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Abstract 

An extension of the infomax algorithm of Bell & Sejnowski (1995) is presented that 
is able to separate the mixed sub- and super-Gaussian source distributions. The 
same learning rule has been derived by Giiolami & Fyfe (1997) from the negentropy 
perspective for projection pursuit. Using a Laplacian prior we also propose a learn- 
ing rule that is especially convenient to realize in hardware. The natural gradient 
extension is presented fiom different perspectives and the use of preprocessing steps 
is proposed to further speed up the convergence. Simulation results show that the 
algorithm is able to separate 20 source with a variety of source distributions. On 
real data, Jung et al. (1997) and McKeown et al. (1997) demonstrate the successful 
use of the extended ICA algorithm to analyze EEG and fMRI recordings. 

1 Introduction 

Recently, blind source separation by Independent Component Analysis (ICA) has received attention 
because of its potential applications in signal processing such as in speech recognition systems [ll, 121, 
telecommunications and medical signal processing [8,14]. The goal of ICA is to recover independent 
sources given sensor outputs in which the sources have been linearly mixed. In contrast to correlation 
based solutions such as Principal Component Analysis (PCA), ICA not only decorrelates the signals 
(2"brder statistics) but also reduces higher-order statistical dependencies, attempting to make the 
signals as independent as possible. 

The blind source separation problem has been studied by researchers in the field of neural networks [I, 
2, 5, 7, 9, 15, 161 and statistical signal processing [3, 6, 111. Bell & Sejnowski [2] have developed an 
unsupervised learning algorithm based on entropy maximization in a feedforward neural network. 
The algorithm uses a sigmoidal activation function that is especially suited to separate sources that 
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have higher kurtosis than the Gaussian distribution (super-Gaussian). We use a related information- 
theoretic algorithm that preserves the simple ar&it&ure in Bell & Sejnowski and allows an extension 
to the separation of mixtures of super-Gaussian and sub-Gaussian sources. Girolami & Fyfe [7] have 
derived this learning rule from ,the negentropy viewpoint and use it for extended exploratory pursuit. 
We show here, that this algorithm can successfully separate 20 mixtures of the following sources: 10 
sound tracks obtained from Pearlmutter, 6 speech/sound signals used in Bell & Sejnowski (1995), 3 
uniformly distributed sub-Gaussian noise signals and one noise source with a Gaussian distribution. 

Recently, Jung et al. [8] have successfully applied the extended ICA algorithm to remove artifacts 
in electroencephalographic (EEG) recordings. To this end, the raw data is blindly decomposed into 
independent components such as line noise, eye movements and muscle movements. After eliminating 
these artifactual components, the 'corrected' EEG data are free of these artifacts. Furthermore, 
McKeown et al. 1141, show how the extended ICA algorithm can be used to find transient time- 
locked signals in fMRI data. 

2 Algorithm 

Bell and Sejnowski [2] have proposed a simple neural network algorithm that blindly separates 
mixtures x of independent sources s using infomax. They show that maximizing the joint entropy 
H(y) of the output of a neural processor minimizes the mutual information among the output 
components yi = g(ui) where g(ui) is an invertible bounded nonlinearity and u = Wx. Pearlmutter 
and Parra [15] derive the same learning rule from a Maximum-Liihood (ML) density estimation 
approach using the Kullback-Leibler distance measure: 

p(x) is the probability density function (pdf) of the observation x and $(x; w) is a parametric 
estimate of the distribution of the independent sources. In [4] Cardoso shows that infomax and ML 
are equivalent because the relation between the KGdistance and the ML differs by the constant 
Entropy H(x) which is not dependent on W. 

