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Many sources of fluctuation contribute to the functional

magnetic resonance imaging (fMRI) signal, complicating

attempts to infer those changes that are truly related to brain

activation. Unlike methods of analysis of fMRI data that test the

time course of each voxel against a hypothesized waveform,

data-driven methods, such as independent component

analysis and clustering, attempt to find common features within

the data. This exploratory approach can be revealing when the

brain activation is difficult to predict beforehand, such as with

complex stimuli and internal shifts of activation that are not

time-locked to an easily specified sensory or motor event.

These methods can be further improved by incorporating

prior knowledge regarding the temporal and spatial extent of

brain activation.
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Abbreviations
BOLD blood oxygenation level dependent

ERP event related potentials

fMRI functional magnetic resonance imaging

ICA independent component analysis

KO kinetic orbital area

PCA principal component analysis

ROI regions of interest

SPM statistical parametric mapping

SVD singular value decomposition

TR repetition time

Introduction
In addition to providing a non-invasive, indirect measure of

neuronal activity, the blood oxygen level dependent

(BOLD) signal in functional magnetic resonance imaging

(fMRI) includes contributions from many other sources

including the heart beat, breathing and head motion arti-

facts. There are also less well understood sources, such as

low frequency drifts that can also be recorded from cadaver

brains [1] and high amplitude oscillations caused by pulse

effects that induce localized motion of brain tissue [2].

In contrast to positron emission tomography (PET), in

which the measurement represents physiological quan-

tities that can be compared quantitatively with other

measurements [3] (e.g. mmol/100 g tissue/min), the fMRI

signals have no simple quantitative physiological inter-

pretation. As a consequence, in most fMRI experiments

the signal at a given spatial location (or voxel) during the

performance of a task is compared with its value during a

period of rest, despite the fact the baseline condition itself

contains ongoing cortical activity [4]. Isolating signals of

interest is thus a very important problem. In this review we

briefly explore traditional and more recently developed

methods used to infer task-related changes in fMRI data

with a focus on independent component analysis (ICA).

During a neuroimaging experiment, volumetric fMRI

signals, acquired as individual slices having a spatial res-

olution of a few millimeters, are typically sampled with a

repetition time (TR) of around 1 Hz. The fMRI signal has

temporal and spatial structure at many time and length

scales and can be analyzed by different signal processing

strategies that emphasize either the spatial or the temporal

aspects [5]. One of the most direct ways to estimate

whether a given voxel is affected by the behavioral per-

formance or not is to simply cross-correlate the pixel time

series with a reference time course describing the sequence

of behavioral events. The cross-correlation method can be

adapted to take account of the hemodynamic response by

first convolving the reference time course with an estimate

of the hemodynamic response [6], followed by a voxel-

wise t test for significant difference between baseline and

activation. Although this method remains popular, its

specificity has recently been questioned [7].

Correlation is an example of an hypothesis driven, or

confirmatory analysis method, which tests one or more

specific hypotheses regarding the time courses of a voxel.

By far the most popular software package that uses this

approach is statistical parametric mapping (SPM), which

employs the general linear model (GLM), an instantia-

tion of multivariate linear regression, and associated meth-

ods to deal with violations of the assumptions of the

multivariate regression framework, such as the lack of

independence among voxels [8]. Studies looking at

‘null’ datasets, in which a subject does not perform a
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pre-specified task but merely lies quietly in the scanner,

have been valuable in determining the false positive

rates that can arise from these approaches [9].

Explorative approaches, which seek to uncover the fea-

tures of the data themselves, are complementary to

hypothesis-driven methods and can help to generate

new hypotheses, separate and understand the nature of

confounds and find non-trivial components of interest.

The main benefit of using a purely data-driven approach

to determine the underlying structure of the data is that

often the expected time course of brain activation is

difficult to specify a priori. Two popular data-driven

techniques include ICA [10] and different types of clus-

tering in the temporal domain [11–16]. With clustering, a

measure is used that estimates the ‘similarity’ between

waveforms, and then all voxels with similar waveforms are

collected together within a cluster.

