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Abstract: Independent component analysis (ICA), which separates fMRI data into spatially independent
patterns of activity, has recently been shown to be a suitable method for exploratory fMRI analysis. The
validity of the assumptions of ICA, mainly that the underlying components are spatially independent and
add linearly, was explored with a representative fMRI data set by calculating the log-likelihood of
observing each voxel’s time course conditioned on the ICA model. The probability of observing the time
courses from white-matter voxels was higher compared to other observed brain regions. Regions
containing blood vessels had the lowest probabilities. The statistical distribution of probabilities over all
voxels did not resemble that expected for a small number of independent components mixed with
Gaussian noise. These results suggest the ICA model may more accurately represent the data in specific
regions of the brain, and that both the activity-dependent sources of blood flow and noise are
non-Gaussian. Hum. Brain Mapping 6:368–372, 1998. r 1998Wiley-Liss,Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) data
sets contain mixtures of many different sources of
variability. Physiological signals, including brain acti-
vations and cardiac and respiratory pulsations, may
overlap spatially and temporally with fluctuations due
to subtle head movements and machine or environmen-
tal noise. Extracting the small task-related changes in
the fMRI signal, typically ,10–15% of the variance at
1.5 T, is therefore difficult because the relationship
between the sources of variability may vary across
space and over time. Univariate techniques approach

this problem by examining each voxel individually, to
determine if a given voxel is deemed task-related by a
specified criterion, such as a predefined level of signifi-
cance of a Student t-statistic under the null hypothesis
that the distribution of voxel values are identical
during control and experimental conditions. Voxels
considered task-related are then assembled to form a
spatially distributed map of task-related activation.

Frequently, fMRI experiments reveal coactivation of
spatially disparate brain regions, which cannot be
rigorously investigated with univariate techniques,
because they ignore the relationships between voxels.
The time courses from two voxels, for example, may
both be individually correlated with the task reference
function (an estimate of expected task-related changes
seen in a voxel) above a certain threshold, yet be
uncorrelated with one another.

In contrast, multivariate techniques separate the
data into a set of spatial patterns or maps that together
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compose the data, enabling the analysis of coactivation
in spatially divergent areas within a given map. In a
linear decomposition of fMRI data, the data matrix can
be transformed into a set of volume maps, C, by taking
linear combinations, defined by an n by n matrix W, of
the volumes recorded at each time point:

C 5 WX (1)

where C is an n 3 v matrix of component maps (where
n is the number of time points in the experiment and v
is the number of brain voxels), X is an n 3 v
row mean-zero data matrix with each row represent-
ing the entire volume recorded at each given time
point, and W is an n 3 n matrix containing combina-
tions of volumes. In principal component analysis
(PCA) [Friston et al., 1993], W in Eq. (1) is selected so
that the resultant component maps C are uncorrelated
and summarize the variability in the data in as few
maps as possible. Independent component analysis
(ICA) [Comon, 1994; Bell and Sejnowski, 1995] is a
generalization of PCA that selects W in Eq. (1) so
that the rows in C are made maximally statistic-
ally independent. The stricter criteria for spatial
independence used by ICA appear to improve esti-
mates for the temporal and spatial extent of task-
related activity, and provides a practical means for
exploratory analysis of fMRI data [McKeown et al.,
1998b,c].

If W in Eq. (1) is an invertible matrix, then the data
can be recovered from the components:

X 5 W21 C. (2)

The columns in W -1 give the time course of activa-
tion for the spatial maps. Unlike PCA, ICA allows that
the time courses be nonorthogonal.

Eq. (2) implies that the recorded data can be accu-
rately modeled as component maps, C, linearly com-
bined as specified in the matrix W -1. As the fMRI data
change through time, Eq. (2) assumes that this is a
result of changes in the relative contributions from
each of the component maps rather than of changes in
the component maps themselves, i.e., the maps are
assumed to be fixed throughout the fMRI experiment.
Eq. (2) also implies that the relative contribution from
each component map at a given time point in the
experiment is the same throughout the head.

When ICA is used to determine W in Eq. (1), the
additional assumption is made that fMRI data are
composed of the linear sum of spatially independent
patterns of activity. Task-related activations which

vary in space and time can then be modeled as a
consistently task-related map, and as several spatially
independent transiently task-related maps, each with
unique time courses, so that the sum of all task-related
components provides a measure of the full spatiotem-
poral extent of task-related activity. In the ICA imple-
mentation used for fMRI analysis [McKeown et al.,
1998b,c], there was no explicit noise model; rather, the
noise was assumed to be distributed among one or
more of the components.

If any of the above assumptions are not valid, then
the ICA algorithm will be less able to separate out
statistically independent component maps. The esti-
mated probability of observing the data under the null
hypothesis that the ICA assumptions are valid will
therefore be reduced.