Girolami & Fyfe [7] start from the negentropy point of view and use a kurtosis measure for projection 
pursuit: 

NP") = H @ G )  - H@u) (3) 
where H(po) is the entropy of the Gaussian distribution and H@u) is the entropy of the estimated 
sources. Negentropy N@,) from the ML perspective as a measure of the KL-distance of a trans- 
formed vector u to normality. Since the observation x is close to the Gaussian distribution for a linear 
mixing of independent variables due to the central limit theorem, the difference between maximizing 
the distance to the observation or to a Gaussian distribution does not matter in practice. In all three 
approaches the output entropy H(y) of a neural processor is maximized which implies approximat- 
ing the output density in the sense of minimum KGdistance, by a uniform dertsity. The algorithm 
shapes the signal u according to the derivative of the activation function p(u) = dg(u)/du and makes 
ui as independent as possible. Independence is achieved through the nonlinear squashing function 
for example a sigmoid function, which provides a combination of higher-order statistics through its 
Taylor series expansion. We can relate p,(x) to py(y) by the determinant of the Jacobian: 

px(4  
PY (Y) = I det J(x) 1 

Evaluating the expected value of the logarithmic representation for eq.4 gives the output entropy 
which can be maximized with respect to W [2] which is equivalent to maximizing the volume of the 



134 4th Joint Symposium on Neural Computation Proceedings 

Jacobian of the transfer function. 

An efficient way to maximize the joint entropy is to follow the 'natural' gradient: 

As reported by Amari et al. [I], here W ~ W  is an optimal rescaling of the entropy gradient, simpli- 
fying the learning rule in [2] and speeding convergence considerably. 

Theoretically, the form of the nonlinearity g(u) plays an essential role in the success of the algorithm. 
The ideal form for g(u) is the cumulative density function (cdf) of the distributions of the independent 
sources. In practice however, if we choose g(u) to be a signmid function the learning rule reduces 
to that proposed in [2]. The algorithm is then limited to separating sources with super-Gaussian 
distributions. Therefore, the purpose of an extended ICA algorithm is to provide a learning rule that 
can separate a Msiety of distributions. A more general, but computationally burdensome solution is 
to use contextual ICA [15] where the pdf is modeled in a parametric form by taking into account the 
temporal information. Pearlmutter and Parra choose to make pi a weighted sum of logistic density 
functions with variable means and scales, and make these means linear functions of the recent history 
of source i. 

where mik are the weighting parameters and a i k  are the scaling parameters. The component means 
fiik are linear functions of the recent time samples of the source. 

Another way of generalizing the learning rule to sources with either sub- or super-Gaussian dis- 
tributions is to approximate the estimated pdf with an Edgeworth expansion or Gram-Charlier 
expansion [6]. The nthsrder Edgeworth expansion of the estimated sources u is given as the sum of 
the pdf of Gaussian approximations. Girolami & Fyfe [I use a 4th-order Edgeworth expansion and 
make approximations for two cases. For sub-Gaussians, the following approximation is possible: 

Bpo 
Bui - + tanh(ui) - ui 

~ ( 4  
(8) 

whereas for super-Gaussians, the approximation can be made as follows: 

The sign flip can be substituted by the normalized kurtosis k4 which can be computed adaptively 
from the estimated sources u: 

The learning rule extracted from eq.8, eq.9 and eq.6 is then: 

Intuitively, for super-Gaussians the term (- tanh(u)uT) corresponds to an anti-Hebbian rule that 
tends to mhimize the variance u, whereas for sub-Gaussians the corresponding term is a Hebbian 
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rule that tends to maximize the variance u. If we choose a sigmoidal activation function y = 
1/(1+ exp(-u)) with the additional term u the learning rule changes to: 

AW K [I - sign(k4) (1 - 2y)uT - uuT] W (12) 
Eq.11 and eq.12 do not differ in their performance since the tanh(.) and the sigmoidal activation 
function are proportional to each other. However, if we assume that the source distribution is Lapla- 
cian (e.g. speech) the activation function can be modeled as: J:; exp(- (ul)dv and the nonlinearity 
reduces to using the sign-function. 

