedal ganglion (Pd 87, 88).
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In four dorsal-side recordings, we found at least 7 DPN to be candidate swimming interneurons
(Figs. 6 & 7, light blue). In one of these four recordings, 13 neurons with DPN activity were found,
6 of which fired at a low frequency. The DRI did not appear in our recordings, perhaps because of
interference from the statocysts. One DPN also appeared near the cerebral-pleural border in our
best ventral-side recording.

Seven VPN appeared along the fused border of the cerebral-pleural ganglion in one ventral-side
recording (Fig. 8, light green). Due to relatively low firing frequency in two of these neurons, only
five made good candidate swimming interneurons. Because none were in a position to be considered
as a candidate VSI-B (see Getting PA, 1983 [13] for explanation of VSI subtypes), complete models
of the swimming network should account for at least six different VPN in the cerebral-pleural
ganglion (Table 1). VPN were also found on the dorsal side of the cerebral ganglion, including
candidate VSI-A ([5]; Fig. 7).

Another unknown population of eight bursting neurons, not easily classified as either DPN or
VPN, could be seen in one ventral-side recording (Fig. 8, orange). Signals from this population were
faint suggesting that they may be below the outer surface of the ganglion. This recording indicates
that the pattern-generating circuit in the swimming network may include groups of neurons that
are active at times other than the two established phases (dorsal and ventral).

In two preparations, a large cerebral-ganglion neuron also fired rhythmic bursts of action po-
tentials in phase with fictive swimming but only after skipping the first cycle (Fig. 8, pink). Other
neurons in the cerebral-pleural ganglion fired only at the end of the fictive pattern or fired more
strongly as the fictive swim progressed. The firing pattern of these neurons suggests that they
could be involved in an active termination mechanism for the swimming response.

Another population of VPN found on the ventral side of the pleural ganglion fired at relatively
low frequencies. A single large, weakly bursting neuron of this type also appeared in the pedal
ganglion in one recording (Fig. 8, brown). Neurons of this type probably should not be considered
as candidate swimming interneurons because previous work has shown that most large, weakly
firing neurons in the pleural ganglion have an axon or dendrite in one or more nerves [4].

We estimated of the size of the DPN and VPN populations from our single best recording (Table
1). Adding the dorsal and ventral sides would give a less conservative estimate of 9 DPN and 8
VPN in each cerebral-pleural ganglion. Inclusion of the more slowly firing neurons would raise the
estimate to about 15 DPN and about 15 VPN populations in each pair of cerebral-pleural ganglion.

Table 1: Population size estimates

Neuron Type Previous Estimate* Optical Recording
DFN-A 30 49
DFN-B 20 12
VFN 10 22
DPN 5 7
VPN 2 5

* From Hume RI & Getting PA, 1982 [6]; Getting PA, 1983 [1]

2.3. Other Patterns
In a few preparations, flexion neurons and candidate swimming interneurons fired in a coor-

dinated manner distinct from the fictive swimming pattern (Fig. 9). Active populations in these
alternate patterns included some but not all swimming-network neurons. These may be fictive
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Figure 8: Ventral cerebral-pleural ganglion.
Place maps for seven VPN (examples in light green, CP 26-28) and one DPN (light blue, CP 22) were spread along
the fused border between the cerebral and pleural ganglion on the ventral side. Five other neurons (orange, examples,
CP 23, 24) were not easily classified as VPN or DPN. Another previously unidentified neuron (pink, CP 25) burst
during the DPN phase of the cycle but did not fire on the first cycle of fictive swimming. Bursts from one pedal
ganglion neuron (yellow, Pd 89) were not phase locked with the other neurons in the swimming network and fired
more than one burst per cycle. An apparent DFN-A (CP 31) appeared in the pleural ganglion. Another group of
relatively large neurons (brown, CP 29,39, Pd 90) fired low-frequency bursts out of phase with the DFN-A, and may
be a new VFN subtype.
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Figure 9: Multifunctional swimming network neurons.
(A) Multiple DFN-A firing modes. Two DFN-A were recorded from the dorsal side of the pedal ganglion during a
two cycle fictive swimming episode. The top neuron appeared to participate in a second unknown pattern that was
not swimming, and this bursting pattern was shared by some (not shown) but not all (lower trace) DFN-A in the
ganglion.
(B) Multiple DSI firing modes. In another preparation (cerebral-pleural ganglion, dorsal aspect), a VPN (top) and
two candidate DSI fired bursts of action potentials after fictive swimming terminated. The serotonergic DSI have at
least three identified firing modes, and the pattern shown here may be a fourth [17, 18]. The six bursts in the top
trace are expanded in (C) below.
(C) Three phase burst pattern. This VPN from (B) above had two phases per cycle during fictive swimming (top
three traces), firing and not firing. The second pattern had three distinct phases, a burst of singlet spikes, a burst of
doublet or triplet spikes, and not firing (bottom three traces).