Independent component analysis
The methodology of ICA

Blind signal separation is a class of explorative tools devel-

oped for the analysis of images and sound. They are called

‘blind’ because they aim to recover source signals from

mixtures with unknown mixing coefficients. In the cocktail

party problem, for example, several microphones in a room

record signals from multiple speakers (sources) that arrive

with different relative amplitudes at each microphone. ICA

is a family of methods for blind signal separation formed on

the basis of assumed statistical independence of the source

signals [17,18]. The diverse nature of the signals that

contribute to fMRI recordings suggests that blind signal

separation techniques could be used to isolate these dif-

ferent sources [10,19�,20–22]. Here, we review recent

contributions and discuss their results in the context of

the basic assumptions of the applied ICA methods.

Let the fMRI signal be represented by the space-time

data matrix of measurements Xj,t, where j ¼ 1; . . . ; J (J is

the number of pixels/voxels [the three dimensional

equivalent of a pixel]); and t ¼ 1; . . . ;T , (T is the number

of time samples). In the linear mixing case we assume that

the matrix can be modeled as follows:

Xjt ¼
XK

k¼1

AjkSkt þ Ejt (1)

where A and S (where the columns of A represent com-

ponent maps, and the rows of S represent time courses of

the respective component maps) are formed by the K
independent components of the process, and E is spa-

tially and temporally white noise.

In spatial ICA we assume that the columns of the matrix

A ¼ bAjkc are statistically independent processes, whereas

in temporal ICA the rows of S ¼ bSjkc are assumed

independent. From the very first application of ICA to

fMRI there has been a lively discussion of spatial versus

temporal independence, for example see Peterson et al.,
Friston, Calhoun et al. and McKeown et al. [23–26]. To

appreciate the difference between the two approaches it

is interesting to contrast briefly ICA with principal com-

ponent analysis (PCA).

The basic tool for PCA is singular value decomposition

(SVD):

Xjt ¼
XK

k¼1

UjkLkkVtk (2)

where U and V are orthogonal matrices that are best

understood as basis sets that span the spaces of spatial

and temporal patterns respectively. The columns of U are

the eigenvectors of the Q-mode covariance matrix, which

investigates the inter-relationships between voxels:PQ
jk ¼

PT
t ðXjtXktÞ=T , with the columns of V being the

eigenvectors of the R-mode covariance matrix, which

investigates inter-relationships between volumes at dif-

ferent timepoints:
PR

st ¼
PJ

j ðXjsXjtÞ=J. SVD does not

allow identification of a mixing matrix. Note, however,

that if the model in equation 1 is correct, if the number of

sources, K, is small (relative to J and T), and if the variance

of the additive noise is small, the important signal var-

iance components will be confined to spatial or temporal

subspaces spanned by the K first vectors of either U or V as

identified by SVD. Hence, SVD can be used to reduce

the dimensionality of the ICA problem [27,28]. PCA and

ICA were further compared in the context of denoising by

Thomas et al. [29�].

To completely identify the mixing matrix and the source

signals we need to go beyond mere covariance measure-

ments. Two general classes of algorithms use higher order

statistics or intra-source correlation. Infomax [30], JADE

[31] and FastICA [32] are the most widespread higher

order statistics algorithms, whereas the most wide-

spread de-correlation methods are those of Molgedey

and Schuster [33] and Ziehe and Muller [34].

The success of a higher order statistics based method

depends on how well the source moment structure

matches the assumptions of the algorithm, in particular

the sign of the fourth central moment, the so-called

‘kurtosis’. For the de-correlation based methods, the

potential for separation is related to how well separated

the source auto-correlation functions are.

When a data analysis problem is approached by ICA there

are number of issues to address: what are the independent

components in the data? How many components are

there? In addition, which ICA algorithm is appropriate?