AW cx [I - sign(k4)sign(u)uT - uuT] W (13) 
The nonlinearity in Eq.13 can be realized in an hardware implementation by a simple 1-bit quantizer. 
Note that in the case of separating only natural signals (mostly super-Gaussian) the learning rule is 
simply 

AW IX [I - sign(u)uT] W (14) 

2.1 Speeding u p  convergence 

A significant improvement of the convergence is given by the 'natural' gradient [I]. Amari derives the 
optimized learning rule from an information geometry approach where in an Riemannian manifold 
the Fisher information matrix provides an optimal rescaling of the simple gradient. 

where l(x, W )  = log(p(x1W) is defhed as the loss function and gij(W) is the Fisher information 
matrix. Applied to the source separation problem, the Fisher information matrix reduces to the 
identity when the independent components are orthogonal to each other. Otherwise, the extension 
w T W  provides a rescaling of the gradient for the non-orthogonal metric and the natural gradient 
is given by: 

~ n l ( x ,  W)  = G'l ve l(x, W )  (16) 
where ve is the Euclidean (nomal) gradient and G-l is the transformation matrix. 

Cardoso calls the metric the relative gradient and uses it in the equivariant learning rule [3]. 
MacKay [13] derives the natural gradient rule from the ML perspective and finds a metric from 
the curvature of the objective function given by the second derivative of the MGfunction. The re- 
sulting learning rule is covariant which means that the steepest ascent in W is optimal with respect 
to the curvature of the objective function. 

We use preprocessing methods to speed up the convergence. A common statistical tool before apply- 
ing the learning rule in eq.11 is to remove the 2nd-order correlation by prewhitening the observation 
vector x. This preprocessing method speeds up convergence. The overall separation matrix Wall 
consists then of a second order sphering matrix Ws and the unmixing matrix found by the infomax 
algorithm: Wall = W - Ws. The whitening matrix W s  can be computed by W s  = (E{xxT))-a 
Furthermore, the preprocessing method can be extended to 4th-order correlation cancelation by 
simply adding another step that cancels out 4th-order correlation. 

xs = W ~ X  and w4 = ( E { I I X S I I ~ X S X ~ ) ) - ~  (17) 
-. Wall = W . W * ' W S  (18) 

In [lo] we can improve the performance of infomax by repetitively forcing 2nd-order and 4th-order 
correlations to zero which speeds up the convergence and improves separating sources with fewer 
data points. 

During the learning process, we observe that a momentum helps to stabilize the convergence of the 
algorithm. 

AW (n + 1) = (1 - a) A W (n) + crW(n) (19) 
where a takes into account the history of W and increases with increasing number of iterations. 
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3 Simulation and Experimental Results 

An obvious question given the different learning rules in eq.11, eq.12, eq.13 is to what extent the 
nonlinear activation function g(u)..has to approximate the cdf of s to separate the sources in practice. 
To answer the question, we perform two simulation experiments. 

1. Separation of 10 sound sources obtained from Pearlmutter (for comparison purpose to cICA 
in [15]). 

2. Separation of the following 20 sources: 10 sound tracks obtained from Pearlmutter, 6 
speech/sound signals used in Bell & Sejnowski, 3 uniformly distributed sub-Gaussian noise 
signals and one noise source with a Gaussian distribution. 

For the first simulation experiment, we use eq.13, eq.19 and the preprocessing steps in eq.18. The 
10 mixed sources can be separated in one or two pass through the data. For 55000 data points and 
a blocksize of 10, one pass is equivalent to 275 iterations. The learning rate was fixed at 0.0001. As 
a measure of performace, we use the measure proposed by Amari et al. in [I] which can be related 
to the SNR measure [lo]. 