motor patterns for behaviors like twisting that normally follow swimming, but more work will be
necessary to determine whether or not these patterns correspond to actual behaviors.

3. Discussion

In this study we used Independent Components Analysis (ICA) to improve on previous tech-
niques for isolating single neurons from optical recordings with voltage-sensitive dyes, bringing us
closer to the goal of achieving a complete description of the neural activity during a behavior. A re-
cent study of the medicinal leech using optical recordings with voltage sensitive dyes used Principal
Component Analysis (PCA) to identify groups of neurons that participated in decision making after
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single neurons were identified by other means [7]. Unlike ICA, which uses higher-order information
in the statistics of the signals to perform blind source separation, PCA only uses the second-order
covariance information in the signals [19]. PCA vectors are also constrained to be orthogonal but
ICA vectors can in general be non-orthogonal, which is more flexible for analyzing mixtures.

Another way to monitor population activity is with multi-electrode arrays that isolate individual
neurons, but the sample of neurons is sparse and incomplete [20, 21, 22]. Previous studies using
voltage-sensitive dyes have monitored average patterns of activity in the chick auditory cortex
[23], the slug olfactory system [24], the rabbit heart [25], and the human brain during epilepsy
[26], but not individual neurons. Voltage-sensitive dye studies of individual neurons pioneered in
the abdominal ganglion of Aplysia have shown that current models of the Aplysia gill-withdrawal
reflex are incomplete [27, 28, 29]. They also indicate that network neurons participate in multiple
behaviors [42] and that simple types of learning such as habituation and sensitization involve
changes in large networks of neurons [30].

Tritonia flexion neurons are especially favorable for optical recording due to their relatively
large size and their position on the surface of the pedal ganglion. Optical recording allowed us to
simultaneously monitor a large fraction of the neurons in the pedal ganglion, free of assumptions
about their locations. Although we fell short of recording all of the activity in the Tritonia brain,
we substantially improved on what was previously known about the neurons participating in fictive
swimming. We identified a total of 83 flexion neurons compared with previous estimates of 60
(Table 1). We also identified previously unknown types of pedal ganglion neurons (Fig. 5).

Candidate interneurons were designated Dorsal Phase Neurons (DPN) if they fired bursts of
action potentials that overlapped with certain types of firing patterns (DFN or candidate DSI) or
Ventral Phase Neurons (VPN) if their bursts did not overlap with bursts in these neurons. We
found more candidate interneurons in the cerebral-pleural ganglion than had previously reported
(Figs. 6, 7, 8; Table 1). Because there were more DPN and VPN than predicted by current
models of the swimming network, we conclude that current models are incomplete. Additionally,
we recorded neurons in the cerebral-pleural ganglion with previously unreported bursting patterns:
a DPN candidate interneuron that skipped the first cycle (Figs. 8, 10, pink), a population of VPN
that fired at relatively low frequencies (Figs. 8, 10, brown), and other bursting cells (Figs. 6, 7,
8, 10, orange). In Figure 10, we summarize the bursting patterns we found in the cerebral-pleural
ganglion.

Some of these newly identified interneurons may participate in the oscillator itself where VPN
and DPN are connected by reciprocal inhibition [1, 13]. Others, like C2, may have a different role in
the oscillator. Still others may simply be connected to and follow the oscillator in order to perform
swim-related tasks like coordinating flexion neurons or terminating the response. Further study,
including determining their synaptic connectivity through intracellular recording and stimulation,
will be required to determine their function.