In many signal processing applications the measurements

represent a scene (auditory or visual) or a receptive field in

which the independent components naturally reflect

independent agents (speakers, objects, mechanical de-
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grees of freedom etc.). When applying ICA to fMRI the

independent source signals are interpreted as networks of

similar BOLD activity. In terms of the basic ICA model

(equation 1) a single ICA component (say the kth) consists

of a spatially distributed set of pixels (Ajk) that are

activated by the associated time function (Skt). It is useful

to visualize the signal reconstructed from one or more

components:

Xrec
jt ¼

XK

k¼1

X
ðkÞ
jt ; X

ðkÞ
jt ¼

XK

k¼1

AjkSkt (3)

McKeown et al. [27], in the first application of ICA to

fMRI, analyzed an fMRI dataset with Infomax, arguing

for spatial independence [28]. In this formulation each

voxel’s time course (row of X in equation 1) is considered

a T-dimensional vector, with T being the number of time

points in the experiment, and then vectors (time courses)

are derived so that the derived time courses (rows of S)

have weightings (columns of A) that are as independent

as possible. With this application of the algorithm, they

found good separation of modes that were task related,

transiently task related, as well as confounding modes

that represented, for example, head motion [27].

Spatial stationarity, whereby the collection of voxels used

in the analysis is assumed to be derived from a single

multivariate distribution, is usually assumed by ICA. This

may be investigated with test-retest replicability [35�],
and possibly addressed with mixture models [36]. In a

mixture model, the voxels are partitioned into suitable

subsets, and then separate ICA analyses are performed on

each subset.

Ordering of components

As is the situation with PCA, we can order the ICA com-

ponents according to the amount of variance explained:

s2
k ¼

XJ

jt

ðXðkÞ
jt Þ ¼

XJ

jt

AjkS2
kt :

The total signal variance is approximately the sum of the

component variances, hence these variances form a nat-

ural ordering. Alternatively, we can order the components

according to other features of interest. The most obvious

is comparing a component’s time course with the beha-

vioral experiment, either by visual inspection [27] or by

computing cross-correlations, as mentioned above [23].

In the study by Moritz et al. [37��] components are ranked

according to frequency content. Among a total of 85

components the power spectrum ranking method identi-

fied and ranked the task-related components high, and

hence was successful at separating these from artifacts

and confounds. Furthermore, ICA was found to be more

specific in deriving activated spatial locations than per-

forming power spectrum analysis on the raw time course

of each voxel.

A general framework for ordering of components is pre-

sented by Lu and Rajapakse [38] enforcing constraints on

the Infomax estimation procedure, either of a statistical

nature (e.g. ordering components according to kurtosis) or

of other types of a priori features of interest. In analysis of

a visual stimulation fMRI dataset components were

sorted according to spatial kurtosis, equivalent to sorting

according to spatial sparseness; hence, the most task

related component was selected first with high kurtosis,

components corresponding to local flow artifacts were

also ranked high in the measure. More elaborate and

realistic statistical assumptions are invoked in Stone et al.
and Formisano et al. [39,40] for identifying components

with asymmetric histograms, autocorrelation or spatial

clustering.

Validation of independent component analysis

Temporal versus spatial independent component analysis

New methods for analyzing data, such as ICA, need to

be tested on a wide range of problems for robustness

and sensitivity to artifacts before the results can be

properly interpreted. As there are a variety of different

ICA algorithms, it is also important to compare their

performance to better understand their strengths and

limitations.

Lange et al. [5] compared spatial Infomax ICA on sim-

ulated and real fMRI data with several other data analysis

methods and found that ICA could identify locations of

activation not accessible by simple correlation, t test or

general linear model based methods. The simulated data

was created by adding artificial activation foci to real rest

fMRI data. The quantitative measure of performance was

formed on the basis of receiver operating characteristic

(ROC) curves.

Biswal and Ulmer [41] used Infomax ICA to search for

temporally independent activation sequences; however,

they limited the spatial sample to relatively small regions

(30 pixels). Temporal ICA analysis resolved two different

induced effects on the fMRI signal: a task induced effect

and CO2 inhalation (hypercapnia). As hypercapnia in-

duces a globally enhanced BOLD signal, searching for

spatial independence is not relevant.