More formally, we can relatively easily estimate the
probability of observing the ith voxel’s time course
under the model specified by Eq. (2), i.e., P(Xi 0 W) , by
exploiting the fact that ICA attempts to separate the
data into spatially independent components (see Meth-
ods). The minus log-likelihood of the data, given the
model for each voxel i, defines a function u(vi), a
dimensionless sequence of numbers. The u(vi) func-
tion can be smoothed using a spatial filter to create a
smoothed function, us(vi), that quantifies the degree to
which the ICA model fits differing regions of the brain.

In this report, we calculate us(vi) from a representa-
tive data set to examine the validity of the following
ICA assumptions: 1) constant mixing of components
throughout the brain, 2) linear mixing of components,
and 3) number of components contained in the data being
the same as the number of time points in the experi-
ment.

METHODS

FMRI data recorded from one subject performing a
6-min trial of a Stroop color-naming task were used for
exploratory analysis. During 40-sec control blocks, the
subject was simply required to covertly name the color
of a displayed rectangle. During 40-sec experimental
Stroop-task blocks, the subject was asked to name the
color of the script used to print a color name (i.e.,
‘‘red,’’ ‘‘green,’’ or ‘‘blue’’). Each color name was
displayed in a different color from the one it was
named. The data were collected from 8 slices consist-
ing of 64 3 64 voxels, with TR 5 2.5 sec. The data were
then temporally smoothed and the ICA weight matrix
in Eq. (1) was determined using methods reported
elsewhere [McKeown et al., 1998b,c].
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The u(vi) function for the data set was calculated by
first determining the likelihood of observing the ith

voxel’s time course, Xi , under the model specified in
Eq. (2) by W-1 and C:

P(Xi 0W) 5 det(W)P(Ci) (3)

where Ci is the ith column of the matrix in Eqs. (1,2).
Since ICA selects W in Eq. (1) such that C is separated
into rows that are approximately statistically indepen-
dent, then computation of Eq. (3) can be estimated by:

P(Xi 0W) 5 det(W)P(Ci) < det(W)p
k51

n

Pk(Cki) (4)

or equivalently:

2log (P(Xi 0W)) < 2log (det(W)) 2 o
k51

n

log (Pk(Cki)) 5 u(vi) (5)

which defines the dimensionless sequences of numbers,
u(vi), with vi ranging over all voxels.

An estimate of the probability distribution function
for each of the Pk (Ck) was obtained by taking a
smoothed histogram of each row of C

(over the whole volume), from which the probability
of the ith point in the row, Pk(Cki), was determined
[McKeown et al., 1998a].

A smoothed function, us(vi), was determined by
spatially smoothing the u(vi) function with a three-
dimensional 6-mm full-width-at-half-maximum Gauss-
ian kernel.

In order to estimate the number of spatially indepen-
dent components contained in fMRI data, a combined
PCA/ICA approach was used to separate the data. The
PCA matrix was first partitioned:

V 5 [Vp 0Vn-p] (6)

where V is an n 3 n matrix whose columns are the
eigenvectors of the data covariance matrix, XXT, Vp is
the n 3 p submatrix whose columns are the eigenvec-
tors corresponding to the p largest eigenvalues, and
Vn-p is the submatrix composed of the eigenvectors
corresponding to the remaining n - p eigenvalues.

The dimensionality of the data was reduced by:

Xp 5 Vp
T X (7)

where Xp is a p 3 v reduced-dimension data matrix
composed of eigenimages. Blind separation of Xp by

ICA was performed, yielding:

Cp 5 Wp Xp (8)

where Cp is a p 3 v matrix of components and Wp is a
p 3 p square ICA unmixing matrix. Substituting for Xp

from Eq. (7) gives:

Cp 5 Wp Vp
T X; (9)

The combined, partitioned PCA/ICA weight matrix
was then created by:

Wc 5 [ WpVp
T

Vn-p
T ] (10)

Spatial components were then separated with the
combined weight matrix:

C 5 Wc X (11)

The data were separated into spatial components
using a combined weight matrix, with the value of p in
Eq. (11) ranging from 10–140, the total number of time
points in the experiment. After each separation by the
combined ICA/PCA matrix, the mean u(vi) function,
calculated over all brain voxels, was determined.

A simulation was performed to determine the ability
of the combined ICA/PCA matrix to estimate the
number of sources in an artificial data set. A reduced
set of eigenimages was created, Xp, using Eq. (8) and
p 5 50. A random 50 3 140 mixing matrix, M, was used
to create a deficient-rank matrix, Xsim 5 M Xp. The
rank-deficient matrix, Xsim, was made full-rank by
adding noise, sampled from a Gaussian distribution, to
each element of Xsim. This simulated data set with
added noise was separated by combined weight matri-
ces, using a range of values for p in Eq. (9), and the
mean u(vi) was calculated.