where P = W A and P is close to the identity matrix (except of permutation and scaling) when 
the sources are separated. 1 shows the performance index during the learning process (two 
iterations) for eq.13 and eq.12. Both learning rules converge to the correct solution. However, eq.13 
converges faster than eq.12 although the pdf of the sound sources are closer to the derivative of the 
sigmoidal activation function than the Laplacian prior. 
- -0.0869 -0.3835 0.1439 -0.0987 -0.0555 0.9308 -0.3567 -0.5379 0.1690 14.7862 
-11.1760 -0.0126 0.1423 0.0500 -0.0799 0.0177 0.0715 0.2052 -0.1206 -0.6785 
0.1503 0.0780 -0.0792 -0.0227 10.1875 -0.0204 0.1454 0.0556 0.0730 0.1695 
0.3949 0.6057 -0.6988 -0.0672 0.1378 0.3241 -0.0833 0.8545 7.6403 -0.1570 
0.0436 0.7586 14.8921 0.0325 0.0260 -0.1665 0.1828 -0.3120 -0.1940 0.0386 
0.1077 12.8930 -0.5396 -0.2330 -0.4262 -0.2100 -0.1163 0.0474 0.0786 0.1806 
0.4542 0.1663 -0.0242 6.5322 0.2396 0.9798 -0.3873 -0.929 0.0643 -0.0857 
0.3137 0.1424 0.2285 0.0305 -0.1384 -17.2518 -0.3871 -0.2518 0.1943 0.3918 
-0.5391 -0.8079 0.6236 0.8411 -0.1786 0.4674 -0.0374 10.4839 -0.9210 0.1258 
, -0.0778 -0.2582 0.1458 -0.1020 0.4879 0.0091 -10.2541 0.5898 0.3325 -0.9416 

The above matrix shows the performance matrix P after 550 iterations and is close to the identity 
matrix after rescaling and reordering. Therefore, compared to cICA the original infomax algorithm 
shows the same performance without having to learn the nonlinear transfer function. 

For the second experiment, we performed the same preprocessing steps and used eq.11. The blocksize 
was 100 and 50 passes through the data (1375 iterations) were neccessary for convergence. Figure 2 
shows the performance after the rows were manually reordered and normalized to unity. A listening 
test shows a clear separation of all sources from their mixture. In this case, when we used eq.13, the 
noise source with Gaussian distribution cannot be separated completely from the mixtures. Hence, 
the Laplacian prior is not suitable to separate a source with an approximately Gaussian distribution. 
In other words, the sigmoidal activation function seems to provide a good compromise betwken the 
Gaussian and the spiky Laplacian distribution that provides an approximation for a wide range of 
source distributions. 

3.1 Experimental Results on EEG and fMRI Data 

We have applied the learning rules in eq.11 - eq.13 and the preprocessing steps to analyze EEG 
recordings and fMRI data. 
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Figure 1: Performance index for the separation of 10 sound sources. The doted l i e  is the perfor- 
mance for eq.12 and the continuous line is the performance for eq.13 

Figure 2: Results from the separation of 20 sources. This figure shows the separation performance 
matrix P after normalizing and reordering. For perfect separation P is an identity matrix. 
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In Jung et al. [8], we showed how the proposed algorithm can be used to remove artifacts from EEG 
recordings. The recorded EEG signals are often contaminated with artifacts which have to be filtered 
out. By using the extended ICA algorithm eq.12, we can separate eye movement artifacts, periodic 
muscle spiking, line noise and cardiac contamination (EKG noise). The sources have sub and super 
Gaussian distributions. After eliminating these five artifactual components, the 'corrected' EEG 
data are free of these artifacts. 

In McKeown et al. [14], we show how the algorithm can be used to find time courses in voxels of 
fMRI data which correspond to the time course of the experiments. 

4 Conclusions 

The extended ICA algorithm presented here is a promising generalization of ICA for mixed sub- 
Gaussian and super-Gaussian sources. The algorithm is robust and efficient and has been used 
successfully on several large data sets derived from electrical and blood flow measurements of func- 
tional activity in the brain. 
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