A comparative analysis of task related components for a

visual stimulation dataset (TR ¼ 0:3 s) using three dif-

ferent spatial and temporal ICA algorithms was pre-

sented in Petersen et al. [23]. The stimulus reference

function was used to identify the consistently task

related component in each setup. The consistently task

related components showed strong similarities in terms

of both the component time series and the spatial maps

for all six combinations. The spatial maps derived from

the Molgedey-Schuster model were noisier and the

associated time courses demonstrated some traces of

heartbeat, because for the given task these signal com-
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ponents have similar spatial distributions. The Infomax

algorithm worked well when looking for spatially inde-

pendent patterns such as those in the study by McKeown

et al. [10]. When the Infomax algorithm looked for

temporally independent waveforms, it was less efficient

because the boxcar design of the experiment has nega-

tive kurtosis. The extended Infomax ICA algorithm can

separate components with mixed positive and negative

kurtosis and should perform better when looking for

temporally independent waveforms amongst voxels

[42]. The algorithm developed by Attias [43] that com-

bines higher order statistics and decorrelation works well

when looking for temporally and spatially independent

patterns, but at considerably higher computational cost.

Figure 1 provides an example of ICA components iso-

lated with temporal ICA.

Calhoun et al. [44] used the FastICA implementation of

ICA and found good correspondence between spatial and

temporal modes for an activation study with a single

active region; however, for a visual paradigm in which

two closely related regions were active they found some

divergence between spatial and temporal ICA. The com-

parison was with the hypothesis driven regression

Figure 1

Time course

Stimulus time
course

Time course
(TR = 0.3 sec)

Spatial map
Frequency
spectrum

(a)

(b)

(c)

(d)

(e)

(f)

V

B
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Results of applying temporal ICA to single-slice fMRI data. The subject was shown a flashing (8 Hz) annular checkerboard pattern interleaved with

periods of fixation. There were five runs of 30 scans of fixation (10.0 s), 31 scans of stimulation (10.3 s), and 60 scans of post-stimulus fixation

(20.0 s). The power spectrum is estimated in the range 0–1.5 Hz (Nyquist frequency). The slice is aligned with the calcarine sulcus and contains a

portion of the primary visual areas. The six independent components shown are represented by the spatial map (the 2.5% highest and lowest

values are shown as white and black pixels on a background formed by the average of the dataset providing anatomical references). The

components are sorted according to variance contribution. (a) The first IC loads heavily in primary visual areas (V) (left column), and its time

course (middle column, thin line) closely follows the stimuli time course (middle column, thick line). The power spectrum (right column) of the time

course and stimulus time course are closely matched. (b) The second component contains pulsations related to the heartbeat as demonstrated

in the time course and power spectrum. (c,d) The third and fourth components appear related to slower breathing-related periodic confounds.

(e) Component five is a white noise (broad band) component with a more spiky character, and the component image is dominated by the (negative)

boundary area (B), suggesting that this is mostly related to motion artifact. (f) The sixth element is a low-frequency component with a period of

about 10–15 s unrelated to the stimulus sequence and possibly represents an artifact related to vasomotor oscillations [72].
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approach using an a priori activation time series. Such a

comparison is possible for a simple, sustained, sensory

stimulus for which the primary activation is predictable.

Responses can be less predictable for brief visual stimuli

(Duann et al. [45��]).

Different independent component analysis algorithms

Esposito et al. [46] compared Infomax and FastICA for

both simulated and real fMRI data (TR ¼ 3 s) for a

standard finger tapping paradigm and visual stimulation

following the approach used by Lange et al. [5]. Infomax

and FastICA produced similar results, as expected as they

are formed on the basis of similar statistical assumptions.

The HYBrid ICA (HYBICA) scheme proposed by

McKeown [47] invokes a general linear model approach

for post-processing of ICA results. This paper also

addresses the crucial issue of how many components to

keep in the analysis. Similar to the situation with PCA

[48] predictive methods can be used, and in the study by

McKeown [47] the so-called predicted residual sum of

squares (PRESS) statistic was used.

Hoejen-Soerensen et al. [49] assumed binary on/off

source density and invoked advanced mean-field meth-

ods for both spatial and temporal ICA analysis of fMRI.