RESULTS

The ICA algorithm separated the data into 140
components, one of which was consistently task-
related, and several of which were transiently task-
related or quasiperiodic, or had ring-like spatial distri-
butions suggesting subtle head movements [McKeown
et al., 1998b,c]. The us(vi) function for the data set
revealed a fairly clear distinction between white and
gray matter in the brain and blood vessels (Fig. 1a).

To determine if the ICA model fit less well due to the
violation of the assumption of constant linear mixing
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of the components throughout the head, those voxels
fitting less well (mostly cortical voxels, n 5 4,294) were
selected and a new unmixing matrix was determined
by the ICA algorithm, using only these voxels. The
time course of the consistently task-related component
in this new decomposition was very similar (Fig. 1b),
and when the new unmixing matrix was applied to the
whole data set, the resultant u(vi) correlated highly
(r 5 0.995) with the original u(vi) when the previously-
determined unmixing matrix was used (not shown).

Increasing the relative amounts of ICA relative to
PCA in the combined weight matrix and applying this
to the fMRI data set resulted in progressive decreases
in the mean us(vi) across all voxels in the head (Fig. 1c).
The simulated data set, based on the first 50 principal
components of the data and added, purely Gaussian
noise, demonstrated an abrupt change in the slope of
the mean us(vi) vs. p curve after the first 50 components
(Fig. 1c).

DISCUSSION

ICA provides a method to ‘‘blindly’’ separate the
data into spatially independent components, enabling
exploratory analysis on fMRI data [McKeown et al.,
1998b,c]. The key assumptions that ICA makes are that
the data set consists of p spatially independent compo-
nents, which are linearly mixed and spatially fixed.
The number of components extracted, p, can be re-
duced by first preprocessing the data with PCA. As
higher-order statistics are used to enforce stricter
criteria for spatial independence between maps, better
estimates for the consistently task-related components
have been obtained [McKeown et al., 1998b,c], suggest-
ing that spatial independence is a reasonable assump-
tion. However, spatial dependence between consistently
task-related and transiently task-related components
can be inferred by the changes in the transiently
task-related maps when the consistently task-related
component is removed [McKeown et al., 1998b].

Figure 1a demonstrates that for this data set, there is
a distinct spatial structure to regions where the ICA
model fits less well, with white matter being better
modeled than either cortex or regions around blood
vessels. Restricting the analysis to mostly cortical and
vessel voxels revealed a similar time course for the
consistently task-related component (Fig. 1b) and re-
sulted in essentially the same spatial pattern for us(vi),
suggesting that different linear mixing of assumed
underlying components is not the reason for the ICA
model fitting less well in cortical areas. The spatial

Figure 1.
‘‘The us(v) function for the fMRI data. Voxels whose time courses
are least likely to be observed under an ICA model are white, more
probable voxels are darker. Note the approximate differentiation
between cortical and sub-cortical white matter regions.’’ b) The
consistently task-related component was similar between brain
regions. An ICA decomposition restricted to the subset of voxels
fitting less-well in (a) revealed a consistently task-related compo-
nent (dotted line) very similar to the original decomposition (solid
line). c) Estimating the number of components. Combined PCA/
ICA weight matrices separated the data into spatial components.
The mean u(v) is plotted as a function of p, the position of the
PCA/ICA partition. For actual data (solid line, left axis), there was a
progressive decline as more and more components were sepa-
rated. In simulated data consisting of 50 components and added
gaussian noise, (dotted line, right axis), there was an abrupt change
at p 5 50.
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variances in the likelihood of the ICA model were not
due to difference in mean values between gray- and
white-matter voxels, because making all voxels zero-
mean before separating by ICA did not affect the
spatial pattern of us(vi) (not shown). Several possibili-
ties to explain the difference are, first, that the number
of spatially independent components differed between
the more metabolically active gray matter and the
white matter, and second, that there may have been
nonlinear mixing between spatial components, suggest-
ing a limitation for linear models and a potential role
for models incorporating nonlinear mixing [Lee et al.,
1997].

The simulation results indicate that separation based
on a combined ICA/PCA matrix is capable of detect-
ing the number of sources in artificially created data
sets with additive, purely Gaussian noise. The fact that
the mean us(v) steadily declined without a steep falloff
as ICA was used to separate greater number of eigen-
images from the actual fMRI data suggests that even
the eigenimages explaining the smallest variance in
our data still had a statistical structure unlike Gaussian
noise. This may have implications for analysis tech-
niques that assume fMRI data to consist of underlying
components and additive, purely Gaussian noise [Fris-
ton, 1996].

These exploratory results suggest that advances in
the application of ICA to fMRI data may require
addressing possible nonlinear interactions between
components, and/or the performance of separate analy-
ses on different subsets of the brain, such as cortical
and white matter.
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