Our recordings also contained tantalizing glimpses of patterned activity distinct from the fictive-
swimming sequence (Fig. 9). Coordinated bursts of action-potential activity occurred in many
network neurons after the end of fictive swimming in cases. A new bursting pattern was found in
one candidate DSI, which may have implications for the role of serotonin in the Tritonia nervous
system [17, 18]. We also observed doublets which have been attributed to near-threshold currents
in Tritonia neurons. It would be of interest to determine how these currents are regulated during
bursts of this type [16].

Future studies could help us establish firing patterns in the same network of neurons for different
Tritonia behaviors [31] and record the neural correlates of learning in the Tritonia swimming
network [32, 3, 33]. As voltage-sensitive dyes improve, recording synaptic potentials and even the
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Figure 10: Summary of neuron types in the cerebral-pleural ganglion.
Composite figure of neuron types found in the cerebral-pleural ganglion, using traces from figures 6, 7, and 8. Traces
begin just after the end of the stimulus. The traces were aligned and scaled relative to each other using common
neuron types across recordings. Because of slight differences in cycle length across each recording, the alignment is
only approximate but gives a sense of the relative timing and frequencies of bursts in different neuron types. The
duration of the recording was approximately 30 sec.

membrane potential of each neuron may be possible [34, 35], which will be especially important
for local networks that use graded membrane potential and not action potentials for synaptic
communication [36].

Current models of the Tritonia swimming network ([1]; Fig. 1B) will need to be expanded to
integrate all the neuron types and firing patterns reported here (Figs. 2, 5, 6, 7, 8, 10) and take into
account the variability between neurons of a type (e.g. Figs. 3, 4). Data analysis methods like ICA
(see Materials and Methods) will be invaluable for automating data processing and interpreting
results [19, 21]. Synaptic wiring diagrams can be constrained by the observed patterns of action
potential activity [37, 38].

Rhythmic behaviors such as respiration, feeding, and swimming may share cellular and synaptic
mechanisms across species [31, 39]. Using appropriate physiological and computational techniques
to decipher the Tritonia swimming network could help us understand the general design and oper-
ation of networks underlying all rhythmic behaviors.

4. Materials and Methods

4.1. Optical Recording
Tritonia were collected from several near-shore sites in the Puget Sound Region of the United

States and shipped to Amagasaki, Japan in coolers. Slugs were maintained in artificial seawater
at 10-12o C, and isolated brains were maintained at 11oC during optical recordings [2]. The outer
sheath around the ganglia and connective tissue were removed leaving the transparent inner sheath.
An electrical stimulus (2.5 ms pulses for 3 s at 10 Hz, 100 µA) applied to right pedal nerve 3 reliably
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activated previously identified neurons that burst at predictable times during the fictive swimming
pattern [3, 4].

The isolated brain was bathed in the voltage-sensitive absorbance dye NK3041 (1.33 mg/ml;
Nippon Kankoh Shikiso, Okayama, Japan) for 15-20 minutes and then returned to filtered seawater.
The strongest optical signals were obtained from neurons in the plane of focus of the microscope.
Neurons are distributed at different depths so we used several different views to try to ensure at least
one high quality section through the dorsal and ventral regions of each ganglion. Our recordings
centered on:

• only the Pedal ganglion

• primarily the Pedal ganglion with a portion of the Pleural ganglion

• the cerebral-pleural ganglion (the entirety of the ganglion did not fit into one recording)

The recorded populations of neurons within a given ganglion differed slightly because of different
planes of focus between recordings. The depth of focus did not exceed the diameter of single large
neurons. An intracellular recording electrode was used to monitor a flexion neuron during fictive
swimming before, during, and after staining. Fictive swimming typically lasted between 3 and 7
cycles or about 20-40 seconds. A slight hyperpolarization of one to four millivolts was observed in
many neurons during staining, and the spontaneous activity in the extracellular nerve recording
also decreased during dye application.

Although prolonged exposure to the dye seemed to degrade the fictive swimming pattern some-
what, in both intracellular and extracellular recordings, no differences were observed to the fictive
swimming pattern before and twenty minutes after staining. The membrane potential of individual
neurons and the spontaneous activity in the nerve recording also appeared to recover after the
brain was returned to filtered seawater.

Optical recording procedures have been described in detail previously [40, 41]. Action potentials
appeared as a change in light absorbance at 705 ± 17 nm by a 448 element photodiode array with
a 12x magnification on an upright microscope (each photodiode had a 76µm2 field of view). The
objective magnification was 10x with a numerical aperture of 0.30. Each photodiode was amplified
with an analogue amplifier and bandpass filtered with a low cutoff of 10 Hz and a high cutoff of
150 Hz. After this processing, each photodiode output was digitized at 1 KHz and stored on a
computer hard drive.