In spatial mode the ICA model was equivalent to time

series clustering with multiple concurrent assignments

of data. For the mean-field methods it was possible to

determine the optimal number of independent compo-

nents using Bayesian arguments. For the analysis of a

visual stimulation dataset the optimal ICs were found to

be formed on the basis of representations with less than

10 components.

Reproducibility

Reproducibility, both intra-subject, and inter-subject is a

key issue in explorative data analysis, and data-driven

methods, given their sensitivity to the underlying struc-

ture of the data, may accentuate intersubject variability.

Typically fMRI experiments are employed to make

statements indicative of a specific population (e.g. all

normal subjects greater than age 65). To compare activa-

tion across subjects, analysis methods often spatially

transform the data. Anatomical images are acquired at

the time of the functional images, and a transformation is

determined which allows the anatomical images from

one subject to be spatially transformed to the anatomical

images of another, or all subjects to be transformed to a

common exemplar anatomical volume. Applying the

same subject-specific spatial transformation to the func-

tional data allows voxel time courses to be directly com-

pared across subjects and tested for task activation. This

method may have limited applicability in older popula-

tions, however, as they tend to exhibit more spatial

variability in fMRI activations possibly as a consequence

of compensatory mechanisms [50].

Are components reproducible across subjects? Methods

for performing ICA for groups of subjects have been

proposed by Calhoun et al., Lukic et al. and Svensen

et al. [51,52�,53]. The basic idea is to concatenate the

data from several subjects in the spatial dimension, and

perform a joint ICA to identify common activation time

courses. However, it is unclear whether greater intersub-

ject variability exists in the spatial patterns of activation

(in which case finding common ICA time courses across

subjects may be suitable) or in the actual time courses of

activation, which would support the usual method of

spatial transformation. Another way to partially address

the problem of intersubject variability is to specify ana-

tomical regions of interest (ROIs), (e.g. ‘supplementary

motor area’) for each subject, a rather laborious process.

Presumably ROIs, as opposed to individual voxels that

have been spatially transformed to an exemplar volume,

would demonstrate less subject-to-subject variability.

Covariance between specified ROIs can then be assessed

with methods such as structural equation modeling, in

which known anatomical connections are used to con-

strain the model and the strength of connections between

regions of interest is estimated [54].

Motion effects revealed with independent component

analysis

A consequence of employing a data-driven technique for

fMRI data analysis is that it may reveal unpleasant aspects

of the data, such as corruption of the data with motion.

fMRI data are extremely sensitive to movement, even

when it is less than 1 mm, and this may be a limiting factor

of the application of this technology in older adults or

subjects with brain diseases. As the ICA components are a

sensitive reflection of the data, they also tend to be

sensitive to all types of movement including abrupt

changes and slow, linear drifts [27].

Even data motion-corrected with standard motion correc-

tion schemes such as the automated image-registration

(AIR) [55] or SPM [8] still produce apparent motion-

related ICA components (Figure 2). This possibly relates

to the fact that most motion correction is performed in

isolation to the rest of the statistical analysis process, and

it is often the endpoint in the analysis pipeline. Motion-

correction algorithms typically spatially transform each

volume in a time series to an exemplar volume (such as

the first volume in the series) by using a measure of

similarity [56]. However, standard motion correction

schemes seem to minimally affect the predictability of

the data (Figure 2), a major component of the perfor-

mance of statistical models [47,57]. Incorporating poten-

tial motion into the ICA framework appears to be a

promising approach (Figure 2; [58]).

Some of the sensitivity to movement may be related to

the fact that most ICA algorithms are sensitive to outliers,

and that voxels at the interface between the brain and

624 New technologies
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other regions such as the skull have markedly different

statistical properties. Resampling methods may help

assess the robustness of the derived ICA components

to outliers [10,59] and robustness itself may be aided by

utilizing spatio-temporal a priori information [60�].

Applications of independent component
analysis
Even with the above restrictions in mind, ICA has proved

remarkably versatile in several applications in which the

brain activation has been hard to predict beforehand.

Activity in the visual [61��,62��,63,64��], auditory [65��]
and cognitive [66] domains, and even complex social

interaction while simultaneously scanning more than

one subject [67] have all been investigated with ICA.

In a study by Castelo-Branco et al. [62��], the data were

analyzed with ICA, and spatial components which loaded

heavily on the motion-sensitive visual area hMT(þ)/V5

were further examined to determine a functionally con-

nected network involved in perceptual decision. Being

able to meaningfully interpret fMRI experiments incor-

porating very complex stimuli, such as driving [64��] or

watching a movie [61��], exemplifies the advantages of

not having to specify activation profiles beforehand. ICA

has also provided insight into artifacts caused by large

vessel effects in perfusion imaging [68]. The versatility of

the technique is such that ICA has been used as a

preprocessing method for attempting to visualize color

multichannel magnetic resonance data [69], and has been

considered within the data mining framework used in

statistics [70].

In the study by Zeki et al. [61��] an experiment is set up to

explore the role of the kinetic orbital area (KO) in

humans, which is activated when we perceive shapes

generated by kinetic boundaries, for example in random

dot patterns. ICA analysis was performed on fMRI data

from eight subjects while they watched 20 minutes of an

action movie. Regions were related if they appeared

active in the same spatial component. Using this spatial

grouping approach it was found that the KO area was less

specific to kinetic boundary activation but activated for

stimuli similar to those that activate V3, an area that

represents depth and contours.

Using a pluralistic approach involving both ICA and

general linear models Calhoun et al. [25] investigated a

visual perception task that was designed to provide a

reliable and valid measure of visual perceptual capacity.

The general linear model, which measures the pixel wise

Figure 2
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Effects of motion correction on ICA components. (a) The predictability of the data, estimated by the diagonals of the Hat matrix, H ¼ X (X0X)�1 X0,

where the columns of X represent the largest 1/3 of the eigenvectors of the covariance matrix, is plotted. The horizontal line is a heuristic used in

regression to imply high leverage points. Note that common motion correction schemes (AIR and SPM) do not measurably affect predictability.

MCICA ¼ motion corrected ICA. (b) Even after standard motion correction, ICA components indicative of movement can still be isolated.
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correlation with the stimulus reference function, and the

ICA yielded similar but not identical results, and together

suggested a significant role for the cerebellum in visual

processing. The general linear model appeared more

selective and sensitive to primary visual and cerebellar

regions. However, the ICA also detected primary motor

activity, whereas the general linear model did not, the

main reason being that the activation time course showed

a considerably longer duration than expected on the basis

of the standard hemodynamic response model that is

invoked in the general linear model estimate. This is a

prototypical situation in which the explorative nature of

ICA allows detection of an unexpected response.

Using ICA, Duann et al. [45��] demonstrated that the

common assumption of a spatially and temporally sta-

tionary hemodynamic response function does not hold.

Subjects exhibited a wide variety of responses to short

stimuli including responses with two positive peaks.

The ability of ICA to detect transient and randomly occurr-

ing neuropsychological events was studied by Gu et al. [66].

An auditory sentence-monitoring fMRI dataset was ana-

lyzed and components post-processed to favor components

with spatial connectivity. The ICA time courses were

shown to match well with button-press signals used to

monitor subjects listening to randomized auditory stimuli.

The complex dynamics of neural activation during sim-

ulated driving were investigated with ICA by Calhoun

et al. [64��]. The differential response of several systems

including error monitoring, motor control and vigilance

could be quantified in more detail using ICA than when

using simple subtractive analyses.

If confounding components are excluded in the recon-

struction of equation 3, ICA can be viewed as a denoising

filter similar to PCA and other signal processing subspace

methods. This approach was pursued for electroencepha-

lographic (EEG) analysis by Jung et al. [19�] and for fMRI

analysis by Thomas et al. [29�]. Arfanakis et al. [71]

pursued a complementary approach and reconstructed

a signal matrix without the task induced components

to study low frequency oscillations. This was previously

done using fMRI resting state data, however, Arfanikis

et al. argue that as ‘rest’ data contains ongoing cortical

activity, it should be possible to use ICA to remove the

activation in a situation in which the brain is focused on a

particular task and hence, less subject to random activa-

tions [71]. ICA turned out to be very efficient for remov-

ing task related parts of the data and the subsequent

analysis of the low frequency oscillations showed strong

similarities with those observed in the resting state.