We waited at least 30 minutes after staining and between trials before recording a fictive swim-
ming sequence. The nerve stimulus used to elicit fictive swimming was applied four seconds after
the onset of recording. A typical recording lasted 45 s, which was of sufficient duration to record
the entire fictive swimming sequence in most cases. Neurons that fired rhythmic bursts of action
potentials during fictive swimming were considered to be part of the swimming network.

Optical recording degraded the health of the brain as judged by the eventual failure of the nerve
stimulus to produce a fictive swimming pattern. Recording was limited to at most 4 recordings
or fictive swims per preparation. The most robust fictive patterns, including those used for data
analysis here, occurred on the first or second trial in each preparation. Because previously identified
neuron types fired in predictable ways, we were reassured that the swimming network was operating
in a normal manner. However, shorter recording times or using a different dye might reduce
photodynamic damage and allow for more trials in each preparation [42, 40, 43, 44].
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4.2. Signal Processing
Each pixel in the diode array recorded a linear mixture of signals originating from an unknown

number of neurons in addition to uncharacterized physiological and electronic artifacts. Automated
spike train separation was performed using independent components analysis (ICA), a statistical
signal processing technique that is effective when the sources are independent and not Gaussian
[45]. We used infomax ICA [46, 47]. Briefly, we assume that the signals from the N photodiodes,
x = {x1(t), , xN (t)} are a linear mixture of the unknown sources, s = {s1(t), , sN (t)},

x = As (1)

where A is an unknown mixing matrix. In blind source separation the problem is to recover a
version,

u = Wx (2)

where u is identical to the original signals, s, except for scaling and permutation, by finding a
square matrix, W , that linearly inverts the mixing process. The infomax ICA algorithm iteratively
updates the unmixing matrix using the learning algorithm,

∆W = α(I + f(u)uT )W (3)

where α is the learning rate, I is the identity matrix, T denotes transpose, and the vector-function,
f , has elements,

fi(ui) =
δ

δui
ln gi(ui) (4)

and the logistic sigmoid is given by,

g(u) =
1

1 + e−u
(5)

The number of sources (neurons and artifacts) that can be separated with ICA is no more than
the number of mixtures (pixels). Because ICA does not recover sign or scale, no vertical scale bars
appear with the spike trains reported here (Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10). For further discussion
on how infomax ICA is able to blindly separate neural signals and artifacts from optical recording
data see Brown GD et al, 2001 [19].

ICA produced a continuous estimate of membrane potential for each neuron rather than a series
of times or events. This allowed us to view actual spike shapes and even subthreshold membrane
fluctuations in some neurons during the fictive pattern rather than more traditional raster display.
ICA also allowed us to automatically separate individual neurons from recording artifacts as well as
from each other. The high prevalence of synchronous spikes together with the proximity of neurons
of a type made overlap resolution especially important in our study.

In addition to the time course of each membrane potential, ICA also provided topographic
information. The location of each neuron on the detector array or place map was recovered from
the ICA analysis, and these could be combined to make topographic maps (Figs. 2, 6, 7, 8). To
these topographical maps we added outlines of the ganglia based on sketches and photographs made
at the time of the recording and, in Ce-Pl recordings, the landmark provided by the statocyst. Prior
knowledge about the localized nature of cell somata supported the validity of the ICA separation
[19].

The number of operations done by the ICA algorithm increased as a fourth power of the number
of detectors and linearly with the number of data points [47]. The ICA step took between a few
minutes and a few hours depending on the amount of data and the speed of the computer processor.
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For example, forty-five seconds of data from 100 detectors recorded at 1000 Hz were processed on
a 1.6 GHz Pentium III computer in about 10 minutes. MATLAB (www.mathworks.com) software
was used for all data analysis.

Removing detectors from the data set that did not appear to record any spiking activity reduced
computer processing time and memory usage. This took only a few minutes using the conservative
rule that if there was any doubt whether or not action potential activity was present on a given
detector, that detector remained in the data set. A few detectors that did not appear to record
spikes but did record shared artifacts also remained in the data set to facilitate the ICA analysis.
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