Although the authors suggest that they have isolated

regions demonstrating ‘functional connectivity’, it is not

clear what the underlying mechanism is, as a physiological

origin such as the vasculature cannot be ruled out [72].

Other data-driven methods
Rather than using ICA or clustering, a more direct way to

determine the time course of response is to use event-

related designs [73]. This paradigm is adapted from the

EEG and event-related potentials (ERPs) literature,

whereby many similar stimuli are presented and the time

course (of in this case, a voxel) within a specified time

window is averaged, time-locked to stimulus presentation.

Unlike the EEG with its excellent temporal resolution, the

sluggishness of the hemodynamic response in fMRI (last-

ing several seconds in duration) places a limit on the speed

that stimuli can be presented at. In order that event-related

fMRI experiments not become excessively long, the total

number of stimuli is restricted to a hundred or so. Standard

analyses of event related designs make two key assump-

tions, first, that the brain response to the stimulus is

independent of the brain state, and second, that there is

minimal temporal ‘jitter’ in the fMRI response after pre-

sentation of a given stimulus. The trial-to-trial variability

has recently been shown to be fairly significant [45��,74],

and the implications this has on the overall interpretation

of activation in event-related fMRI studies is unclear.

Whether or not the other structured (and possibly non-

brain) signals will tend to zero when averaged over the

many fewer trials than those typically used in ERPs may

also need to be more fully investigated [74].

Still, other data-driven analysis methods have attempted

to isolate task-related signals from other sources of varia-

bility within fMRI data. With a canonical correlation

analysis (CCA) approach [75] components in the data

with time courses having a broad autocorrelation can be

extracted. This method will be robust to transient noise

signals caused by abrupt movement, and will tend to

isolate slowly varying components, such as those related

to the task but also other sources of slow drifts in the

signal not related to brain activation. Investigation of the

frequency spectra at each voxel with sophisticated tech-

niques such as multi-taper analysis has allowed the iso-

lation of small but significant frequencies in voxels’ time

series that are worthy of further investigation [76].

Perhaps reassuringly, data-driven methods like ICA often

give comparable responses to traditional hypothesis-

based approaches [44], and in some cases with incorrect

task performance ICA appeared to provide more accurate

maps [77��]. Methods that attempt to combine the

strengths of complementary analysis approaches may

prove a powerful tool. ICA components can be used to

make reasonable determinations of task-related regres-

sors in a general linear model framework [47], or ICA may

be used to remove the confound of task-related activation

in exploring functional connectivity [78].

However, despite the potential advantages of data-driven

methods, the nature of brain activation is inherently a

spatio-temporal process. There may be advantages to
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investigating the spatial patterns associated with activa-

tion, for example using spatial Gaussian mixture models

[79]. fMRI investigators do have some prior biases as to

what constitutes fMRI activation; we tend to distrust

isolated single ‘activated’ voxels as false positives. A

grafting of current data driven methods with regularized

spatio-temporal solutions [80��] may prove a powerful

means to more accurately isolate presumed brain activity.

Conclusions
ICA is a promising exploratory technique that provides an

alternative means to view data and to test assumptions

about traditional hypothesis-driven methods. Much tech-

nical effort has been put into tests to ensure robust

inferences about brain activity. A significant virtue of

ICA is that it allows the detection of unexpected

responses to stimuli, including random responses or tran-

siently task related responses. Furthermore, ICA is an

effective tool for denoising fMRI, both with respect to

random noise and confounding signals such as pulsation

and breathing artifacts. Such techniques will allow the full

spatial-temporal aspects of brain activation to be better

isolated from the complex mixtures of (often unknown)

sources that make up the measured fMRI signal.
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